summaryrefslogtreecommitdiff
path: root/gdb/m32r-stub.c
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2003-08-01 21:56:58 +0000
committerAndrew Cagney <cagney@redhat.com>2003-08-01 21:56:58 +0000
commit1f79b0508b529da6a96e9548fc922e206bbfb8ff (patch)
tree166378860baafcc017d3bbe7d6a0d26554224a06 /gdb/m32r-stub.c
parentecefd967cbb6205099cb281a33280dea4f13044e (diff)
downloadbinutils-gdb-1f79b0508b529da6a96e9548fc922e206bbfb8ff.tar.gz
2003-08-01 Andrew Cagney <cagney@redhat.com>
Import mainline multi-arch changes from Kei Sakamoto. * gdb/NEWS: Mention that m32r is multi-arch. * configure.tgt: Recognize m32r-*-*. * config/m32r/m32r.mt: New file. * m32r-rom.c, m32r-stub.c, m32r-tdep.c: Import
Diffstat (limited to 'gdb/m32r-stub.c')
-rw-r--r--gdb/m32r-stub.c3497
1 files changed, 1779 insertions, 1718 deletions
diff --git a/gdb/m32r-stub.c b/gdb/m32r-stub.c
index d9be3eb84e6..c7033ea17a3 100644
--- a/gdb/m32r-stub.c
+++ b/gdb/m32r-stub.c
@@ -1,1718 +1,1779 @@
-// OBSOLETE /****************************************************************************
-// OBSOLETE
-// OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED
-// OBSOLETE
-// OBSOLETE HP offers the following for use in the public domain. HP makes no
-// OBSOLETE warranty with regard to the software or it's performance and the
-// OBSOLETE user accepts the software "AS IS" with all faults.
-// OBSOLETE
-// OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
-// OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-// OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-// OBSOLETE
-// OBSOLETE ****************************************************************************/
-// OBSOLETE
-// OBSOLETE /****************************************************************************
-// OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
-// OBSOLETE *
-// OBSOLETE * Module name: remcom.c $
-// OBSOLETE * Revision: 1.34 $
-// OBSOLETE * Date: 91/03/09 12:29:49 $
-// OBSOLETE * Contributor: Lake Stevens Instrument Division$
-// OBSOLETE *
-// OBSOLETE * Description: low level support for gdb debugger. $
-// OBSOLETE *
-// OBSOLETE * Considerations: only works on target hardware $
-// OBSOLETE *
-// OBSOLETE * Written by: Glenn Engel $
-// OBSOLETE * ModuleState: Experimental $
-// OBSOLETE *
-// OBSOLETE * NOTES: See Below $
-// OBSOLETE *
-// OBSOLETE * Modified for M32R by Michael Snyder, Cygnus Support.
-// OBSOLETE *
-// OBSOLETE * To enable debugger support, two things need to happen. One, a
-// OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints
-// OBSOLETE * or error conditions to be properly intercepted and reported to gdb.
-// OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This
-// OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint()
-// OBSOLETE * simulates a breakpoint by executing a trap #1.
-// OBSOLETE *
-// OBSOLETE * The external function exceptionHandler() is
-// OBSOLETE * used to attach a specific handler to a specific M32R vector number.
-// OBSOLETE * It should use the same privilege level it runs at. It should
-// OBSOLETE * install it as an interrupt gate so that interrupts are masked
-// OBSOLETE * while the handler runs.
-// OBSOLETE *
-// OBSOLETE * Because gdb will sometimes write to the stack area to execute function
-// OBSOLETE * calls, this program cannot rely on using the supervisor stack so it
-// OBSOLETE * uses it's own stack area reserved in the int array remcomStack.
-// OBSOLETE *
-// OBSOLETE *************
-// OBSOLETE *
-// OBSOLETE * The following gdb commands are supported:
-// OBSOLETE *
-// OBSOLETE * command function Return value
-// OBSOLETE *
-// OBSOLETE * g return the value of the CPU registers hex data or ENN
-// OBSOLETE * G set the value of the CPU registers OK or ENN
-// OBSOLETE *
-// OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
-// OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
-// OBSOLETE * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
-// OBSOLETE * AA..AA
-// OBSOLETE *
-// OBSOLETE * c Resume at current address SNN ( signal NN)
-// OBSOLETE * cAA..AA Continue at address AA..AA SNN
-// OBSOLETE *
-// OBSOLETE * s Step one instruction SNN
-// OBSOLETE * sAA..AA Step one instruction from AA..AA SNN
-// OBSOLETE *
-// OBSOLETE * k kill
-// OBSOLETE *
-// OBSOLETE * ? What was the last sigval ? SNN (signal NN)
-// OBSOLETE *
-// OBSOLETE * All commands and responses are sent with a packet which includes a
-// OBSOLETE * checksum. A packet consists of
-// OBSOLETE *
-// OBSOLETE * $<packet info>#<checksum>.
-// OBSOLETE *
-// OBSOLETE * where
-// OBSOLETE * <packet info> :: <characters representing the command or response>
-// OBSOLETE * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
-// OBSOLETE *
-// OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'.
-// OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer.
-// OBSOLETE *
-// OBSOLETE * Example:
-// OBSOLETE *
-// OBSOLETE * Host: Reply:
-// OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42
-// OBSOLETE *
-// OBSOLETE ****************************************************************************/
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /************************************************************************
-// OBSOLETE *
-// OBSOLETE * external low-level support routines
-// OBSOLETE */
-// OBSOLETE extern void putDebugChar(); /* write a single character */
-// OBSOLETE extern int getDebugChar(); /* read and return a single char */
-// OBSOLETE extern void exceptionHandler(); /* assign an exception handler */
-// OBSOLETE
-// OBSOLETE /*****************************************************************************
-// OBSOLETE * BUFMAX defines the maximum number of characters in inbound/outbound buffers
-// OBSOLETE * at least NUMREGBYTES*2 are needed for register packets
-// OBSOLETE */
-// OBSOLETE #define BUFMAX 400
-// OBSOLETE
-// OBSOLETE static char initialized; /* boolean flag. != 0 means we've been initialized */
-// OBSOLETE
-// OBSOLETE int remote_debug;
-// OBSOLETE /* debug > 0 prints ill-formed commands in valid packets & checksum errors */
-// OBSOLETE
-// OBSOLETE static const unsigned char hexchars[]="0123456789abcdef";
-// OBSOLETE
-// OBSOLETE #define NUMREGS 24
-// OBSOLETE
-// OBSOLETE /* Number of bytes of registers. */
-// OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
-// OBSOLETE enum regnames { R0, R1, R2, R3, R4, R5, R6, R7,
-// OBSOLETE R8, R9, R10, R11, R12, R13, R14, R15,
-// OBSOLETE PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH };
-// OBSOLETE
-// OBSOLETE enum SYS_calls {
-// OBSOLETE SYS_null,
-// OBSOLETE SYS_exit,
-// OBSOLETE SYS_open,
-// OBSOLETE SYS_close,
-// OBSOLETE SYS_read,
-// OBSOLETE SYS_write,
-// OBSOLETE SYS_lseek,
-// OBSOLETE SYS_unlink,
-// OBSOLETE SYS_getpid,
-// OBSOLETE SYS_kill,
-// OBSOLETE SYS_fstat,
-// OBSOLETE SYS_sbrk,
-// OBSOLETE SYS_fork,
-// OBSOLETE SYS_execve,
-// OBSOLETE SYS_wait4,
-// OBSOLETE SYS_link,
-// OBSOLETE SYS_chdir,
-// OBSOLETE SYS_stat,
-// OBSOLETE SYS_utime,
-// OBSOLETE SYS_chown,
-// OBSOLETE SYS_chmod,
-// OBSOLETE SYS_time,
-// OBSOLETE SYS_pipe };
-// OBSOLETE
-// OBSOLETE static int registers[NUMREGS];
-// OBSOLETE
-// OBSOLETE #define STACKSIZE 8096
-// OBSOLETE static unsigned char remcomInBuffer[BUFMAX];
-// OBSOLETE static unsigned char remcomOutBuffer[BUFMAX];
-// OBSOLETE static int remcomStack[STACKSIZE/sizeof(int)];
-// OBSOLETE static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE
-// OBSOLETE static unsigned int save_vectors[18]; /* previous exception vectors */
-// OBSOLETE
-// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
-// OBSOLETE static volatile int mem_err = 0;
-// OBSOLETE
-// OBSOLETE /* Store the vector number here (since GDB only gets the signal
-// OBSOLETE number through the usual means, and that's not very specific). */
-// OBSOLETE int gdb_m32r_vector = -1;
-// OBSOLETE
-// OBSOLETE #if 0
-// OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE /* Global entry points:
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE extern void handle_exception(int);
-// OBSOLETE extern void set_debug_traps(void);
-// OBSOLETE extern void breakpoint(void);
-// OBSOLETE
-// OBSOLETE /* Local functions:
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static int computeSignal(int);
-// OBSOLETE static void putpacket(unsigned char *);
-// OBSOLETE static unsigned char *getpacket(void);
-// OBSOLETE
-// OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static int hexToInt(unsigned char **, int *);
-// OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static void stash_registers(void);
-// OBSOLETE static void restore_registers(void);
-// OBSOLETE static int prepare_to_step(int);
-// OBSOLETE static int finish_from_step(void);
-// OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long);
-// OBSOLETE
-// OBSOLETE static void gdb_error(char *, char *);
-// OBSOLETE static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
-// OBSOLETE
-// OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *);
-// OBSOLETE static int strlen (const unsigned char *);
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE * This function does all command procesing for interfacing to gdb.
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE handle_exception(int exceptionVector)
-// OBSOLETE {
-// OBSOLETE int sigval, stepping;
-// OBSOLETE int addr, length, i;
-// OBSOLETE unsigned char * ptr;
-// OBSOLETE unsigned char buf[16];
-// OBSOLETE int binary;
-// OBSOLETE
-// OBSOLETE /* Do not call finish_from_step() if this is not a trap #1
-// OBSOLETE * (breakpoint trap). Without this check, the finish_from_step()
-// OBSOLETE * might interpret a system call trap as a single step trap. This
-// OBSOLETE * can happen if: the stub receives 's' and exits, but an interrupt
-// OBSOLETE * was pending; the interrupt is now handled and causes the stub to
-// OBSOLETE * be reentered because some function makes a system call.
