summaryrefslogtreecommitdiff
path: root/gdb/objfiles.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/objfiles.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadbinutils-gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/objfiles.c')
-rw-r--r--gdb/objfiles.c988
1 files changed, 988 insertions, 0 deletions
diff --git a/gdb/objfiles.c b/gdb/objfiles.c
new file mode 100644
index 00000000000..971a7d4de49
--- /dev/null
+++ b/gdb/objfiles.c
@@ -0,0 +1,988 @@
+/* GDB routines for manipulating objfiles.
+ Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
+ Contributed by Cygnus Support, using pieces from other GDB modules.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* This file contains support routines for creating, manipulating, and
+ destroying objfile structures. */
+
+#include "defs.h"
+#include "bfd.h" /* Binary File Description */
+#include "symtab.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "gdb-stabs.h"
+#include "target.h"
+
+#include <sys/types.h>
+#include "gdb_stat.h"
+#include <fcntl.h>
+#include "obstack.h"
+#include "gdb_string.h"
+
+/* Prototypes for local functions */
+
+#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
+
+static int
+open_existing_mapped_file PARAMS ((char *, long, int));
+
+static int
+open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
+
+static PTR
+map_to_file PARAMS ((int));
+
+#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
+
+static void
+add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
+
+/* Externally visible variables that are owned by this module.
+ See declarations in objfile.h for more info. */
+
+struct objfile *object_files; /* Linked list of all objfiles */
+struct objfile *current_objfile; /* For symbol file being read in */
+struct objfile *symfile_objfile; /* Main symbol table loaded from */
+struct objfile *rt_common_objfile; /* For runtime common symbols */
+
+int mapped_symbol_files; /* Try to use mapped symbol files */
+
+/* Locate all mappable sections of a BFD file.
+ objfile_p_char is a char * to get it through
+ bfd_map_over_sections; we cast it back to its proper type. */
+
+#ifndef TARGET_KEEP_SECTION
+#define TARGET_KEEP_SECTION(ASECT) 0
+#endif
+
+static void
+add_to_objfile_sections (abfd, asect, objfile_p_char)
+ bfd *abfd;
+ sec_ptr asect;
+ PTR objfile_p_char;
+{
+ struct objfile *objfile = (struct objfile *) objfile_p_char;
+ struct obj_section section;
+ flagword aflag;
+
+ aflag = bfd_get_section_flags (abfd, asect);
+
+ if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION(asect)))
+ return;
+
+ if (0 == bfd_section_size (abfd, asect))
+ return;
+ section.offset = 0;
+ section.objfile = objfile;
+ section.the_bfd_section = asect;
+ section.ovly_mapped = 0;
+ section.addr = bfd_section_vma (abfd, asect);
+ section.endaddr = section.addr + bfd_section_size (abfd, asect);
+ obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
+ objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
+}
+
+/* Builds a section table for OBJFILE.
+ Returns 0 if OK, 1 on error (in which case bfd_error contains the
+ error). */
+
+int
+build_objfile_section_table (objfile)
+ struct objfile *objfile;
+{
+ /* objfile->sections can be already set when reading a mapped symbol
+ file. I believe that we do need to rebuild the section table in
+ this case (we rebuild other things derived from the bfd), but we
+ can't free the old one (it's in the psymbol_obstack). So we just
+ waste some memory. */
+
+ objfile->sections_end = 0;
+ bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
+ objfile->sections = (struct obj_section *)
+ obstack_finish (&objfile->psymbol_obstack);
+ objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
+ return(0);
+}
+
+/* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
+ whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
+ struct, fill it in as best we can, link it into the list of all known
+ objfiles, and return a pointer to the new objfile struct.
+
+ USER_LOADED is simply recorded in the objfile. This record offers a way for
+ run_command to remove old objfile entries which are no longer valid (i.e.,
+ are associated with an old inferior), but to preserve ones that the user
+ explicitly loaded via the add-symbol-file command.
