diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
commit | c906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch) | |
tree | a0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/m32r-tdep.c | |
parent | cd946cff9ede3f30935803403f06f6ed30cad136 (diff) | |
download | binutils-gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz |
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/m32r-tdep.c')
-rw-r--r-- | gdb/m32r-tdep.c | 745 |
1 files changed, 745 insertions, 0 deletions
diff --git a/gdb/m32r-tdep.c b/gdb/m32r-tdep.c new file mode 100644 index 00000000000..acd34fa84e4 --- /dev/null +++ b/gdb/m32r-tdep.c @@ -0,0 +1,745 @@ +/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger. + Copyright 1996, Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "frame.h" +#include "inferior.h" +#include "obstack.h" +#include "target.h" +#include "value.h" +#include "bfd.h" +#include "gdb_string.h" +#include "gdbcore.h" +#include "symfile.h" + +/* Function: m32r_use_struct_convention + Return nonzero if call_function should allocate stack space for a + struct return? */ +int +m32r_use_struct_convention (gcc_p, type) + int gcc_p; + struct type *type; +{ + return (TYPE_LENGTH (type) > 8); +} + +/* Function: frame_find_saved_regs + Return the frame_saved_regs structure for the frame. + Doesn't really work for dummy frames, but it does pass back + an empty frame_saved_regs, so I guess that's better than total failure */ + +void +m32r_frame_find_saved_regs (fi, regaddr) + struct frame_info *fi; + struct frame_saved_regs *regaddr; +{ + memcpy(regaddr, &fi->fsr, sizeof(struct frame_saved_regs)); +} + +/* Turn this on if you want to see just how much instruction decoding + if being done, its quite a lot + */ +#if 0 +static void dump_insn(char * commnt,CORE_ADDR pc, int insn) +{ + printf_filtered(" %s %08x %08x ", + commnt,(unsigned int)pc,(unsigned int) insn); + (*tm_print_insn)(pc,&tm_print_insn_info); + printf_filtered("\n"); +} +#define insn_debug(args) { printf_filtered args; } +#else +#define dump_insn(a,b,c) {} +#define insn_debug(args) {} +#endif + +#define DEFAULT_SEARCH_LIMIT 44 + +/* Function: scan_prologue + This function decodes the target function prologue to determine + 1) the size of the stack frame, and 2) which registers are saved on it. + It saves the offsets of saved regs in the frame_saved_regs argument, + and returns the frame size. */ + +/* + The sequence it currently generates is: + + if (varargs function) { ddi sp,#n } + push registers + if (additional stack <= 256) { addi sp,#-stack } + else if (additional stack < 65k) { add3 sp,sp,#-stack + + } else if (additional stack) { + seth sp,#(stack & 0xffff0000) + or3 sp,sp,#(stack & 0x0000ffff) + sub sp,r4 + } + if (frame pointer) { + mv sp,fp + } + +These instructions are scheduled like everything else, so you should stop at +the first branch instruction. + +*/ + +/* This is required by skip prologue and by m32r_init_extra_frame_info. + The results of decoding a prologue should be cached because this + thrashing is getting nuts. + I am thinking of making a container class with two indexes, name and + address. It may be better to extend the symbol table. + */ + +static void decode_prologue (start_pc, scan_limit, + pl_endptr, framelength, + fi, fsr) + CORE_ADDR start_pc; + CORE_ADDR scan_limit; + CORE_ADDR * pl_endptr; /* var parameter */ + unsigned long * framelength; + struct frame_info * fi; + struct frame_saved_regs * fsr; +{ + unsigned long framesize; + int insn; + int op1; + int maybe_one_more = 0; + CORE_ADDR after_prologue = 0; + CORE_ADDR after_stack_adjust = 0; + CORE_ADDR current_pc; + + + framesize = 0; + after_prologue = 0; + insn_debug(("rd prolog l(%d)\n",scan_limit - current_pc)); + + for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) + { + + insn = read_memory_unsigned_integer (current_pc, 2); + dump_insn("insn-1",current_pc,insn); /* MTZ */ + + /* If this is a 32 bit instruction, we dont want to examine its + immediate data as though it were an instruction */ + if (current_pc & 0x02) + { /* Clear the parallel execution bit from 16 bit instruction */ + if (maybe_one_more) + { /* The last instruction was a branch, usually terminates + the series, but if this is a parallel instruction, + it may be a stack framing instruction */ + if (! (insn & 0x8000)) + { insn_debug(("Really done")); + break; /* nope, we are really done */ + } + } + insn &= 0x7fff; /* decode this instruction further */ + } + else + { + if (maybe_one_more) + break; /* This isnt the one more */ + if (insn & 0x8000) + { + insn_debug(("32 bit insn\n")); + if (current_pc == scan_limit) + scan_limit += 2; /* extend the search */ + current_pc += 2; /* skip the immediate data */ + if (insn == 0x8faf) /* add3 sp, sp, xxxx */ + /* add 16 bit sign-extended offset */ + { insn_debug(("stack increment\n")); + framesize += -((short) read_memory_unsigned_integer (current_pc, 2)); + } + else + { + if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */ + read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24) + { /* subtract 24 bit sign-extended negative-offset */ + dump_insn("insn-2",current_pc+2,insn); + insn = read_memory_unsigned_integer (current_pc - 2, 4); + dump_insn("insn-3(l4)",current_pc -2,insn); + if (insn & 0x00800000) /* sign extend */ + insn |= 0xff000000; /* negative */ + else + insn &= 0x00ffffff; /* positive */ + framesize += insn; + } + } + after_prologue = current_pc; + continue; + } + } + op1 = insn & 0xf000; /* isolate just the first nibble */ + + if ((insn & 0xf0ff) == 0x207f) + { /* st reg, @-sp */ + int regno; + insn_debug(("push\n")); +#if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */ + if (((insn & 0xffff) == 0x2d7f) && fi) + fi->using_frame_pointer = 1; +#endif + framesize += 4; +#if 0 +/* Why should we increase the scan limit, just because we did a push? + And if there is a reason, surely we would only want to do it if we + had already reached the scan limit... */ + if (current_pc == scan_limit) + scan_limit += 2; +#endif + regno = ((insn >> 8) & 0xf); + if (fsr) /* save_regs offset */ + fsr->regs[regno] = framesize; + after_prologue = 0; + continue; + } + if ((insn >> 8) == 0x4f) /* addi sp, xx */ + /* add 8 bit sign-extended offset */ + { + int stack_adjust = (char) (insn & 0xff); + + /* there are probably two of these stack adjustments: + 1) A negative one in the prologue, and + 2) A positive one in the epilogue. + We are only interested in the first one. */ + + if (stack_adjust < 0) + { + framesize -= stack_adjust; + after_prologue = 0; + /* A frameless function may have no "mv fp, sp". + In that case, this is the end of the prologue. */ + after_stack_adjust = current_pc + 2; + } + continue; + } + if (insn == 0x1d8f) { /* mv fp, sp */ + if (fi) + fi->using_frame_pointer = 1; /* fp is now valid */ + insn_debug(("done fp found\n")); + after_prologue = current_pc + 2; + break; /* end of stack adjustments */ + } + if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */ + { insn_debug(("nop\n")); + after_prologue = current_pc + 2; + continue; /* nop occurs between pushes */ + } + /* End of prolog if any of these are branch instructions */ + if ((op1 == 0x7000) + || ( op1 == 0xb000) + || (op1 == 0x7000)) + { + after_prologue = current_pc; + insn_debug(("Done: branch\n")); + maybe_one_more = 1; + continue; + } + /* Some of the branch instructions are mixed with other types */ + if (op1 == 0x1000) + {int subop = insn & 0x0ff0; + if ((subop == 0x0ec0) || (subop == 0x0fc0)) + { insn_debug(("done: jmp\n")); + after_prologue = current_pc; + maybe_one_more = 1; + continue; /* jmp , jl */ + } + } + } + + if (current_pc >= scan_limit) + { + if (pl_endptr) +#if 1 + if (after_stack_adjust != 0) + /* We did not find a "mv fp,sp", but we DID find + a stack_adjust. Is it safe to use that as the + end of the prologue? I just don't know. */ + { + *pl_endptr = after_stack_adjust; + if (framelength) + *framelength = framesize; + } + else +#endif + /* We reached the end of the loop without finding the end + of the prologue. No way to win -- we should report failure. + The way we do that is to return the original start_pc. + GDB will set a breakpoint at the start of the function (etc.) */ + + *pl_endptr = start_pc; + + return; + } + if (after_prologue == 0) + after_prologue = current_pc; + + insn_debug((" framesize %d, firstline %08x\n",framesize,after_prologue)); + if (framelength) + *framelength = framesize; + if (pl_endptr) + *pl_endptr = after_prologue; +} /* decode_prologue */ + +/* Function: skip_prologue + Find end of function prologue */ + +CORE_ADDR +m32r_skip_prologue (pc) + CORE_ADDR pc; +{ + CORE_ADDR func_addr, func_end; + struct symtab_and_line sal; + + /* See what the symbol table says */ + + if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) + { + sal = find_pc_line (func_addr, 0); + + if (sal.line != 0 && sal.end <= func_end) + { + + insn_debug(("BP after prologue %08x\n",sal.end)); + func_end = sal.end; + } + else + /* Either there's no line info, or the line after the prologue is after + the end of the function. In this case, there probably isn't a + prologue. */ + { + insn_debug(("No line info, line(%x) sal_end(%x) funcend(%x)\n", + sal.line,sal.end,func_end)); + func_end = min(func_end,func_addr + DEFAULT_SEARCH_LIMIT); + } + } + else + func_end = pc + DEFAULT_SEARCH_LIMIT; + decode_prologue (pc, func_end, &sal.end, 0, 0, 0); + return sal.end; +} + +static unsigned long +m32r_scan_prologue (fi, fsr) + struct frame_info *fi; + struct frame_saved_regs *fsr; +{ + struct symtab_and_line sal; + CORE_ADDR prologue_start, prologue_end, current_pc; + unsigned long framesize; + + /* this code essentially duplicates skip_prologue, + but we need the start address below. */ + + if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) + { + sal = find_pc_line (prologue_start, 0); + + if (sal.line == 0) /* no line info, use current PC */ + if (prologue_start == entry_point_address ()) + return 0; + } + else + { + prologue_start = fi->pc; + prologue_end = prologue_start + 48; /* We're in the boondocks: + allow for 16 pushes, an add, + and "mv fp,sp" */ + } +#if 0 + prologue_end = min (prologue_end, fi->pc); +#endif + insn_debug(("fipc(%08x) start(%08x) end(%08x)\n", + fi->pc,prologue_start,prologue_end)); + prologue_end = min(prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT); + decode_prologue (prologue_start,prologue_end,&prologue_end,&framesize, + fi,fsr); + return framesize; +} + +/* Function: init_extra_frame_info + This function actually figures out the frame address for a given pc and + sp. This is tricky on the m32r because we sometimes don't use an explicit + frame pointer, and the previous stack pointer isn't necessarily recorded + on the stack. The only reliable way to get this info is to + examine the prologue. */ + +void +m32r_init_extra_frame_info (fi) + struct frame_info *fi; +{ + int reg; + + if (fi->next) + fi->pc = FRAME_SAVED_PC (fi->next); + + memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); + + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + { + /* We need to setup fi->frame here because run_stack_dummy gets it wrong + by assuming it's always FP. */ + fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); + fi->framesize = 0; + return; + } + else + { + fi->using_frame_pointer = 0; + fi->framesize = m32r_scan_prologue (fi, &fi->fsr); + + if (!fi->next) + if (fi->using_frame_pointer) + { + fi->frame = read_register (FP_REGNUM); + } + else + fi->frame = read_register (SP_REGNUM); + else /* fi->next means this is not the innermost frame */ + if (fi->using_frame_pointer) /* we have an FP */ + if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */ + fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4); + for (reg = 0; reg < NUM_REGS; reg++) + if (fi->fsr.regs[reg] != 0) + fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg]; + } +} + +/* Function: mn10300_virtual_frame_pointer + Return the register that the function uses for a frame pointer, + plus any necessary offset to be applied to the register before + any frame pointer offsets. */ + +void +m32r_virtual_frame_pointer (pc, reg, offset) + CORE_ADDR pc; + long *reg; + long *offset; +{ + struct frame_info fi; + + /* Set up a dummy frame_info. */ + fi.next = NULL; + fi.prev = NULL; + fi.frame = 0; + fi.pc = pc; + + /* Analyze the prolog and fill in the extra info. */ + m32r_init_extra_frame_info (&fi); + + + /* Results will tell us which type of frame it uses. */ + if (fi.using_frame_pointer) + { + *reg = FP_REGNUM; + *offset = 0; + } + else + { + *reg = SP_REGNUM; + *offset = 0; + } +} + +/* Function: find_callers_reg + Find REGNUM on the stack. Otherwise, it's in an active register. One thing + we might want to do here is to check REGNUM against the clobber mask, and + somehow flag it as invalid if it isn't saved on the stack somewhere. This + would provide a graceful failure mode when trying to get the value of + caller-saves registers for an inner frame. */ + +CORE_ADDR +m32r_find_callers_reg (fi, regnum) + struct frame_info *fi; + int regnum; +{ + for (; fi; fi = fi->next) + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return generic_read_register_dummy (fi->pc, fi->frame, regnum); + else if (fi->fsr.regs[regnum] != 0) + return read_memory_integer (fi->fsr.regs[regnum], + REGISTER_RAW_SIZE(regnum)); + return read_register (regnum); +} + +/* Function: frame_chain + Given a GDB frame, determine the address of the calling function's frame. + This will be used to create a new GDB frame struct, and then + INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. + For m32r, we save the frame size when we initialize the frame_info. */ + +CORE_ADDR +m32r_frame_chain (fi) + struct frame_info *fi; +{ + CORE_ADDR fn_start, callers_pc, fp; + + /* is this a dummy frame? */ + if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame)) + return fi->frame; /* dummy frame same as caller's frame */ + + /* is caller-of-this a dummy frame? */ + callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */ + fp = m32r_find_callers_reg (fi, FP_REGNUM); + if (PC_IN_CALL_DUMMY(callers_pc, fp, fp)) + return fp; /* dummy frame's frame may bear no relation to ours */ + + if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) + if (fn_start == entry_point_address ()) + return 0; /* in _start fn, don't chain further */ + if (fi->framesize == 0) + { + printf_filtered("cannot determine frame size @ %08x , pc(%08x)\n", + (unsigned long) fi->frame, + (unsigned long) fi->pc ); + return 0; + } + insn_debug(("m32rx frame %08x\n",fi->frame+fi->framesize)); + return fi->frame + fi->framesize; +} + +/* Function: push_return_address (pc) + Set up the return address for the inferior function call. + Necessary for targets that don't actually execute a JSR/BSR instruction + (ie. when using an empty CALL_DUMMY) */ + +CORE_ADDR +m32r_push_return_address (pc, sp) + CORE_ADDR pc; + CORE_ADDR sp; +{ + write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); + return sp; +} + + +/* Function: pop_frame + Discard from the stack the innermost frame, + restoring all saved registers. */ + +struct frame_info * +m32r_pop_frame (frame) + struct frame_info *frame; +{ + int regnum; + + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + generic_pop_dummy_frame (); + else + { + for (regnum = 0; regnum < NUM_REGS; regnum++) + if (frame->fsr.regs[regnum] != 0) + write_register (regnum, + read_memory_integer (frame->fsr.regs[regnum], 4)); + + write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); + write_register (SP_REGNUM, read_register (FP_REGNUM)); + if (read_register (PSW_REGNUM) & 0x80) + write_register (SPU_REGNUM, read_register (SP_REGNUM)); + else + write_register (SPI_REGNUM, read_register (SP_REGNUM)); + } + flush_cached_frames (); + return NULL; +} + +/* Function: frame_saved_pc + Find the caller of this frame. We do this by seeing if RP_REGNUM is saved + in the stack anywhere, otherwise we get it from the registers. */ + +CORE_ADDR +m32r_frame_saved_pc (fi) + struct frame_info *fi; +{ + if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame)) + return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM); + else + return m32r_find_callers_reg (fi, RP_REGNUM); +} + +/* Function: push_arguments + Setup the function arguments for calling a function in the inferior. + + On the Mitsubishi M32R architecture, there are four registers (R0 to R3) + which are dedicated for passing function arguments. Up to the first + four arguments (depending on size) may go into these registers. + The rest go on the stack. + + Arguments that are smaller than 4 bytes will still take up a whole + register or a whole 32-bit word on the stack, and will be + right-justified in the register or the stack word. This includes + chars, shorts, and small aggregate types. + + Arguments of 8 bytes size are split between two registers, if + available. If only one register is available, the argument will + be split between the register and the stack. Otherwise it is + passed entirely on the stack. Aggregate types with sizes between + 4 and 8 bytes are passed entirely on the stack, and are left-justified + within