-// OBSOLETE */
-// OBSOLETE if (exceptionVector == 1) /* Trap exception? */
-// OBSOLETE if (!finish_from_step()) /* Go see if stepping state needs update. */
-// OBSOLETE return; /* "false step": let the target continue */
-// OBSOLETE
-// OBSOLETE gdb_m32r_vector = exceptionVector;
-// OBSOLETE
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
-// OBSOLETE gdb_error("Handle exception %s, ", buf);
-// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE gdb_error("PC == 0x%s\n", buf);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* reply to host that an exception has occurred */
-// OBSOLETE sigval = computeSignal( exceptionVector );
-// OBSOLETE
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE
-// OBSOLETE *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
-// OBSOLETE *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[PC >> 4];
-// OBSOLETE *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0); /* PC */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R13 >> 4];
-// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0); /* FP */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R15 >> 4];
-// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0); /* SP */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE
-// OBSOLETE if (exceptionVector == 0) /* simulated SYS call stuff */
-// OBSOLETE {
-// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE switch (registers[R0]) {
-// OBSOLETE case SYS_exit:
-// OBSOLETE gdb_error("Target program has exited at %s\n", buf);
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE *ptr++ = 'W';
-// OBSOLETE sigval = registers[R1] & 0xff;
-// OBSOLETE *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE break;
-// OBSOLETE case SYS_open:
-// OBSOLETE gdb_error("Target attempts SYS_open call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_close:
-// OBSOLETE gdb_error("Target attempts SYS_close call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_read:
-// OBSOLETE gdb_error("Target attempts SYS_read call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_write:
-// OBSOLETE if (registers[R1] == 1 || /* write to stdout */
-// OBSOLETE registers[R1] == 2) /* write to stderr */
-// OBSOLETE { /* (we can do that) */
-// OBSOLETE registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE gdb_error("Target attempts SYS_write call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_lseek:
-// OBSOLETE gdb_error("Target attempts SYS_lseek call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_unlink:
-// OBSOLETE gdb_error("Target attempts SYS_unlink call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_getpid:
-// OBSOLETE gdb_error("Target attempts SYS_getpid call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_kill:
-// OBSOLETE gdb_error("Target attempts SYS_kill call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_fstat:
-// OBSOLETE gdb_error("Target attempts SYS_fstat call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE default:
-// OBSOLETE gdb_error("Target attempts unknown SYS call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE putpacket(remcomOutBuffer);
-// OBSOLETE
-// OBSOLETE stepping = 0;
-// OBSOLETE
-// OBSOLETE while (1==1) {
-// OBSOLETE remcomOutBuffer[0] = 0;
-// OBSOLETE ptr = getpacket();
-// OBSOLETE binary = 0;
-// OBSOLETE switch (*ptr++) {
-// OBSOLETE default: /* Unknown code. Return an empty reply message. */
-// OBSOLETE break;
-// OBSOLETE case 'R':
-// OBSOLETE if (hexToInt (&ptr, &addr))
-// OBSOLETE registers[PC] = addr;
-// OBSOLETE strcpy(remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE case '!':
-// OBSOLETE strcpy(remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE case 'X': /* XAA..AA,LLLL:<binary data>#cs */
-// OBSOLETE binary = 1;
-// OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
-// OBSOLETE /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
-// OBSOLETE {
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE if (*(ptr++) == ',')
-// OBSOLETE if (hexToInt(&ptr,&length))
-// OBSOLETE if (*(ptr++) == ':')
-// OBSOLETE {
-// OBSOLETE mem_err = 0;
-// OBSOLETE if (binary)
-// OBSOLETE bin2mem (ptr, (unsigned char *) addr, length, 1);
-// OBSOLETE else
-// OBSOLETE hex2mem(ptr, (unsigned char*) addr, length, 1);
-// OBSOLETE if (mem_err) {
-// OBSOLETE strcpy (remcomOutBuffer, "E03");
-// OBSOLETE gdb_error ("memory fault", "");
-// OBSOLETE } else {
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE }
-// OBSOLETE ptr = 0;
-// OBSOLETE }
-// OBSOLETE if (ptr)
-// OBSOLETE {
-// OBSOLETE strcpy(remcomOutBuffer,"E02");
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE break;
-// OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
-// OBSOLETE /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE if (*(ptr++) == ',')
-// OBSOLETE if (hexToInt(&ptr,&length))
-// OBSOLETE {
-// OBSOLETE ptr = 0;
-// OBSOLETE mem_err = 0;
-// OBSOLETE mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
-// OBSOLETE if (mem_err) {
-// OBSOLETE strcpy (remcomOutBuffer, "E03");
-// OBSOLETE gdb_error ("memory fault", "");
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE if (ptr)
-// OBSOLETE {
-// OBSOLETE strcpy(remcomOutBuffer,"E01");
-// OBSOLETE }
-// OBSOLETE break;
-// OBSOLETE case '?':
-// OBSOLETE remcomOutBuffer[0] = 'S';
-// OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4];
-// OBSOLETE remcomOutBuffer[2] = hexchars[sigval % 16];
-// OBSOLETE remcomOutBuffer[3] = 0;
-// OBSOLETE break;
-// OBSOLETE case 'd':
-// OBSOLETE remote_debug = !(remote_debug); /* toggle debug flag */
-// OBSOLETE break;
-// OBSOLETE case 'g': /* return the value of the CPU registers */
-// OBSOLETE mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
-// OBSOLETE break;
-// OBSOLETE case 'P': /* set the value of a single CPU register - return OK */
-// OBSOLETE {
-// OBSOLETE int regno;
-// OBSOLETE
-// OBSOLETE if (hexToInt (&ptr, &regno) && *ptr++ == '=')
-// OBSOLETE if (regno >= 0 && regno < NUMREGS)
-// OBSOLETE {
-// OBSOLETE int stackmode;
-// OBSOLETE
-// OBSOLETE hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
-// OBSOLETE /*
-// OBSOLETE * Since we just changed a single CPU register, let's
-// OBSOLETE * make sure to keep the several stack pointers consistant.
-// OBSOLETE */
-// OBSOLETE stackmode = registers[PSW] & 0x80;
-// OBSOLETE if (regno == R15) /* stack pointer changed */
-// OBSOLETE { /* need to change SPI or SPU */
-// OBSOLETE if (stackmode == 0)
-// OBSOLETE registers[SPI] = registers[R15];
-// OBSOLETE else
-// OBSOLETE registers[SPU] = registers[R15];
-// OBSOLETE }
-// OBSOLETE else if (regno == SPU) /* "user" stack pointer changed */
-// OBSOLETE {
-// OBSOLETE if (stackmode != 0) /* stack in user mode: copy SP */
-// OBSOLETE registers[R15] = registers[SPU];
-// OBSOLETE }
-// OBSOLETE else if (regno == SPI) /* "interrupt" stack pointer changed */
-// OBSOLETE {
-// OBSOLETE if (stackmode == 0) /* stack in interrupt mode: copy SP */
-// OBSOLETE registers[R15] = registers[SPI];
-// OBSOLETE }
-// OBSOLETE else if (regno == PSW) /* stack mode may have changed! */
-// OBSOLETE { /* force SP to either SPU or SPI */
-// OBSOLETE if (stackmode == 0) /* stack in user mode */
-// OBSOLETE registers[R15] = registers[SPI];
-// OBSOLETE else /* stack in interrupt mode */
-// OBSOLETE registers[R15] = registers[SPU];
-// OBSOLETE }
-// OBSOLETE strcpy (remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE strcpy (remcomOutBuffer, "E01");
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE case 'G': /* set the value of the CPU registers - return OK */
-// OBSOLETE hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE break;
-// OBSOLETE case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
-// OBSOLETE stepping = 1;
-// OBSOLETE case 'c': /* cAA..AA Continue from address AA..AA(optional) */
-// OBSOLETE /* try to read optional parameter, pc unchanged if no parm */
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE registers[ PC ] = addr;
-// OBSOLETE
-// OBSOLETE if (stepping) /* single-stepping */
-// OBSOLETE {
-// OBSOLETE if (!prepare_to_step(0)) /* set up for single-step */
-// OBSOLETE {
-// OBSOLETE /* prepare_to_step has already emulated the target insn:
-// OBSOLETE Send SIGTRAP to gdb, don't resume the target at all. */
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
-// OBSOLETE *ptr++ = '0';
-// OBSOLETE *ptr++ = '5';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[PC >> 4]; /* send PC */
-// OBSOLETE *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R13 >> 4]; /* send FP */
-// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R15 >> 4]; /* send SP */
-// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE else /* continuing, not single-stepping */
-// OBSOLETE {
-// OBSOLETE /* OK, about to do a "continue". First check to see if the
-// OBSOLETE target pc is on an odd boundary (second instruction in the
-// OBSOLETE word). If so, we must do a single-step first, because
-// OBSOLETE ya can't jump or return back to an odd boundary! */
-// OBSOLETE if ((registers[PC] & 2) != 0)
-// OBSOLETE prepare_to_step(1);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return;
-// OBSOLETE
-// OBSOLETE case 'D': /* Detach */
-// OBSOLETE #if 0
-// OBSOLETE /* I am interpreting this to mean, release the board from control
-// OBSOLETE by the remote stub. To do this, I am restoring the original
-// OBSOLETE (or at least previous) exception vectors.