+
+ IS_SOLIB is also simply recorded in the objfile. */
+
+struct objfile *
+allocate_objfile (abfd, mapped, user_loaded, is_solib)
+ bfd *abfd;
+ int mapped;
+ int user_loaded;
+ int is_solib;
+{
+ struct objfile *objfile = NULL;
+ struct objfile *last_one = NULL;
+
+ mapped |= mapped_symbol_files;
+
+#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
+ if (abfd != NULL)
+ {
+
+ /* If we can support mapped symbol files, try to open/reopen the
+ mapped file that corresponds to the file from which we wish to
+ read symbols. If the objfile is to be mapped, we must malloc
+ the structure itself using the mmap version, and arrange that
+ all memory allocation for the objfile uses the mmap routines.
+ If we are reusing an existing mapped file, from which we get
+ our objfile pointer, we have to make sure that we update the
+ pointers to the alloc/free functions in the obstack, in case
+ these functions have moved within the current gdb. */
+
+ int fd;
+
+ fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
+ mapped);
+ if (fd >= 0)
+ {
+ PTR md;
+
+ if ((md = map_to_file (fd)) == NULL)
+ {
+ close (fd);
+ }
+ else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
+ {
+ /* Update memory corruption handler function addresses. */
+ init_malloc (md);
+ objfile -> md = md;
+ objfile -> mmfd = fd;
+ /* Update pointers to functions to *our* copies */
+ obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
+ obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
+ obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
+ obstack_freefun (&objfile -> psymbol_obstack, mfree);
+ obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
+ obstack_freefun (&objfile -> symbol_obstack, mfree);
+ obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
+ obstack_freefun (&objfile -> type_obstack, mfree);
+ /* If already in objfile list, unlink it. */
+ unlink_objfile (objfile);
+ /* Forget things specific to a particular gdb, may have changed. */
+ objfile -> sf = NULL;
+ }
+ else
+ {
+
+ /* Set up to detect internal memory corruption. MUST be
+ done before the first malloc. See comments in
+ init_malloc() and mmcheck(). */
+
+ init_malloc (md);
+
+ objfile = (struct objfile *)
+ xmmalloc (md, sizeof (struct objfile));
+ memset (objfile, 0, sizeof (struct objfile));
+ objfile -> md = md;
+ objfile -> mmfd = fd;
+ objfile -> flags |= OBJF_MAPPED;
+ mmalloc_setkey (objfile -> md, 0, objfile);
+ obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
+ 0, 0, xmmalloc, mfree,
+ objfile -> md);
+ obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
+ 0, 0, xmmalloc, mfree,
+ objfile -> md);
+ obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
+ 0, 0, xmmalloc, mfree,
+ objfile -> md);
+ obstack_specify_allocation_with_arg (&objfile -> type_obstack,
+ 0, 0, xmmalloc, mfree,
+ objfile -> md);
+ }
+ }
+
+ if (mapped && (objfile == NULL))
+ {
+ warning ("symbol table for '%s' will not be mapped",
+ bfd_get_filename (abfd));
+ }
+ }
+#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
+
+ if (mapped)
+ {
+ warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
+
+ /* Turn off the global flag so we don't try to do mapped symbol tables
+ any more, which shuts up gdb unless the user specifically gives the
+ "mapped" keyword again. */
+
+ mapped_symbol_files = 0;
+ }
+
+#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
+
+ /* If we don't support mapped symbol files, didn't ask for the file to be
+ mapped, or failed to open the mapped file for some reason, then revert
+ back to an unmapped objfile. */
+
+ if (objfile == NULL)
+ {
+ objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
+ memset (objfile, 0, sizeof (struct objfile));
+ objfile -> md = NULL;
+ obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
+ xmalloc, free);
+ obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
+ free);
+ obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
+ free);
+ obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
+ free);
+ }
+
+ /* Update the per-objfile information that comes from the bfd, ensuring
+ that any data that is reference is saved in the per-objfile data
+ region. */
+
+ objfile -> obfd = abfd;
+ if (objfile -> name != NULL)
+ {
+ mfree (objfile -> md, objfile -> name);
+ }
+ if (abfd != NULL)
+ {
+ objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
+ objfile -> mtime = bfd_get_mtime (abfd);
+
+ /* Build section table. */
+
+ if (build_objfile_section_table (objfile))
+ {
+ error ("Can't find the file sections in `%s': %s",
+ objfile -> name, bfd_errmsg (bfd_get_error ()));
+ }
+ }
+
+ /* Add this file onto the tail of the linked list of other such files. */
+
+ objfile -> next = NULL;
+ if (object_files == NULL)
+ object_files = objfile;
+ else
+ {
+ for (last_one = object_files;
+ last_one -> next;
+ last_one = last_one -> next);
+ last_one -> next = objfile;
+ }
+
+ /* Record whether this objfile was created because the user explicitly
+ caused it (e.g., used the add-symbol-file command).