the double-word (as opposed to aggregates smaller than 4 bytes + which are right-justified). + + Aggregates of greater than 8 bytes are first copied onto the stack, + and then a pointer to the copy is passed in the place of the normal + argument (either in a register if available, or on the stack). + + Functions that must return an aggregate type can return it in the + normal return value registers (R0 and R1) if its size is 8 bytes or + less. For larger return values, the caller must allocate space for + the callee to copy the return value to. A pointer to this space is + passed as an implicit first argument, always in R0. */ + +CORE_ADDR +m32r_push_arguments (nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + unsigned char struct_return; + CORE_ADDR struct_addr; +{ + int stack_offset, stack_alloc; + int argreg; + int argnum; + struct type *type; + CORE_ADDR regval; + char *val; + char valbuf[4]; + int len; + int odd_sized_struct; + + /* first force sp to a 4-byte alignment */ + sp = sp & ~3; + + argreg = ARG0_REGNUM; + /* The "struct return pointer" pseudo-argument goes in R0 */ + if (struct_return) + write_register (argreg++, struct_addr); + + /* Now make sure there's space on the stack */ + for (argnum = 0, stack_alloc = 0; + argnum < nargs; argnum++) + stack_alloc += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3); + sp -= stack_alloc; /* make room on stack for args */ + + + /* Now load as many as possible of the first arguments into + registers, and push the rest onto the stack. There are 16 bytes + in four registers available. Loop thru args from first to last. */ + + argreg = ARG0_REGNUM; + for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) + { + type = VALUE_TYPE (args[argnum]); + len = TYPE_LENGTH (type); + memset(valbuf, 0, sizeof(valbuf)); + if (len < 4) + { /* value gets right-justified in the register or stack word */ + memcpy(valbuf + (4 - len), + (char *) VALUE_CONTENTS (args[argnum]), len); + val = valbuf; + } + else + val = (char *) VALUE_CONTENTS (args[argnum]); + + if (len > 4 && (len & 3) != 0) + odd_sized_struct = 1; /* such structs go entirely on stack */ + else + odd_sized_struct = 0; + while (len > 0) + { + if (argreg > ARGLAST_REGNUM || odd_sized_struct) + { /* must go on the stack */ + write_memory (sp + stack_offset, val, 4); + stack_offset += 4; + } + /* NOTE WELL!!!!! This is not an "else if" clause!!! + That's because some *&^%$ things get passed on the stack + AND in the registers! */ + if (argreg <= ARGLAST_REGNUM) + { /* there's room in a register */ + regval = extract_address (val, REGISTER_RAW_SIZE(argreg)); + write_register (argreg++, regval); + } + /* Store the value 4 bytes at a time. This means that things + larger than 4 bytes may go partly in registers and partly + on the stack. */ + len -= REGISTER_RAW_SIZE(argreg); + val += REGISTER_RAW_SIZE(argreg); + } + } + return sp; +} + +/* Function: fix_call_dummy + If there is real CALL_DUMMY code (eg. on the stack), this function + has the responsability to insert the address of the actual code that + is the target of the target function call. */ + +void +m32r_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) + char *dummy; + CORE_ADDR pc; + CORE_ADDR fun; + int nargs; + value_ptr *args; + struct type *type; + int gcc_p; +{ + /* ld24 r8, <(imm24) fun> */ + *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000; +} + +/* Function: get_saved_register + Just call the generic_get_saved_register function. */ + +void +get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) + char *raw_buffer; + int *optimized; + CORE_ADDR *addrp; + struct frame_info *frame; + int regnum; + enum lval_type *lval; +{ + generic_get_saved_register (raw_buffer, optimized, addrp, + frame, regnum, lval); +} + + +/* Function: m32r_write_sp + Because SP is really a read-only register that mirrors either SPU or SPI, + we must actually write one of those two as well, depending on PSW. */ + +void +m32r_write_sp (val) + CORE_ADDR val; +{ + unsigned long psw = read_register (PSW_REGNUM); + + if (psw & 0x80) /* stack mode: user or interrupt */ + write_register (SPU_REGNUM, val); + else + write_register (SPI_REGNUM, val); + write_register (SP_REGNUM, val); +} + +void +_initialize_m32r_tdep () +{ + tm_print_insn = print_insn_m32r; +} + |