-// OBSOLETE */
-// OBSOLETE for (i = 0; i < 18; i++)
-// OBSOLETE exceptionHandler (i, save_vectors[i]);
-// OBSOLETE putpacket ("OK");
-// OBSOLETE return; /* continue the inferior */
-// OBSOLETE #else
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE break;
-// OBSOLETE #endif
-// OBSOLETE case 'q':
-// OBSOLETE if (*ptr++ == 'C' &&
-// OBSOLETE *ptr++ == 'R' &&
-// OBSOLETE *ptr++ == 'C' &&
-// OBSOLETE *ptr++ == ':')
-// OBSOLETE {
-// OBSOLETE unsigned long start, len, our_crc;
-// OBSOLETE
-// OBSOLETE if (hexToInt (&ptr, (int *) &start) &&
-// OBSOLETE *ptr++ == ',' &&
-// OBSOLETE hexToInt (&ptr, (int *) &len))
-// OBSOLETE {
-// OBSOLETE remcomOutBuffer[0] = 'C';
-// OBSOLETE our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
-// OBSOLETE mem2hex ((char *) &our_crc,
-// OBSOLETE &remcomOutBuffer[1],
-// OBSOLETE sizeof (long),
-// OBSOLETE 0);
-// OBSOLETE } /* else do nothing */
-// OBSOLETE } /* else do nothing */
-// OBSOLETE break;
-// OBSOLETE
-// OBSOLETE case 'k': /* kill the program */
-// OBSOLETE continue;
-// OBSOLETE } /* switch */
-// OBSOLETE
-// OBSOLETE /* reply to the request */
-// OBSOLETE putpacket(remcomOutBuffer);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* qCRC support */
-// OBSOLETE
-// OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */
-// OBSOLETE static unsigned long crc32_table[256] = {0, 0};
-// OBSOLETE
-// OBSOLETE static unsigned long
-// OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc)
-// OBSOLETE {
-// OBSOLETE if (! crc32_table[1])
-// OBSOLETE {
-// OBSOLETE /* Initialize the CRC table and the decoding table. */
-// OBSOLETE int i, j;
-// OBSOLETE unsigned long c;
-// OBSOLETE
-// OBSOLETE for (i = 0; i < 256; i++)
-// OBSOLETE {
-// OBSOLETE for (c = i << 24, j = 8; j > 0; --j)
-// OBSOLETE c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
-// OBSOLETE crc32_table[i] = c;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE while (len--)
-// OBSOLETE {
-// OBSOLETE crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
-// OBSOLETE buf++;
-// OBSOLETE }
-// OBSOLETE return crc;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE hex (unsigned char ch)
-// OBSOLETE {
-// OBSOLETE if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
-// OBSOLETE if ((ch >= '0') && (ch <= '9')) return (ch-'0');
-// OBSOLETE if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
-// OBSOLETE return (-1);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* scan for the sequence $<data>#<checksum> */
-// OBSOLETE
-// OBSOLETE unsigned char *
-// OBSOLETE getpacket (void)
-// OBSOLETE {
-// OBSOLETE unsigned char *buffer = &remcomInBuffer[0];
-// OBSOLETE unsigned char checksum;
-// OBSOLETE unsigned char xmitcsum;
-// OBSOLETE int count;
-// OBSOLETE char ch;
-// OBSOLETE
-// OBSOLETE while (1)
-// OBSOLETE {
-// OBSOLETE /* wait around for the start character, ignore all other characters */
-// OBSOLETE while ((ch = getDebugChar ()) != '$')
-// OBSOLETE ;
-// OBSOLETE
-// OBSOLETE retry:
-// OBSOLETE checksum = 0;
-// OBSOLETE xmitcsum = -1;
-// OBSOLETE count = 0;
-// OBSOLETE
-// OBSOLETE /* now, read until a # or end of buffer is found */
-// OBSOLETE while (count < BUFMAX)
-// OBSOLETE {
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE if (ch == '$')
-// OBSOLETE goto retry;
-// OBSOLETE if (ch == '#')
-// OBSOLETE break;
-// OBSOLETE checksum = checksum + ch;
-// OBSOLETE buffer[count] = ch;
-// OBSOLETE count = count + 1;
-// OBSOLETE }
-// OBSOLETE buffer[count] = 0;
-// OBSOLETE
-// OBSOLETE if (ch == '#')
-// OBSOLETE {
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE xmitcsum = hex (ch) << 4;
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE xmitcsum += hex (ch);
-// OBSOLETE
-// OBSOLETE if (checksum != xmitcsum)
-// OBSOLETE {
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE unsigned char buf[16];
-// OBSOLETE
-// OBSOLETE mem2hex((unsigned char *) &checksum, buf, 4, 0);
-// OBSOLETE gdb_error("Bad checksum: my count = %s, ", buf);
-// OBSOLETE mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
-// OBSOLETE gdb_error("sent count = %s\n", buf);
-// OBSOLETE gdb_error(" -- Bad buffer: \"%s\"\n", buffer);
-// OBSOLETE }
-// OBSOLETE putDebugChar ('-'); /* failed checksum */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE putDebugChar ('+'); /* successful transfer */
-// OBSOLETE
-// OBSOLETE /* if a sequence char is present, reply the sequence ID */
-// OBSOLETE if (buffer[2] == ':')
-// OBSOLETE {
-// OBSOLETE putDebugChar (buffer[0]);
-// OBSOLETE putDebugChar (buffer[1]);
-// OBSOLETE
-// OBSOLETE return &buffer[3];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return &buffer[0];
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* send the packet in buffer. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE putpacket (unsigned char *buffer)
-// OBSOLETE {
-// OBSOLETE unsigned char checksum;
-// OBSOLETE int count;
-// OBSOLETE char ch;
-// OBSOLETE
-// OBSOLETE /* $<packet info>#<checksum>. */
-// OBSOLETE do {
-// OBSOLETE putDebugChar('$');
-// OBSOLETE checksum = 0;
-// OBSOLETE count = 0;
-// OBSOLETE
-// OBSOLETE while (ch=buffer[count]) {
-// OBSOLETE putDebugChar(ch);
-// OBSOLETE checksum += ch;
-// OBSOLETE count += 1;
-// OBSOLETE }
-// OBSOLETE putDebugChar('#');
-// OBSOLETE putDebugChar(hexchars[checksum >> 4]);
-// OBSOLETE putDebugChar(hexchars[checksum % 16]);
-// OBSOLETE } while (getDebugChar() != '+');
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Address of a routine to RTE to if we get a memory fault. */
-// OBSOLETE
-// OBSOLETE static void (*volatile mem_fault_routine)() = 0;
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE set_mem_err (void)
-// OBSOLETE {
-// OBSOLETE mem_err = 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Check the address for safe access ranges. As currently defined,
-// OBSOLETE this routine will reject the "expansion bus" address range(s).
-// OBSOLETE To make those ranges useable, someone must implement code to detect
-// OBSOLETE whether there's anything connected to the expansion bus. */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE mem_safe (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
-// OBSOLETE #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
-// OBSOLETE #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
-// OBSOLETE #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
-// OBSOLETE
-// OBSOLETE if (addr < BAD_RANGE_ONE_START) return 1; /* safe */
-// OBSOLETE if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */
-// OBSOLETE if (addr < BAD_RANGE_TWO_START) return 1; /* safe */
-// OBSOLETE if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* These are separate functions so that they are so short and sweet
-// OBSOLETE that the compiler won't save any registers (if there is a fault
-// OBSOLETE to mem_fault, they won't get restored, so there better not be any
-// OBSOLETE saved). */
-// OBSOLETE static int
-// OBSOLETE get_char (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (mem_fault_routine && !mem_safe(addr))
-// OBSOLETE {
-// OBSOLETE mem_fault_routine ();
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE #endif
-// OBSOLETE return *addr;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE set_char (unsigned char *addr, unsigned char val)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (mem_fault_routine && !mem_safe (addr))
-// OBSOLETE {
-// OBSOLETE mem_fault_routine ();
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE #endif
-// OBSOLETE *addr = val;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
-// OBSOLETE Return a pointer to the last char put in buf (null).
-// OBSOLETE If MAY_FAULT is non-zero, then we should set mem_err in response to
-// OBSOLETE a fault; if zero treat a fault like any other fault in the stub. */
-// OBSOLETE
-// OBSOLETE static unsigned char *
-// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i=0;i<count;i++) {
-// OBSOLETE ch = get_char (mem++);
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return (buf);
-// OBSOLETE *buf++ = hexchars[ch >> 4];
-// OBSOLETE *buf++ = hexchars[ch % 16];
-// OBSOLETE }
-// OBSOLETE *buf = 0;
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return(buf);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem.
-// OBSOLETE Return a pointer to the character AFTER the last byte written. */
-// OBSOLETE
-// OBSOLETE static unsigned char*
-// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i=0;i<count;i++) {
-// OBSOLETE ch = hex(*buf++) << 4;
-// OBSOLETE ch = ch + hex(*buf++);
-// OBSOLETE set_char (mem++, ch);
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return (mem);
-// OBSOLETE }
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return(mem);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the binary stream in BUF to memory.
-// OBSOLETE
-// OBSOLETE Gdb will escape $, #, and the escape char (0x7d).
-// OBSOLETE COUNT is the total number of bytes to write into
-// OBSOLETE memory. */
-// OBSOLETE static unsigned char *
-// OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i = 0; i < count; i++)
-// OBSOLETE {
-// OBSOLETE /* Check for any escaped characters. Be paranoid and
-// OBSOLETE only unescape chars that should be escaped. */
-// OBSOLETE if (*buf == 0x7d)
-// OBSOLETE {
-// OBSOLETE switch (*(buf+1))
-// OBSOLETE {
-// OBSOLETE case 0x3: /* # */
-// OBSOLETE case 0x4: /* $ */
-// OBSOLETE case 0x5d: /* escape char */
-// OBSOLETE buf++;
-// OBSOLETE *buf |= 0x20;
-// OBSOLETE break;
-// OBSOLETE default:
-// OBSOLETE /* nothing */
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE set_char (mem++, *buf++);
-// OBSOLETE
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return mem;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return mem;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* this function takes the m32r exception vector and attempts to
-// OBSOLETE translate this number into a unix compatible signal value */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE computeSignal (int exceptionVector)
-// OBSOLETE {
-// OBSOLETE int sigval;
-// OBSOLETE switch (exceptionVector) {
-// OBSOLETE case 0 : sigval = 23; break; /* I/O trap */
-// OBSOLETE case 1 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 2 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 3 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 4 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 5 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 6 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 7 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 8 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 9 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 10 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 11 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 12 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 13 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 14 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 15 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 16 : sigval = 10; break; /* BUS ERROR (alignment) */
-// OBSOLETE case 17 : sigval = 2; break; /* INTerrupt */
-// OBSOLETE default : sigval = 7; break; /* "software generated" */
-// OBSOLETE }
-// OBSOLETE return (sigval);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /**********************************************/
-// OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
-// OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED */
-// OBSOLETE /**********************************************/
-// OBSOLETE static int
-// OBSOLETE hexToInt (unsigned char **ptr, int *intValue)
-// OBSOLETE {
-// OBSOLETE int numChars = 0;
-// OBSOLETE int hexValue;
-// OBSOLETE
-// OBSOLETE *intValue = 0;
-// OBSOLETE while (**ptr)
-// OBSOLETE {
-// OBSOLETE hexValue = hex(**ptr);
-// OBSOLETE if (hexValue >=0)
-// OBSOLETE {
-// OBSOLETE *intValue = (*intValue <<4) | hexValue;
-// OBSOLETE numChars ++;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE break;
-// OBSOLETE (*ptr)++;
-// OBSOLETE }
-// OBSOLETE return (numChars);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE Table of branch instructions:
-// OBSOLETE
-// OBSOLETE 10B6 RTE return from trap or exception
-// OBSOLETE 1FCr JMP jump