+ */
+ objfile -> user_loaded = user_loaded;
+
+ /* Record whether this objfile definitely represents a solib. */
+ objfile -> is_solib = is_solib;
+
+ return (objfile);
+}
+
+/* Put OBJFILE at the front of the list. */
+
+void
+objfile_to_front (objfile)
+ struct objfile *objfile;
+{
+ struct objfile **objp;
+ for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
+ {
+ if (*objp == objfile)
+ {
+ /* Unhook it from where it is. */
+ *objp = objfile->next;
+ /* Put it in the front. */
+ objfile->next = object_files;
+ object_files = objfile;
+ break;
+ }
+ }
+}
+
+/* Unlink OBJFILE from the list of known objfiles, if it is found in the
+ list.
+
+ It is not a bug, or error, to call this function if OBJFILE is not known
+ to be in the current list. This is done in the case of mapped objfiles,
+ for example, just to ensure that the mapped objfile doesn't appear twice
+ in the list. Since the list is threaded, linking in a mapped objfile
+ twice would create a circular list.
+
+ If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
+ unlinking it, just to ensure that we have completely severed any linkages
+ between the OBJFILE and the list. */
+
+void
+unlink_objfile (objfile)
+ struct objfile *objfile;
+{
+ struct objfile** objpp;
+
+ for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
+ {
+ if (*objpp == objfile)
+ {
+ *objpp = (*objpp) -> next;
+ objfile -> next = NULL;
+ break;
+ }
+ }
+}
+
+
+/* Destroy an objfile and all the symtabs and psymtabs under it. Note
+ that as much as possible is allocated on the symbol_obstack and
+ psymbol_obstack, so that the memory can be efficiently freed.
+
+ Things which we do NOT free because they are not in malloc'd memory
+ or not in memory specific to the objfile include:
+
+ objfile -> sf
+
+ FIXME: If the objfile is using reusable symbol information (via mmalloc),
+ then we need to take into account the fact that more than one process
+ may be using the symbol information at the same time (when mmalloc is
+ extended to support cooperative locking). When more than one process
+ is using the mapped symbol info, we need to be more careful about when
+ we free objects in the reusable area. */
+
+void
+free_objfile (objfile)
+ struct objfile *objfile;
+{
+ /* First do any symbol file specific actions required when we are
+ finished with a particular symbol file. Note that if the objfile
+ is using reusable symbol information (via mmalloc) then each of
+ these routines is responsible for doing the correct thing, either
+ freeing things which are valid only during this particular gdb
+ execution, or leaving them to be reused during the next one. */
+
+ if (objfile -> sf != NULL)
+ {
+ (*objfile -> sf -> sym_finish) (objfile);
+ }
+
+ /* We always close the bfd. */
+
+ if (objfile -> obfd != NULL)
+ {
+ char *name = bfd_get_filename (objfile->obfd);
+ if (!bfd_close (objfile -> obfd))
+ warning ("cannot close \"%s\": %s",
+ name, bfd_errmsg (bfd_get_error ()));
+ free (name);
+ }
+
+ /* Remove it from the chain of all objfiles. */
+
+ unlink_objfile (objfile);
+
+ /* If we are going to free the runtime common objfile, mark it
+ as unallocated. */
+
+ if (objfile == rt_common_objfile)
+ rt_common_objfile = NULL;
+
+ /* Before the symbol table code was redone to make it easier to
+ selectively load and remove information particular to a specific
+ linkage unit, gdb used to do these things whenever the monolithic
+ symbol table was blown away. How much still needs to be done
+ is unknown, but we play it safe for now and keep each action until
+ it is shown to be no longer needed. */
+
+#if defined (CLEAR_SOLIB)
+ CLEAR_SOLIB ();
+ /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