-// OBSOLETE 1ECr JL jump and link
-// OBSOLETE 7Fxx BRA branch
-// OBSOLETE FFxxxxxx BRA branch (long)
-// OBSOLETE B09rxxxx BNEZ branch not-equal-zero
-// OBSOLETE Br1rxxxx BNE branch not-equal
-// OBSOLETE 7Dxx BNC branch not-condition
-// OBSOLETE FDxxxxxx BNC branch not-condition (long)
-// OBSOLETE B0Arxxxx BLTZ branch less-than-zero
-// OBSOLETE B0Crxxxx BLEZ branch less-equal-zero
-// OBSOLETE 7Exx BL branch and link
-// OBSOLETE FExxxxxx BL branch and link (long)
-// OBSOLETE B0Drxxxx BGTZ branch greater-than-zero
-// OBSOLETE B0Brxxxx BGEZ branch greater-equal-zero
-// OBSOLETE B08rxxxx BEQZ branch equal-zero
-// OBSOLETE Br0rxxxx BEQ branch equal
-// OBSOLETE 7Cxx BC branch condition
-// OBSOLETE FCxxxxxx BC branch condition (long)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isShortBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
-// OBSOLETE return 1; /* return from trap or exception */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
-// OBSOLETE if ((instr[1] & 0xF0) == 0xC0)
-// OBSOLETE return 2; /* jump thru a register */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
-// OBSOLETE instr0 == 0x7E || instr0 == 0x7F)
-// OBSOLETE return 3; /* eight bit PC offset */
-// OBSOLETE
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isLongBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
-// OBSOLETE instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
-// OBSOLETE return 4;
-// OBSOLETE if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
-// OBSOLETE {
-// OBSOLETE if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
-// OBSOLETE (instr[1] & 0xF0) == 0x10)
-// OBSOLETE return 5;
-// OBSOLETE if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
-// OBSOLETE if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
-// OBSOLETE (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
-// OBSOLETE (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
-// OBSOLETE return 6;
-// OBSOLETE }
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
-// OBSOLETE then it's a 2-byte instruction, else it's a 4-byte instruction. */
-// OBSOLETE
-// OBSOLETE #define INSTRUCTION_SIZE(addr) \
-// OBSOLETE ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE if (INSTRUCTION_SIZE(instr) == 2)
-// OBSOLETE return isShortBranch(instr);
-// OBSOLETE else
-// OBSOLETE return isLongBranch(instr);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE willBranch (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode)
-// OBSOLETE {
-// OBSOLETE case 0: return 0; /* not a branch */
-// OBSOLETE case 1: return 1; /* RTE */
-// OBSOLETE case 2: return 1; /* JL or JMP */
-// OBSOLETE case 3: /* BC, BNC, BL, BRA (short) */
-// OBSOLETE case 4: /* BC, BNC, BL, BRA (long) */
-// OBSOLETE switch (instr[0] & 0x0F)
-// OBSOLETE {
-// OBSOLETE case 0xC: /* Branch if Condition Register */
-// OBSOLETE return (registers[CBR] != 0);
-// OBSOLETE case 0xD: /* Branch if NOT Condition Register */
-// OBSOLETE return (registers[CBR] == 0);
-// OBSOLETE case 0xE: /* Branch and Link */
-// OBSOLETE case 0xF: /* Branch (unconditional) */
-// OBSOLETE return 1;
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE case 5: /* BNE, BEQ */
-// OBSOLETE switch (instr[1] & 0xF0)
-// OBSOLETE {
-// OBSOLETE case 0x00: /* Branch if r1 equal to r2 */
-// OBSOLETE return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
-// OBSOLETE case 0x10: /* Branch if r1 NOT equal to r2 */
-// OBSOLETE return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
-// OBSOLETE switch (instr[1] & 0xF0)
-// OBSOLETE {
-// OBSOLETE case 0x80: /* Branch if reg equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] == 0);
-// OBSOLETE case 0x90: /* Branch if reg NOT equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] != 0);
-// OBSOLETE case 0xA0: /* Branch if reg less than zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] < 0);
-// OBSOLETE case 0xB0: /* Branch if reg greater or equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] >= 0);
-// OBSOLETE case 0xC0: /* Branch if reg less than or equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] <= 0);
-// OBSOLETE case 0xD0: /* Branch if reg greater than zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] > 0);
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE branchDestination (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode) {
-// OBSOLETE default:
-// OBSOLETE case 0: /* not a branch */
-// OBSOLETE return 0;
-// OBSOLETE case 1: /* RTE */
-// OBSOLETE return registers[BPC] & ~3; /* pop BPC into PC */
-// OBSOLETE case 2: /* JL or JMP */
-// OBSOLETE return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
-// OBSOLETE case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
-// OBSOLETE return (((int) instr) & ~3) + ((char) instr[1] << 2);
-// OBSOLETE case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
-// OBSOLETE return ((int) instr +
-// OBSOLETE ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2));
-// OBSOLETE case 5: /* BNE, BEQ (16-bit relative offset) */
-// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
-// OBSOLETE return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* An explanatory note: in the last three return expressions, I have
-// OBSOLETE cast the most-significant byte of the return offset to char.
-// OBSOLETE What this accomplishes is sign extension. If the other
-// OBSOLETE less-significant bytes were signed as well, they would get sign
-// OBSOLETE extended too and, if negative, their leading bits would clobber
-// OBSOLETE the bits of the more-significant bytes ahead of them. There are
-// OBSOLETE other ways I could have done this, but sign extension from
-// OBSOLETE odd-sized integers is always a pain. */
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE branchSideEffects (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode)
-// OBSOLETE {
-// OBSOLETE case 1: /* RTE */
-// OBSOLETE return; /* I <THINK> this is already handled... */
-// OBSOLETE case 2: /* JL (or JMP) */
-// OBSOLETE case 3: /* BL (or BC, BNC, BRA) */
-// OBSOLETE case 4:
-// OBSOLETE if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
-// OBSOLETE registers[R14] = (registers[PC] & ~3) + 4;
-// OBSOLETE return;
-// OBSOLETE default: /* any other branch has no side effects */
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static struct STEPPING_CONTEXT {
-// OBSOLETE int stepping; /* true when we've started a single-step */
-// OBSOLETE unsigned long target_addr; /* the instr we're trying to execute */
-// OBSOLETE unsigned long target_size; /* the size of the target instr */
-// OBSOLETE unsigned long noop_addr; /* where we've inserted a no-op, if any */
-// OBSOLETE unsigned long trap1_addr; /* the trap following the target instr */
-// OBSOLETE unsigned long trap2_addr; /* the trap at a branch destination, if any */
-// OBSOLETE unsigned short noop_save; /* instruction overwritten by our no-op */
-// OBSOLETE unsigned short trap1_save; /* instruction overwritten by trap1 */
-// OBSOLETE unsigned short trap2_save; /* instruction overwritten by trap2 */
-// OBSOLETE unsigned short continue_p; /* true if NOT returning to gdb after step */
-// OBSOLETE } stepping;
-// OBSOLETE
-// OBSOLETE /* Function: prepare_to_step
-// OBSOLETE Called from handle_exception to prepare the user program to single-step.
-// OBSOLETE Places a trap instruction after the target instruction, with special
-// OBSOLETE extra handling for branch instructions and for instructions in the
-// OBSOLETE second half-word of a word.
-// OBSOLETE
-// OBSOLETE Returns: True if we should actually execute the instruction;
-// OBSOLETE False if we are going to emulate executing the instruction,
-// OBSOLETE in which case we simply report to GDB that the instruction
-// OBSOLETE has already been executed. */
-// OBSOLETE
-// OBSOLETE #define TRAP1 0x10f1; /* trap #1 instruction */
-// OBSOLETE #define NOOP 0x7000; /* noop instruction */
-// OBSOLETE
-// OBSOLETE static unsigned short trap1 = TRAP1;
-// OBSOLETE static unsigned short noop = NOOP;
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE prepare_to_step(continue_p)
-// OBSOLETE int continue_p; /* if this isn't REALLY a single-step (see below) */
-// OBSOLETE {
-// OBSOLETE unsigned long pc = registers[PC];
-// OBSOLETE int branchCode = isBranch((unsigned char *) pc);
-// OBSOLETE unsigned char *p;
-// OBSOLETE
-// OBSOLETE /* zero out the stepping context
-// OBSOLETE (paranoia -- it should already be zeroed) */
-// OBSOLETE for (p = (unsigned char *) &stepping;
-// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE p++)
-// OBSOLETE *p = 0;
-// OBSOLETE
-// OBSOLETE if (branchCode != 0) /* next instruction is a branch */
-// OBSOLETE {
-// OBSOLETE branchSideEffects((unsigned char *) pc, branchCode);
-// OBSOLETE if (willBranch((unsigned char *)pc, branchCode))
-// OBSOLETE registers[PC] = branchDestination((unsigned char *) pc, branchCode);
-// OBSOLETE else
-// OBSOLETE registers[PC] = pc + INSTRUCTION_SIZE(pc);
-// OBSOLETE return 0; /* branch "executed" -- just notify GDB */
-// OBSOLETE }
-// OBSOLETE else if (((int) pc & 2) != 0) /* "second-slot" instruction */
-// OBSOLETE {
-// OBSOLETE /* insert no-op before pc */
-// OBSOLETE stepping.noop_addr = pc - 2;
-// OBSOLETE stepping.noop_save = *(unsigned short *) stepping.noop_addr;
-// OBSOLETE *(unsigned short *) stepping.noop_addr = noop;
-// OBSOLETE /* insert trap after pc */
-// OBSOLETE stepping.trap1_addr = pc + 2;
-// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE }
-// OBSOLETE else /* "first-slot" instruction */
-// OBSOLETE {
-// OBSOLETE /* insert trap after pc */
-// OBSOLETE stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);
-// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE }
-// OBSOLETE /* "continue_p" means that we are actually doing a continue, and not
-// OBSOLETE being requested to single-step by GDB. Sometimes we have to do
-// OBSOLETE one single-step before continuing, because the PC is on a half-word
-// OBSOLETE boundary. There's no way to simply resume at such an address. */
-// OBSOLETE stepping.continue_p = continue_p;
-// OBSOLETE stepping.stepping = 1; /* starting a single-step */
-// OBSOLETE return 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: finish_from_step
-// OBSOLETE Called from handle_exception to finish up when the user program
-// OBSOLETE returns from a single-step. Replaces the instructions that had
-// OBSOLETE been overwritten by traps or no-ops,
-// OBSOLETE
-// OBSOLETE Returns: True if we should notify GDB that the target stopped.
-// OBSOLETE False if we only single-stepped because we had to before we
-// OBSOLETE could continue (ie. we were trying to continue at a
-// OBSOLETE half-word boundary). In that case don't notify GDB:
-// OBSOLETE just "continue continuing". */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE finish_from_step (void)
-// OBSOLETE {
-// OBSOLETE if (stepping.stepping) /* anything to do? */
-// OBSOLETE {
-// OBSOLETE int continue_p = stepping.continue_p;
-// OBSOLETE unsigned char *p;
-// OBSOLETE
-// OBSOLETE if (stepping.noop_addr) /* replace instr "under" our no-op */
-// OBSOLETE *(unsigned short *) stepping.noop_addr = stepping.noop_save;
-// OBSOLETE if (stepping.trap1_addr) /* replace instr "under" our trap */
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
-// OBSOLETE if (stepping.trap2_addr) /* ditto our other trap, if any */
-// OBSOLETE *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
-// OBSOLETE
-// OBSOLETE for (p = (unsigned char *) &stepping; /* zero out the stepping context */
-// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE p++)
-// OBSOLETE *p = 0;
-// OBSOLETE
-// OBSOLETE return !(continue_p);
-// OBSOLETE }
-// OBSOLETE else /* we didn't single-step, therefore this must be a legitimate stop */
-// OBSOLETE return 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE struct PSWreg { /* separate out the bit flags in the PSW register */
-// OBSOLETE int pad1 : 16;
-// OBSOLETE int bsm : 1;
-// OBSOLETE int bie : 1;
-// OBSOLETE int pad2 : 5;
-// OBSOLETE int bc : 1;
-// OBSOLETE int sm : 1;
-// OBSOLETE int ie : 1;
-// OBSOLETE int pad3 : 5;
-// OBSOLETE int c : 1;
-// OBSOLETE } *psw;
-// OBSOLETE
-// OBSOLETE /* Upon entry the value for LR to save has been pushed.