+ the to_sections for a core file might refer to those bfd's. So
+ detach any core file. */
+ {
+ struct target_ops *t = find_core_target ();
+ if (t != NULL)
+ (t->to_detach) (NULL, 0);
+ }
+#endif
+ /* I *think* all our callers call clear_symtab_users. If so, no need
+ to call this here. */
+ clear_pc_function_cache ();
+
+ /* The last thing we do is free the objfile struct itself for the
+ non-reusable case, or detach from the mapped file for the reusable
+ case. Note that the mmalloc_detach or the mfree is the last thing
+ we can do with this objfile. */
+
+#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
+
+ if (objfile -> flags & OBJF_MAPPED)
+ {
+ /* Remember the fd so we can close it. We can't close it before
+ doing the detach, and after the detach the objfile is gone. */
+ int mmfd;
+
+ mmfd = objfile -> mmfd;
+ mmalloc_detach (objfile -> md);
+ objfile = NULL;
+ close (mmfd);
+ }
+
+#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
+
+ /* If we still have an objfile, then either we don't support reusable
+ objfiles or this one was not reusable. So free it normally. */
+
+ if (objfile != NULL)
+ {
+ if (objfile -> name != NULL)
+ {
+ mfree (objfile -> md, objfile -> name);
+ }
+ if (objfile->global_psymbols.list)
+ mfree (objfile->md, objfile->global_psymbols.list);
+ if (objfile->static_psymbols.list)
+ mfree (objfile->md, objfile->static_psymbols.list);
+ /* Free the obstacks for non-reusable objfiles */
+ obstack_free (&objfile -> psymbol_cache.cache, 0);
+ obstack_free (&objfile -> psymbol_obstack, 0);
+ obstack_free (&objfile -> symbol_obstack, 0);
+ obstack_free (&objfile -> type_obstack, 0);
+ mfree (objfile -> md, objfile);
+ objfile = NULL;
+ }
+}
+
+
+/* Free all the object files at once and clean up their users. */
+
+void
+free_all_objfiles ()
+{
+ struct objfile *objfile, *temp;
+
+ ALL_OBJFILES_SAFE (objfile, temp)
+ {
+ free_objfile (objfile);
+ }
+ clear_symtab_users ();
+}
+
+/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
+ entries in new_offsets. */
+void
+objfile_relocate (objfile, new_offsets)
+ struct objfile *objfile;
+ struct section_offsets *new_offsets;
+{
+ struct section_offsets *delta = (struct section_offsets *)
+ alloca (sizeof (struct section_offsets)
+ + objfile->num_sections * sizeof (delta->offsets));
+
+ {
+ int i;
+ int something_changed = 0;
+ for (i = 0; i < objfile->num_sections; ++i)
+ {
+ ANOFFSET (delta, i) =
+ ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
+ if (ANOFFSET (delta, i) != 0)
+ something_changed = 1;
+ }
+ if (!something_changed)
+ return;
+ }
+
+ /* OK, get all the symtabs. */
+ {
+ struct symtab *s;
+
+ ALL_OBJFILE_SYMTABS (objfile, s)
+ {
+ struct linetable *l;
+ struct blockvector *bv;
+ int i;
+
+ /* First the line table. */
+ l = LINETABLE (s);
+ if (l)
+ {
+ for (i = 0; i < l->nitems; ++i)
+ l->item[i].pc += ANOFFSET (delta, s->block_line_section);
+ }
+
+ /* Don't relocate a shared blockvector more than once. */
+ if (!s->primary)
+ continue;
+
+ bv = BLOCKVECTOR (s);
+ for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
+ {
+ struct block *b;
+ int j;
+
+ b = BLOCKVECTOR_BLOCK (bv, i);
+ BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
+ BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
+
+ for (j = 0; j < BLOCK_NSYMS (b); ++j)
+ {
+ struct symbol *sym = BLOCK_SYM (b, j);
+ /* The RS6000 code from which this was taken skipped
+ any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
+ But I'm leaving out that test, on the theory that
+ they can't possibly pass the tests below. */
+ if ((SYMBOL_CLASS (sym) == LOC_LABEL
+ || SYMBOL_CLASS (sym) == LOC_STATIC