-// OBSOLETE We unpush that so that the value for the stack pointer saved is correct.
-// OBSOLETE Upon entry, all other registers are assumed to have not been modified
-// OBSOLETE since the interrupt/trap occured. */
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE stash_registers:
-// OBSOLETE push r0
-// OBSOLETE push r1
-// OBSOLETE seth r1, #shigh(registers)
-// OBSOLETE add3 r1, r1, #low(registers)
-// OBSOLETE pop r0 ; r1
-// OBSOLETE st r0, @(4,r1)
-// OBSOLETE pop r0 ; r0
-// OBSOLETE st r0, @r1
-// OBSOLETE addi r1, #4 ; only add 4 as subsequent saves are `pre inc'
-// OBSOLETE st r2, @+r1
-// OBSOLETE st r3, @+r1
-// OBSOLETE st r4, @+r1
-// OBSOLETE st r5, @+r1
-// OBSOLETE st r6, @+r1
-// OBSOLETE st r7, @+r1
-// OBSOLETE st r8, @+r1
-// OBSOLETE st r9, @+r1
-// OBSOLETE st r10, @+r1
-// OBSOLETE st r11, @+r1
-// OBSOLETE st r12, @+r1
-// OBSOLETE st r13, @+r1 ; fp
-// OBSOLETE pop r0 ; lr (r14)
-// OBSOLETE st r0, @+r1
-// OBSOLETE st sp, @+r1 ; sp contains right value at this point
-// OBSOLETE mvfc r0, cr0
-// OBSOLETE st r0, @+r1 ; cr0 == PSW
-// OBSOLETE mvfc r0, cr1
-// OBSOLETE st r0, @+r1 ; cr1 == CBR
-// OBSOLETE mvfc r0, cr2
-// OBSOLETE st r0, @+r1 ; cr2 == SPI
-// OBSOLETE mvfc r0, cr3
-// OBSOLETE st r0, @+r1 ; cr3 == SPU
-// OBSOLETE mvfc r0, cr6
-// OBSOLETE st r0, @+r1 ; cr6 == BPC
-// OBSOLETE st r0, @+r1 ; PC == BPC
-// OBSOLETE mvfaclo r0
-// OBSOLETE st r0, @+r1 ; ACCL
-// OBSOLETE mvfachi r0
-// OBSOLETE st r0, @+r1 ; ACCH
-// OBSOLETE jmp lr");
-// OBSOLETE
-// OBSOLETE /* C routine to clean up what stash_registers did.
-// OBSOLETE It is called after calling stash_registers.
-// OBSOLETE This is separate from stash_registers as we want to do this in C
-// OBSOLETE but doing stash_registers in C isn't straightforward. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE cleanup_stash (void)
-// OBSOLETE {
-// OBSOLETE psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
-// OBSOLETE psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
-// OBSOLETE psw->ie = psw->bie;
-// OBSOLETE psw->c = psw->bc;
-// OBSOLETE registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
-// OBSOLETE
-// OBSOLETE #if 0 /* FIXME: Was in previous version. Necessary?
-// OBSOLETE (Remember that we use the "rte" insn to return from the
-// OBSOLETE trap/interrupt so the values of bsm, bie, bc are important. */
-// OBSOLETE psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE /* FIXME: Copied from previous version. This can probably be deleted
-// OBSOLETE since methinks stash_registers has already done this. */
-// OBSOLETE registers[PC] = registers[BPC]; /* pre-trap PC */
-// OBSOLETE
-// OBSOLETE /* FIXME: Copied from previous version. Necessary? */
-// OBSOLETE if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
-// OBSOLETE registers[SPU] = registers[R15];
-// OBSOLETE else
-// OBSOLETE registers[SPI] = registers[R15];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE restore_and_return:
-// OBSOLETE seth r0, #shigh(registers+8)
-// OBSOLETE add3 r0, r0, #low(registers+8)
-// OBSOLETE ld r2, @r0+ ; restore r2
-// OBSOLETE ld r3, @r0+ ; restore r3
-// OBSOLETE ld r4, @r0+ ; restore r4
-// OBSOLETE ld r5, @r0+ ; restore r5
-// OBSOLETE ld r6, @r0+ ; restore r6
-// OBSOLETE ld r7, @r0+ ; restore r7
-// OBSOLETE ld r8, @r0+ ; restore r8
-// OBSOLETE ld r9, @r0+ ; restore r9
-// OBSOLETE ld r10, @r0+ ; restore r10
-// OBSOLETE ld r11, @r0+ ; restore r11
-// OBSOLETE ld r12, @r0+ ; restore r12
-// OBSOLETE ld r13, @r0+ ; restore r13
-// OBSOLETE ld r14, @r0+ ; restore r14
-// OBSOLETE ld r15, @r0+ ; restore r15
-// OBSOLETE addi r0, #4 ; don't restore PSW (rte will do it)
-// OBSOLETE ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)
-// OBSOLETE mvtc r1, cr1
-// OBSOLETE ld r1, @r0+ ; restore cr2 == SPI
-// OBSOLETE mvtc r1, cr2
-// OBSOLETE ld r1, @r0+ ; restore cr3 == SPU
-// OBSOLETE mvtc r1, cr3
-// OBSOLETE addi r0, #4 ; skip BPC
-// OBSOLETE ld r1, @r0+ ; restore cr6 (BPC) == PC
-// OBSOLETE mvtc r1, cr6
-// OBSOLETE ld r1, @r0+ ; restore ACCL
-// OBSOLETE mvtaclo r1
-// OBSOLETE ld r1, @r0+ ; restore ACCH
-// OBSOLETE mvtachi r1
-// OBSOLETE seth r0, #shigh(registers)
-// OBSOLETE add3 r0, r0, #low(registers)
-// OBSOLETE ld r1, @(4,r0) ; restore r1
-// OBSOLETE ld r0, @r0 ; restore r0
-// OBSOLETE rte");
-// OBSOLETE
-// OBSOLETE /* General trap handler, called after the registers have been stashed.
-// OBSOLETE NUM is the trap/exception number. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE process_exception (int num)
-// OBSOLETE {
-// OBSOLETE cleanup_stash ();
-// OBSOLETE asm volatile ("
-// OBSOLETE seth r1, #shigh(stackPtr)
-// OBSOLETE add3 r1, r1, #low(stackPtr)
-// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
-// OBSOLETE mv r0, %0
-// OBSOLETE bl handle_exception
-// OBSOLETE bl restore_and_return"
-// OBSOLETE : : "r" (num) : "r0", "r1");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void _catchException0 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException0:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #0
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException1 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException1:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE bl cleanup_stash
-// OBSOLETE seth r1, #shigh(stackPtr)
-// OBSOLETE add3 r1, r1, #low(stackPtr)
-// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
-// OBSOLETE seth r1, #shigh(registers + 21*4) ; PC
-// OBSOLETE add3 r1, r1, #low(registers + 21*4)
-// OBSOLETE ld r0, @r1
-// OBSOLETE addi r0, #-4 ; back up PC for breakpoint trap.
-// OBSOLETE st r0, @r1 ; FIXME: what about bp in right slot?
-// OBSOLETE ldi r0, #1
-// OBSOLETE bl handle_exception
-// OBSOLETE bl restore_and_return");
-// OBSOLETE
-// OBSOLETE void _catchException2 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException2:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #2
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException3 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException3:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #3
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException4 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException4:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #4
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException5 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException5:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #5
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException6 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException6:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #6
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException7 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException7:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #7
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException8 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException8:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #8
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException9 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException9:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #9
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException10 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException10:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #10
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException11 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException11:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #11
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException12 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException12:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #12
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException13 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException13:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #13
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException14 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException14:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #14
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException15 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException15:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #15
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException16 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException16:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #16
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException17 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException17:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #17
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* this function is used to set up exception handlers for tracing and
-// OBSOLETE breakpoints */
-// OBSOLETE void
-// OBSOLETE set_debug_traps (void)
-// OBSOLETE {
-// OBSOLETE /* extern void remcomHandler(); */
-// OBSOLETE int i;
-// OBSOLETE
-// OBSOLETE for (i = 0; i < 18; i++) /* keep a copy of old vectors */
-// OBSOLETE if (save_vectors[i] == 0) /* only copy them the first time */
-// OBSOLETE save_vectors[i] = getExceptionHandler (i);
-// OBSOLETE
-// OBSOLETE stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE
-// OBSOLETE exceptionHandler (0, _catchException0);
-// OBSOLETE exceptionHandler (1, _catchException1);
-// OBSOLETE exceptionHandler (2, _catchException2);
-// OBSOLETE exceptionHandler (3, _catchException3);
-// OBSOLETE exceptionHandler (4, _catchException4);
-// OBSOLETE exceptionHandler (5, _catchException5);
-// OBSOLETE exceptionHandler (6, _catchException6);
-// OBSOLETE exceptionHandler (7, _catchException7);
-// OBSOLETE exceptionHandler (8, _catchException8);
-// OBSOLETE exceptionHandler (9, _catchException9);
-// OBSOLETE exceptionHandler (10, _catchException10);
-// OBSOLETE exceptionHandler (11, _catchException11);
-// OBSOLETE exceptionHandler (12, _catchException12);
-// OBSOLETE exceptionHandler (13, _catchException13);
-// OBSOLETE exceptionHandler (14, _catchException14);
-// OBSOLETE exceptionHandler (15, _catchException15);
-// OBSOLETE exceptionHandler (16, _catchException16);
-// OBSOLETE /* exceptionHandler (17, _catchException17); */
-// OBSOLETE
-// OBSOLETE initialized = 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* This function will generate a breakpoint exception. It is used at the
-// OBSOLETE beginning of a program to sync up with a debugger and can be used
-// OBSOLETE otherwise as a quick means to stop program execution and "break" into
-// OBSOLETE the debugger. */
-// OBSOLETE
-// OBSOLETE #define BREAKPOINT() asm volatile (" trap #2");
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE breakpoint (void)
-// OBSOLETE {
-// OBSOLETE if (initialized)
-// OBSOLETE BREAKPOINT();
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* STDOUT section:
-// OBSOLETE Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
-// OBSOLETE Functions: gdb_putchar(char ch)
-// OBSOLETE gdb_puts(char *str)
-// OBSOLETE gdb_write(char *str, int len)
-// OBSOLETE gdb_error(char *format, char *parm)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE /* Function: gdb_putchar(int)
-// OBSOLETE Make gdb write a char to stdout.