+ || SYMBOL_CLASS (sym) == LOC_INDIRECT)
+ && SYMBOL_SECTION (sym) >= 0)
+ {
+ SYMBOL_VALUE_ADDRESS (sym) +=
+ ANOFFSET (delta, SYMBOL_SECTION (sym));
+ }
+#ifdef MIPS_EFI_SYMBOL_NAME
+ /* Relocate Extra Function Info for ecoff. */
+
+ else
+ if (SYMBOL_CLASS (sym) == LOC_CONST
+ && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
+ && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
+ ecoff_relocate_efi (sym, ANOFFSET (delta,
+ s->block_line_section));
+#endif
+ }
+ }
+ }
+ }
+
+ {
+ struct partial_symtab *p;
+
+ ALL_OBJFILE_PSYMTABS (objfile, p)
+ {
+ p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
+ p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
+ }
+ }
+
+ {
+ struct partial_symbol **psym;
+
+ for (psym = objfile->global_psymbols.list;
+ psym < objfile->global_psymbols.next;
+ psym++)
+ if (SYMBOL_SECTION (*psym) >= 0)
+ SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
+ SYMBOL_SECTION (*psym));
+ for (psym = objfile->static_psymbols.list;
+ psym < objfile->static_psymbols.next;
+ psym++)
+ if (SYMBOL_SECTION (*psym) >= 0)
+ SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
+ SYMBOL_SECTION (*psym));
+ }
+
+ {
+ struct minimal_symbol *msym;
+ ALL_OBJFILE_MSYMBOLS (objfile, msym)
+ if (SYMBOL_SECTION (msym) >= 0)
+ SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
+ }
+ /* Relocating different sections by different amounts may cause the symbols
+ to be out of order. */
+ msymbols_sort (objfile);
+
+ {
+ int i;
+ for (i = 0; i < objfile->num_sections; ++i)
+ ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
+ }
+
+ {
+ struct obj_section *s;
+ bfd *abfd;
+
+ abfd = objfile->obfd;
+
+ for (s = objfile->sections;
+ s < objfile->sections_end; ++s)
+ {
+ flagword flags;
+
+ flags = bfd_get_section_flags (abfd, s->the_bfd_section);
+
+ if (flags & SEC_CODE)
+ {
+ s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
+ s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
+ }
+ else if (flags & (SEC_DATA | SEC_LOAD))
+ {
+ s->addr += ANOFFSET (delta, SECT_OFF_DATA);
+ s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
+ }
+ else if (flags & SEC_ALLOC)
+ {
+ s->addr += ANOFFSET (delta, SECT_OFF_BSS);
+ s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
+ }
+ }
+ }
+
+ if (objfile->ei.entry_point != ~(CORE_ADDR)0)
+ objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
+
+ if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
+ {
+ objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ }
+
+ if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
+ {
+ objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ }
+
+ if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
+ {
+ objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
+ }
+
+ /* Relocate breakpoints as necessary, after things are relocated. */
+ breakpoint_re_set ();
+}
+
+/* Many places in gdb want to test just to see if we have any partial
+ symbols available. This function returns zero if none are currently
+ available, nonzero otherwise. */
+
+int
+have_partial_symbols ()
+{
+ struct objfile *ofp;
+
+ ALL_OBJFILES (ofp)
+ {
+ if (ofp -> psymtabs != NULL)
+ {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Many places in gdb want to test just to see if we have any full
+ symbols available. This function returns zero if none are currently
+ available, nonzero otherwise. */
+
+int
+have_full_symbols ()
+{
+ struct objfile *ofp;
+
+ ALL_OBJFILES (ofp)
+ {
+ if (ofp -> symtabs != NULL)
+ {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/* This operations deletes all objfile entries that represent solibs that
+ weren't explicitly loaded by the user, via e.g., the add-symbol-file
+ command.
+ */
+void
+objfile_purge_solibs ()
+{
+ struct objfile * objf;
+ struct objfile * temp;
+
+ ALL_OBJFILES_SAFE (objf, temp)
+ {
+ /* We assume that the solib package has been purged already, or will
+ be soon.
+ */
+ if (! objf->user_loaded && objf->is_solib)
+ free_objfile (objf);
+ }
+}
+
+
+/* Many places in gdb want to test just to see if we have any minimal
+ symbols available. This function returns zero if none are currently
+ available, nonzero otherwise. */
+
+int
+have_minimal_symbols ()
+{
+ struct objfile *ofp;
+
+ ALL_OBJFILES (ofp)
+ {
+ if (ofp -> msymbols != NULL)
+ {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
+
+/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
+ of the corresponding symbol file in MTIME, try to open an existing file
+ with the name SYMSFILENAME and verify it is more recent than the base
+ file by checking it's timestamp against MTIME.
+
+ If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
+
+ If SYMSFILENAME does exist, but is out of date, we check to see if the
+ user has specified creation of a mapped file. If so, we don't issue
+ any warning message because we will be creating a new mapped file anyway,
+ overwriting the old one. If not, then we issue a warning message so that
+ the user will know why we aren't using this existing mapped symbol file.
+ In either case, we return -1.
+
+ If SYMSFILENAME does exist and is not out of date, but can't be opened for
+ some reason, then prints an appropriate system error message and returns -1.
+
+ Otherwise, returns the open file descriptor. */
+
+static int
+open_existing_mapped_file (symsfilename, mtime, mapped)
+ char *symsfilename;
+ long mtime;
+ int mapped;
+{
+ int fd = -1;
+ struct stat sbuf;
+
+ if (stat (symsfilename, &sbuf) == 0)
+ {
+ if (sbuf.st_mtime < mtime)
+ {
+ if (!mapped)
+ {
+ warning ("mapped symbol file `%s' is out of date, ignored it",
+ symsfilename);
+ }
+ }
+ else if ((fd = open (symsfilename, O_RDWR)) < 0)
+ {
+ if (error_pre_print)
+ {
+ printf_unfiltered (error_pre_print);
+ }
+ print_sys_errmsg (symsfilename, errno);
+ }
+ }
+ return (fd);
+}
+
+/* Look for a mapped symbol file that corresponds to FILENAME and is more
+ recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
+ use a mapped symbol file for this file, so create a new one if one does
+ not currently exist.
+
+ If found, then return an open file descriptor for the file, otherwise
+ return -1.
+
+ This routine is responsible for implementing the policy that generates
+ the name of the mapped symbol file from the name of a file containing
+ symbols that gdb would like to read. Currently this policy is to append
+ ".syms" to the name of the file.
+
+ This routine is also responsible for implementing the policy that
+ determines where the mapped symbol file is found (the search path).
+ This policy is that when reading an existing mapped file, a file of
+ the correct name in the current directory takes precedence over a
+ file of the correct name in the same directory as the symbol file.