-// OBSOLETE Returns: the char */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_putchar (int ch)
-// OBSOLETE {
-// OBSOLETE char buf[4];
-// OBSOLETE
-// OBSOLETE buf[0] = 'O';
-// OBSOLETE buf[1] = hexchars[ch >> 4];
-// OBSOLETE buf[2] = hexchars[ch & 0x0F];
-// OBSOLETE buf[3] = 0;
-// OBSOLETE putpacket(buf);
-// OBSOLETE return ch;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_write(char *, int)
-// OBSOLETE Make gdb write n bytes to stdout (not assumed to be null-terminated).
-// OBSOLETE Returns: number of bytes written */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_write (char *data, int len)
-// OBSOLETE {
-// OBSOLETE char *buf, *cpy;
-// OBSOLETE int i;
-// OBSOLETE
-// OBSOLETE buf = remcomOutBuffer;
-// OBSOLETE buf[0] = 'O';
-// OBSOLETE i = 0;
-// OBSOLETE while (i < len)
-// OBSOLETE {
-// OBSOLETE for (cpy = buf+1;
-// OBSOLETE i < len && cpy < buf + sizeof(remcomOutBuffer) - 3;
-// OBSOLETE i++)
-// OBSOLETE {
-// OBSOLETE *cpy++ = hexchars[data[i] >> 4];
-// OBSOLETE *cpy++ = hexchars[data[i] & 0x0F];
-// OBSOLETE }
-// OBSOLETE *cpy = 0;
-// OBSOLETE putpacket(buf);
-// OBSOLETE }
-// OBSOLETE return len;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_puts(char *)
-// OBSOLETE Make gdb write a null-terminated string to stdout.
-// OBSOLETE Returns: the length of the string */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_puts (char *str)
-// OBSOLETE {
-// OBSOLETE return gdb_write(str, strlen(str));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_error(char *, char *)
-// OBSOLETE Send an error message to gdb's stdout.
-// OBSOLETE First string may have 1 (one) optional "%s" in it, which
-// OBSOLETE will cause the optional second string to be inserted. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE gdb_error (char *format, char *parm)
-// OBSOLETE {
-// OBSOLETE char buf[400], *cpy;
-// OBSOLETE int len;
-// OBSOLETE
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE if (format && *format)
-// OBSOLETE len = strlen(format);
-// OBSOLETE else
-// OBSOLETE return; /* empty input */
-// OBSOLETE
-// OBSOLETE if (parm && *parm)
-// OBSOLETE len += strlen(parm);
-// OBSOLETE
-// OBSOLETE for (cpy = buf; *format; )
-// OBSOLETE {
-// OBSOLETE if (format[0] == '%' && format[1] == 's') /* include second string */
-// OBSOLETE {
-// OBSOLETE format += 2; /* advance two chars instead of just one */
-// OBSOLETE while (parm && *parm)
-// OBSOLETE *cpy++ = *parm++;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE *cpy++ = *format++;
-// OBSOLETE }
-// OBSOLETE *cpy = '\0';
-// OBSOLETE gdb_puts(buf);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static unsigned char *
-// OBSOLETE strcpy (unsigned char *dest, const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE unsigned char *ret = dest;
-// OBSOLETE
-// OBSOLETE if (dest && src)
-// OBSOLETE {
-// OBSOLETE while (*src)
-// OBSOLETE *dest++ = *src++;
-// OBSOLETE *dest = 0;
-// OBSOLETE }
-// OBSOLETE return ret;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE strlen (const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE int ret;
-// OBSOLETE
-// OBSOLETE for (ret = 0; *src; src++)
-// OBSOLETE ret++;
-// OBSOLETE
-// OBSOLETE return ret;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE #if 0
-// OBSOLETE void exit (code)
-// OBSOLETE int code;
-// OBSOLETE {
-// OBSOLETE _exit (code);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE int atexit (void *p)
-// OBSOLETE {
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void abort (void)
-// OBSOLETE {
-// OBSOLETE _exit (1);
-// OBSOLETE }
-// OBSOLETE #endif
+/****************************************************************************
+
+ THIS SOFTWARE IS NOT COPYRIGHTED
+
+ HP offers the following for use in the public domain. HP makes no
+ warranty with regard to the software or it's performance and the
+ user accepts the software "AS IS" with all faults.
+
+ HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
+ TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+
+****************************************************************************/
+
+/****************************************************************************
+ * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
+ *
+ * Module name: remcom.c $
+ * Revision: 1.34 $
+ * Date: 91/03/09 12:29:49 $
+ * Contributor: Lake Stevens Instrument Division$
+ *
+ * Description: low level support for gdb debugger. $
+ *
+ * Considerations: only works on target hardware $
+ *
+ * Written by: Glenn Engel $
+ * ModuleState: Experimental $
+ *
+ * NOTES: See Below $
+ *
+ * Modified for M32R by Michael Snyder, Cygnus Support.
+ *
+ * To enable debugger support, two things need to happen. One, a
+ * call to set_debug_traps() is necessary in order to allow any breakpoints
+ * or error conditions to be properly intercepted and reported to gdb.
+ * Two, a breakpoint needs to be generated to begin communication. This
+ * is most easily accomplished by a call to breakpoint(). Breakpoint()
+ * simulates a breakpoint by executing a trap #1.
+ *
+ * The external function exceptionHandler() is
+ * used to attach a specific handler to a specific M32R vector number.
+ * It should use the same privilege level it runs at. It should
+ * install it as an interrupt gate so that interrupts are masked
+ * while the handler runs.
+ *
+ * Because gdb will sometimes write to the stack area to execute function
+ * calls, this program cannot rely on using the supervisor stack so it
+ * uses it's own stack area reserved in the int array remcomStack.
+ *
+ *************
+ *
+ * The following gdb commands are supported:
+ *
+ * command function Return value
+ *
+ * g return the value of the CPU registers hex data or ENN
+ * G set the value of the CPU registers OK or ENN
+ *
+ * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
+ * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
+ * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
+ * AA..AA
+ *
+ * c Resume at current address SNN ( signal NN)
+ * cAA..AA Continue at address AA..AA SNN
+ *
+ * s Step one instruction SNN
+ * sAA..AA Step one instruction from AA..AA SNN
+ *
+ * k kill
+ *
+ * ? What was the last sigval ? SNN (signal NN)
+ *
+ * All commands and responses are sent with a packet which includes a
+ * checksum. A packet consists of
+ *
+ * $<packet info>#<checksum>.
+ *
+ * where
+ * <packet info> :: <characters representing the command or response>
+ * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
+ *
+ * When a packet is received, it is first acknowledged with either '+' or '-'.
+ * '+' indicates a successful transfer. '-' indicates a failed transfer.
+ *
+ * Example:
+ *
+ * Host: Reply:
+ * $m0,10#2a +$00010203040506070809101112131415#42
+ *
+ ****************************************************************************/
+
+
+/************************************************************************
+ *
+ * external low-level support routines
+ */
+extern void putDebugChar (); /* write a single character */
+extern int getDebugChar (); /* read and return a single char */
+extern void exceptionHandler (); /* assign an exception handler */
+
+/*****************************************************************************
+ * BUFMAX defines the maximum number of characters in inbound/outbound buffers
+ * at least NUMREGBYTES*2 are needed for register packets
+ */
+#define BUFMAX 400
+
+static char initialized; /* boolean flag. != 0 means we've been initialized */
+
+int remote_debug;
+/* debug > 0 prints ill-formed commands in valid packets & checksum errors */
+
+static const unsigned char hexchars[] = "0123456789abcdef";
+
+#define NUMREGS 24
+
+/* Number of bytes of registers. */
+#define NUMREGBYTES (NUMREGS * 4)
+enum regnames
+{ R0, R1, R2, R3, R4, R5, R6, R7,
+ R8, R9, R10, R11, R12, R13, R14, R15,
+ PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH
+};
+
+enum SYS_calls
+{
+ SYS_null,
+ SYS_exit,
+ SYS_open,
+ SYS_close,
+ SYS_read,
+ SYS_write,
+ SYS_lseek,
+ SYS_unlink,
+ SYS_getpid,
+ SYS_kill,
+ SYS_fstat,
+ SYS_sbrk,
+ SYS_fork,
+ SYS_execve,
+ SYS_wait4,
+ SYS_link,
+ SYS_chdir,
+ SYS_stat,
+ SYS_utime,
+ SYS_chown,
+ SYS_chmod,
+ SYS_time,
+ SYS_pipe
+};
+
+static int registers[NUMREGS];
+
+#define STACKSIZE 8096
+static unsigned char remcomInBuffer[BUFMAX];
+static unsigned char remcomOutBuffer[BUFMAX];
+static int remcomStack[STACKSIZE / sizeof (int)];
+static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+static unsigned int save_vectors[18]; /* previous exception vectors */
+
+/* Indicate to caller of mem2hex or hex2mem that there has been an error. */
+static volatile int mem_err = 0;
+
+/* Store the vector number here (since GDB only gets the signal
+ number through the usual means, and that's not very specific). */
+int gdb_m32r_vector = -1;
+
+#if 0
+#include "syscall.h" /* for SYS_exit, SYS_write etc. */
+#endif
+
+/* Global entry points:
+ */
+
+extern void handle_exception (int);
+extern void set_debug_traps (void);
+extern void breakpoint (void);
+
+/* Local functions:
+ */
+
+static int computeSignal (int);
+static void putpacket (unsigned char *);
+static unsigned char *getpacket (void);
+
+static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int);
+static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int);
+static int hexToInt (unsigned char **, int *);
+static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int);
+static void stash_registers (void);
+static void restore_registers (void);
+static int prepare_to_step (int);
+static int finish_from_step (void);
+static unsigned long crc32 (unsigned char *, int, unsigned long);
+
+static void gdb_error (char *, char *);
+static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int);
+
+static unsigned char *strcpy (unsigned char *, const unsigned char *);
+static int strlen (const unsigned char *);
+
+/*
+ * This function does all command procesing for interfacing to gdb.
+ */
+
+void
+handle_exception (int exceptionVector)
+{
+ int sigval, stepping;
+ int addr, length, i;
+ unsigned char *ptr;
+ unsigned char buf[16];
+ int binary;
+
+ if (!finish_from_step ())
+ return; /* "false step": let the target continue */
+
+ gdb_m32r_vector = exceptionVector;
+
+ if (remote_debug)
+ {
+ mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
+ gdb_error ("Handle exception %s, ", buf);
+ mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+ gdb_error ("PC == 0x%s\n", buf);
+ }
+
+ /* reply to host that an exception has occurred */
+ sigval = computeSignal (exceptionVector);
+
+ ptr = remcomOutBuffer;
+
+ *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
+ *ptr++ = hexchars[sigval >> 4];
+ *ptr++ = hexchars[sigval & 0xf];
+
+ *ptr++ = hexchars[PC >> 4];
+ *ptr++ = hexchars[PC & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0); /* PC */
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R13 >> 4];
+ *ptr++ = hexchars[R13 & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0); /* FP */
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R15 >> 4];
+ *ptr++ = hexchars[R15 & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0); /* SP */
+ *ptr++ = ';';
+ *ptr++ = 0;
+
+ if (exceptionVector == 0) /* simulated SYS call stuff */
+ {
+ mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+ switch (registers[R0])
+ {
+ case SYS_exit:
+ gdb_error ("Target program has exited at %s\n", buf);
+ ptr = remcomOutBuffer;
+ *ptr++ = 'W';
+ sigval = registers[R1] & 0xff;
+ *ptr++ = hexchars[sigval >> 4];
+ *ptr++ = hexchars[sigval & 0xf];
+ *ptr++ = 0;
+ break;
+ case SYS_open:
+ gdb_error ("Target attempts SYS_open call at %s\n", buf);
+ break;
+ case SYS_close:
+ gdb_error ("Target attempts SYS_close call at %s\n", buf);
+ break;
+ case SYS_read:
+ gdb_error ("Target attempts SYS_read call at %s\n", buf);
+ break;
+ case SYS_write:
+ if (registers[R1] == 1 || /* write to stdout */
+ registers[R1] == 2) /* write to stderr */
+ { /* (we can do that) */
+ registers[R0] =
+ gdb_write ((void *) registers[R2], registers[R3]);
+ return;
+ }
+ else
+ gdb_error ("Target attempts SYS_write call at %s\n", buf);
+ break;
+ case SYS_lseek:
+ gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
+ break;
+ case SYS_unlink:
+ gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
+ break;
+ case SYS_getpid:
+ gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
+ break;
+ case SYS_kill:
+ gdb_error ("Target attempts SYS_kill call at %s\n", buf);
+ break;
+ case SYS_fstat:
+ gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
+ break;
+ default:
+ gdb_error ("Target attempts unknown SYS call at %s\n", buf);
+ break;
+ }
+ }
+
+ putpacket (remcomOutBuffer);
+
+ stepping = 0;
+
+ while (1 == 1)
+ {
+ remcomOutBuffer[0] = 0;
+ ptr = getpacket ();
+ binary = 0;
+ switch (*ptr++)
+ {
+ default: /* Unknown code. Return an empty reply message. */
+ break;
+ case 'R':
+ if (hexToInt (&ptr, &addr))
+ registers[PC] = addr;
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case '!':
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case 'X': /* XAA..AA,LLLL:<binary data>#cs */
+ binary = 1;
+ case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
+ /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
+ {
+ if (hexToInt (&ptr, &addr))
+ if (*(ptr++) == ',')
+ if (hexToInt (&ptr, &length))
+ if (*(ptr++) == ':')
+ {
+ mem_err = 0;
+ if (binary)
+ bin2mem (ptr, (unsigned char *) addr, length, 1);
+ else
+ hex2mem (ptr, (unsigned char *) addr, length, 1);
+ if (mem_err)
+ {
+ strcpy (remcomOutBuffer, "E03");
+ gdb_error ("memory fault", "");
+ }
+ else
+ {
+ strcpy (remcomOutBuffer, "OK");
+ }
+ ptr = 0;
+ }
+ if (ptr)
+ {
+ strcpy (remcomOutBuffer, "E02");
+ }
+ }
+ break;
+ case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
+ /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
+ if (hexToInt (&ptr, &addr))
+ if (*(ptr++) == ',')
+ if (hexToInt (&ptr, &length))
+ {
+ ptr = 0;
+ mem_err = 0;
+ mem2hex ((unsigned char *) addr, remcomOutBuffer, length,
+ 1);
+ if (mem_err)
+ {
+ strcpy (remcomOutBuffer, "E03");
+ gdb_error ("memory fault", "");
+ }
+ }
+ if (ptr)
+ {
+ strcpy (remcomOutBuffer, "E01");
+ }
+ break;
+ case '?':
+ remcomOutBuffer[0] = 'S';
+ remcomOutBuffer[1] = hexchars[sigval >> 4];
+ remcomOutBuffer[2] = hexchars[sigval % 16];
+ remcomOutBuffer[3] = 0;
+ break;
+ case 'd':
+ remote_debug = !(remote_debug); /* toggle debug flag */
+ break;
+ case 'g': /* return the value of the CPU registers */
+ mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES,
+ 0);
+ break;
+ case 'P': /* set the value of a single CPU register - return OK */
+ {
+ int regno;
+
+ if (hexToInt (&ptr, &regno) && *ptr++ == '=')
+ if (regno >= 0 && regno < NUMREGS)
+ {
+ int stackmode;
+
+ hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
+ /*
+ * Since we just changed a single CPU register, let's
+ * make sure to keep the several stack pointers consistant.
+ */
+ stackmode = registers[PSW] & 0x80;
+ if (regno == R15) /* stack pointer changed */
+ { /* need to change SPI or SPU */
+ if (stackmode == 0)
+ registers[SPI] = registers[R15];
+ else
+ registers[SPU] = registers[R15];
+ }
+ else if (regno == SPU) /* "user" stack pointer changed */
+ {
+ if (stackmode != 0) /* stack in user mode: copy SP */
+ registers[R15] = registers[SPU];
+ }
+ else if (regno == SPI) /* "interrupt" stack pointer changed */
+ {
+ if (stackmode == 0) /* stack in interrupt mode: copy SP */
+ registers[R15] = registers[SPI];
+ }
+ else if (regno == PSW) /* stack mode may have changed! */
+ { /* force SP to either SPU or SPI */
+ if (stackmode == 0) /* stack in user mode */
+ registers[R15] = registers[SPI];
+ else /* stack in interrupt mode */
+ registers[R15] = registers[SPU];
+ }
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ }
+ strcpy (remcomOutBuffer, "E01");
+ break;
+ }
+ case 'G': /* set the value of the CPU registers - return OK */
+ hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0);
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
+ stepping = 1;
+ case 'c': /* cAA..AA Continue from address AA..AA(optional) */
+ /* try to read optional parameter, pc unchanged if no parm */
+ if (hexToInt (&ptr, &addr))
+ registers[PC] = addr;
+
+ if (stepping) /* single-stepping */
+ {
+ if (!prepare_to_step (0)) /* set up for single-step */
+ {
+ /* prepare_to_step has already emulated the target insn:
+ Send SIGTRAP to gdb, don't resume the target at all. */
+ ptr = remcomOutBuffer;
+ *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
+ *ptr++ = '0';
+ *ptr++ = '5';
+
+ *ptr++ = hexchars[PC >> 4]; /* send PC */
+ *ptr++ = hexchars[PC & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R13 >> 4]; /* send FP */
+ *ptr++ = hexchars[R13 & 0xf];
+ *ptr++ = ':';
+ ptr =
+ mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R15 >> 4]; /* send SP */
+ *ptr++ = hexchars[R15 & 0xf];
+ *ptr++ = ':';
+ ptr =
+ mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);
+ *ptr++ = ';';
+ *ptr++ = 0;
+
+ break;
+ }
+ }
+ else /* continuing, not single-stepping */
+ {
+ /* OK, about to do a "continue". First check to see if the
+ target pc is on an odd boundary (second instruction in the
+ word). If so, we must do a single-step first, because
+ ya can't jump or return back to an odd boundary! */
+ if ((registers[PC] & 2) != 0)
+ prepare_to_step (1);
+ }
+
+ return;
+
+ case 'D': /* Detach */
+#if 0
+ /* I am interpreting this to mean, release the board from control
+ by the remote stub. To do this, I am restoring the original
+ (or at least previous) exception vectors.
+ */
+ for (i = 0; i < 18; i++)
+ exceptionHandler (i, save_vectors[i]);
+ putpacket ("OK");
+ return; /* continue the inferior */
+#else
+ strcpy (remcomOutBuffer, "OK");
+ break;
+#endif
+ case 'q':
+ if (*ptr++ == 'C' &&
+ *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':')
+ {
+ unsigned long start, len, our_crc;
+
+ if (hexToInt (&ptr, (int *) &start) &&
+ *ptr++ == ',' && hexToInt (&ptr, (int *) &len))
+ {
+ remcomOutBuffer[0] = 'C';
+ our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
+ mem2hex ((char *) &our_crc,
+ &remcomOutBuffer[1], sizeof (long), 0);
+ } /* else do nothing */
+ } /* else do nothing */
+ break;
+
+ case 'k': /* kill the program */
+ continue;
+ } /* switch */
+
+ /* reply to the request */
+ putpacket (remcomOutBuffer);
+ }
+}
+
+/* qCRC support */
+
+/* Table used by the crc32 function to calcuate the checksum. */
+static unsigned long crc32_table[256] = { 0, 0 };
+
+static unsigned long
+crc32 (unsigned char *buf, int len, unsigned long crc)
+{
+ if (!crc32_table[1])
+ {
+ /* Initialize the CRC table and the decoding table. */
+ int i, j;
+ unsigned long c;
+
+ for (i = 0; i < 256; i++)
+ {
+ for (c = i << 24, j = 8; j > 0; --j)
+ c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
+ crc32_table[i] = c;
+ }
+ }
+
+ while (len--)
+ {
+ crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
+ buf++;
+ }
+ return crc;
+}
+
+static int
+hex (unsigned char ch)
+{
+ if ((ch >= 'a') && (ch <= 'f'))
+ return (ch - 'a' + 10);
+ if ((ch >= '0') && (ch <= '9'))
+ return (ch - '0');
+ if ((ch >= 'A') && (ch <= 'F'))
+ return (ch - 'A' + 10);
+ return (-1);
+}
+
+/* scan for the sequence $<data>#<checksum> */
+
+unsigned char *
+getpacket (void)
+{
+ unsigned char *buffer = &remcomInBuffer[0];
+ unsigned char checksum;
+ unsigned char xmitcsum;
+ int count;
+ char ch;
+
+ while (1)
+ {
+ /* wait around for the start character, ignore all other characters */
+ while ((ch = getDebugChar ()) != '$')
+ ;
+
+ retry:
+ checksum = 0;
+ xmitcsum = -1;
+ count = 0;
+
+ /* now, read until a # or end of buffer is found */
+ while (count < BUFMAX)
+ {
+ ch = getDebugChar ();
+ if (ch == '$')
+ goto retry;
+ if (ch == '#')
+ break;
+ checksum = checksum + ch;
+ buffer[count] = ch;
+ count = count + 1;
+ }
+ buffer[count] = 0;
+
+ if (ch == '#')
+ {
+ ch = getDebugChar ();
+ xmitcsum = hex (ch) << 4;
+ ch = getDebugChar ();
+ xmitcsum += hex (ch);
+
+ if (checksum != xmitcsum)
+ {
+ if (remote_debug)
+ {
+ unsigned char buf[16];
+
+ mem2hex ((unsigned char *) &checksum, buf, 4, 0);
+ gdb_error ("Bad checksum: my count = %s, ", buf);
+ mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0);
+ gdb_error ("sent count = %s\n", buf);
+ gdb_error (" -- Bad buffer: \"%s\"\n", buffer);
+ }
+ putDebugChar ('-'); /* failed checksum */
+ }
+ else
+ {
+ putDebugChar ('+'); /* successful transfer */
+
+ /* if a sequence char is present, reply the sequence ID */
+ if (buffer[2] == ':')
+ {
+ putDebugChar (buffer[0]);
+ putDebugChar (buffer[1]);
+
+ return &buffer[3];
+ }
+
+ return &buffer[0];
+ }
+ }
+ }
+}
+
+/* send the packet in buffer. */
+
+static void
+putpacket (unsigned char *buffer)
+{
+ unsigned char checksum;
+ int count;
+ char ch;
+
+ /* $<packet info>#<checksum>. */
+ do
+ {
+ putDebugChar ('$');
+ checksum = 0;
+ count = 0;
+
+ while (ch = buffer[count])
+ {
+ putDebugChar (ch);
+ checksum += ch;
+ count += 1;
+ }
+ putDebugChar ('#');
+ putDebugChar (hexchars[checksum >> 4]);
+ putDebugChar (hexchars[checksum % 16]);
+ }
+ while (getDebugChar () != '+');
+}
+
+/* Address of a routine to RTE to if we get a memory fault. */
+
+static void (*volatile mem_fault_routine) () = 0;
+
+static void
+set_mem_err (void)
+{
+ mem_err = 1;
+}
+
+/* Check the address for safe access ranges. As currently defined,
+ this routine will reject the "expansion bus" address range(s).