+ When creating a new mapped file, it is always created in the current
+ directory. This helps to minimize the chances of a user unknowingly
+ creating big mapped files in places like /bin and /usr/local/bin, and
+ allows a local copy to override a manually installed global copy (in
+ /bin for example). */
+
+static int
+open_mapped_file (filename, mtime, mapped)
+ char *filename;
+ long mtime;
+ int mapped;
+{
+ int fd;
+ char *symsfilename;
+
+ /* First try to open an existing file in the current directory, and
+ then try the directory where the symbol file is located. */
+
+ symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
+ if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
+ {
+ free (symsfilename);
+ symsfilename = concat (filename, ".syms", (char *) NULL);
+ fd = open_existing_mapped_file (symsfilename, mtime, mapped);
+ }
+
+ /* If we don't have an open file by now, then either the file does not
+ already exist, or the base file has changed since it was created. In
+ either case, if the user has specified use of a mapped file, then
+ create a new mapped file, truncating any existing one. If we can't
+ create one, print a system error message saying why we can't.
+
+ By default the file is rw for everyone, with the user's umask taking
+ care of turning off the permissions the user wants off. */
+
+ if ((fd < 0) && mapped)
+ {
+ free (symsfilename);
+ symsfilename = concat ("./", basename (filename), ".syms",
+ (char *) NULL);
+ if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
+ {
+ if (error_pre_print)
+ {
+ printf_unfiltered (error_pre_print);
+ }
+ print_sys_errmsg (symsfilename, errno);
+ }
+ }
+
+ free (symsfilename);
+ return (fd);
+}
+
+static PTR
+map_to_file (fd)
+ int fd;
+{
+ PTR md;
+ CORE_ADDR mapto;
+
+ md = mmalloc_attach (fd, (PTR) 0);
+ if (md != NULL)
+ {
+ mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
+ md = mmalloc_detach (md);
+ if (md != NULL)
+ {
+ /* FIXME: should figure out why detach failed */
+ md = NULL;
+ }
+ else if (mapto != (CORE_ADDR) NULL)
+ {
+ /* This mapping file needs to be remapped at "mapto" */
+ md = mmalloc_attach (fd, (PTR) mapto);
+ }
+ else
+ {
+ /* This is a freshly created mapping file. */
+ mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
+ if (mapto != 0)
+ {
+ /* To avoid reusing the freshly created mapping file, at the
+ address selected by mmap, we must truncate it before trying
+ to do an attach at the address we want. */
+ ftruncate (fd, 0);
+ md = mmalloc_attach (fd, (PTR) mapto);
+ if (md != NULL)
+ {
+ mmalloc_setkey (md, 1, (PTR) mapto);
+ }
+ }
+ }
+ }
+ return (md);
+}
+
+#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
+
+/* Returns a section whose range includes PC and SECTION,
+ or NULL if none found. Note the distinction between the return type,
+ struct obj_section (which is defined in gdb), and the input type
+ struct sec (which is a bfd-defined data type). The obj_section
+ contains a pointer to the bfd struct sec section. */
+
+struct obj_section *
+find_pc_sect_section (pc, section)
+ CORE_ADDR pc;
+ struct sec *section;
+{
+ struct obj_section *s;
+ struct objfile *objfile;
+
+ ALL_OBJFILES (objfile)
+ for (s = objfile->sections; s < objfile->sections_end; ++s)
+#if defined(HPUXHPPA)
+ if ((section == 0 || section == s->the_bfd_section) &&
+ s->addr <= pc && pc <= s->endaddr)
+#else
+ if ((section == 0 || section == s->the_bfd_section) &&
+ s->addr <= pc && pc < s->endaddr)
+#endif
+ return(s);
+
+ return(NULL);
+}
+
+/* Returns a section whose range includes PC or NULL if none found.
+ Backward compatibility, no section. */
+
+struct obj_section *
+find_pc_section(pc)
+ CORE_ADDR pc;
+{
+ return find_pc_sect_section (pc, find_pc_mapped_section (pc));
+}
+
+
+/* In SVR4, we recognize a trampoline by it's section name.
+ That is, if the pc is in a section named ".plt" then we are in
+ a trampoline. */
+
+int
+in_plt_section(pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ struct obj_section *s;
+ int retval = 0;
+
+ s = find_pc_section(pc);
+
+ retval = (s != NULL
+ && s->the_bfd_section->name != NULL
+ && STREQ (s->the_bfd_section->name, ".plt"));
+ return(retval);
+}