+ To make those ranges useable, someone must implement code to detect
+ whether there's anything connected to the expansion bus. */
+
+static int
+mem_safe (unsigned char *addr)
+{
+#define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
+#define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
+#define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
+#define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
+
+ if (addr < BAD_RANGE_ONE_START)
+ return 1; /* safe */
+ if (addr < BAD_RANGE_ONE_END)
+ return 0; /* unsafe */
+ if (addr < BAD_RANGE_TWO_START)
+ return 1; /* safe */
+ if (addr < BAD_RANGE_TWO_END)
+ return 0; /* unsafe */
+}
+
+/* These are separate functions so that they are so short and sweet
+ that the compiler won't save any registers (if there is a fault
+ to mem_fault, they won't get restored, so there better not be any
+ saved). */
+static int
+get_char (unsigned char *addr)
+{
+#if 1
+ if (mem_fault_routine && !mem_safe (addr))
+ {
+ mem_fault_routine ();
+ return 0;
+ }
+#endif
+ return *addr;
+}
+
+static void
+set_char (unsigned char *addr, unsigned char val)
+{
+#if 1
+ if (mem_fault_routine && !mem_safe (addr))
+ {
+ mem_fault_routine ();
+ return;
+ }
+#endif
+ *addr = val;
+}
+
+/* Convert the memory pointed to by mem into hex, placing result in buf.
+ Return a pointer to the last char put in buf (null).
+ If MAY_FAULT is non-zero, then we should set mem_err in response to
+ a fault; if zero treat a fault like any other fault in the stub. */
+
+static unsigned char *
+mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ ch = get_char (mem++);
+ if (may_fault && mem_err)
+ return (buf);
+ *buf++ = hexchars[ch >> 4];
+ *buf++ = hexchars[ch % 16];
+ }
+ *buf = 0;
+ if (may_fault)
+ mem_fault_routine = 0;
+ return (buf);
+}
+
+/* Convert the hex array pointed to by buf into binary to be placed in mem.
+ Return a pointer to the character AFTER the last byte written. */
+
+static unsigned char *
+hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ ch = hex (*buf++) << 4;
+ ch = ch + hex (*buf++);
+ set_char (mem++, ch);
+ if (may_fault && mem_err)
+ return (mem);
+ }
+ if (may_fault)
+ mem_fault_routine = 0;
+ return (mem);
+}
+
+/* Convert the binary stream in BUF to memory.
+
+ Gdb will escape $, #, and the escape char (0x7d).
+ COUNT is the total number of bytes to write into
+ memory. */
+static unsigned char *
+bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ /* Check for any escaped characters. Be paranoid and
+ only unescape chars that should be escaped. */
+ if (*buf == 0x7d)
+ {
+ switch (*(buf + 1))
+ {
+ case 0x3: /* # */
+ case 0x4: /* $ */
+ case 0x5d: /* escape char */
+ buf++;
+ *buf |= 0x20;
+ break;
+ default:
+ /* nothing */
+ break;
+ }
+ }
+
+ set_char (mem++, *buf++);
+
+ if (may_fault && mem_err)
+ return mem;
+ }
+
+ if (may_fault)
+ mem_fault_routine = 0;
+ return mem;
+}
+
+/* this function takes the m32r exception vector and attempts to
+ translate this number into a unix compatible signal value */
+
+static int
+computeSignal (int exceptionVector)
+{
+ int sigval;
+ switch (exceptionVector)
+ {
+ case 0:
+ sigval = 23;
+ break; /* I/O trap */
+ case 1:
+ sigval = 5;
+ break; /* breakpoint */
+ case 2:
+ sigval = 5;
+ break; /* breakpoint */
+ case 3:
+ sigval = 5;
+ break; /* breakpoint */
+ case 4:
+ sigval = 5;
+ break; /* breakpoint */
+ case 5:
+ sigval = 5;
+ break; /* breakpoint */
+ case 6:
+ sigval = 5;
+ break; /* breakpoint */
+ case 7:
+ sigval = 5;
+ break; /* breakpoint */
+ case 8:
+ sigval = 5;
+ break; /* breakpoint */
+ case 9:
+ sigval = 5;
+ break; /* breakpoint */
+ case 10:
+ sigval = 5;
+ break; /* breakpoint */
+ case 11:
+ sigval = 5;
+ break; /* breakpoint */
+ case 12:
+ sigval = 5;
+ break; /* breakpoint */
+ case 13:
+ sigval = 5;
+ break; /* breakpoint */
+ case 14:
+ sigval = 5;
+ break; /* breakpoint */
+ case 15:
+ sigval = 5;
+ break; /* breakpoint */
+ case 16:
+ sigval = 10;
+ break; /* BUS ERROR (alignment) */
+ case 17:
+ sigval = 2;
+ break; /* INTerrupt */
+ default:
+ sigval = 7;
+ break; /* "software generated" */
+ }
+ return (sigval);
+}
+
+/**********************************************/
+/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
+/* RETURN NUMBER OF CHARS PROCESSED */
+/**********************************************/
+static int
+hexToInt (unsigned char **ptr, int *intValue)
+{
+ int numChars = 0;
+ int hexValue;
+
+ *intValue = 0;
+ while (**ptr)
+ {
+ hexValue = hex (**ptr);
+ if (hexValue >= 0)
+ {
+ *intValue = (*intValue << 4) | hexValue;
+ numChars++;
+ }
+ else
+ break;
+ (*ptr)++;
+ }
+ return (numChars);
+}
+
+/*
+ Table of branch instructions:
+
+ 10B6 RTE return from trap or exception
+ 1FCr JMP jump
+ 1ECr JL jump and link
+ 7Fxx BRA branch
+ FFxxxxxx BRA branch (long)
+ B09rxxxx BNEZ branch not-equal-zero
+ Br1rxxxx BNE branch not-equal
+ 7Dxx BNC branch not-condition
+ FDxxxxxx BNC branch not-condition (long)
+ B0Arxxxx BLTZ branch less-than-zero
+ B0Crxxxx BLEZ branch less-equal-zero
+ 7Exx BL branch and link
+ FExxxxxx BL branch and link (long)
+ B0Drxxxx BGTZ branch greater-than-zero
+ B0Brxxxx BGEZ branch greater-equal-zero
+ B08rxxxx BEQZ branch equal-zero
+ Br0rxxxx BEQ branch equal
+ 7Cxx BC branch condition
+ FCxxxxxx BC branch condition (long)
+ */
+
+static int
+isShortBranch (unsigned char *instr)
+{
+ unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
+
+ if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
+ return 1; /* return from trap or exception */
+
+ if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
+ if ((instr[1] & 0xF0) == 0xC0)
+ return 2; /* jump thru a register */
+
+ if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
+ instr0 == 0x7E || instr0 == 0x7F)
+ return 3; /* eight bit PC offset */
+
+ return 0;
+}
+
+static int
+isLongBranch (unsigned char *instr)
+{
+ if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
+ instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
+ return 4;
+ if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
+ {
+ if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
+ (instr[1] & 0xF0) == 0x10)
+ return 5;
+ if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
+ if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
+ (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
+ (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
+ return 6;
+ }
+ return 0;
+}
+
+/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
+ then it's a 2-byte instruction, else it's a 4-byte instruction. */
+
+#define INSTRUCTION_SIZE(addr) \
+ ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
+
+static int
+isBranch (unsigned char *instr)
+{
+ if (INSTRUCTION_SIZE (instr) == 2)
+ return isShortBranch (instr);
+ else
+ return isLongBranch (instr);
+}
+
+static int
+willBranch (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ case 0:
+ return 0; /* not a branch */
+ case 1:
+ return 1; /* RTE */
+ case 2:
+ return 1; /* JL or JMP */
+ case 3: /* BC, BNC, BL, BRA (short) */
+ case 4: /* BC, BNC, BL, BRA (long) */
+ switch (instr[0] & 0x0F)
+ {
+ case 0xC: /* Branch if Condition Register */
+ return (registers[CBR] != 0);
+ case 0xD: /* Branch if NOT Condition Register */
+ return (registers[CBR] == 0);
+ case 0xE: /* Branch and Link */
+ case 0xF: /* Branch (unconditional) */
+ return 1;
+ default: /* oops? */
+ return 0;
+ }
+ case 5: /* BNE, BEQ */
+ switch (instr[1] & 0xF0)
+ {
+ case 0x00: /* Branch if r1 equal to r2 */
+ return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
+ case 0x10: /* Branch if r1 NOT equal to r2 */
+ return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
+ default: /* oops? */
+ return 0;
+ }
+ case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
+ switch (instr[1] & 0xF0)
+ {
+ case 0x80: /* Branch if reg equal to zero */
+ return (registers[instr[1] & 0x0F] == 0);
+ case 0x90: /* Branch if reg NOT equal to zero */
+ return (registers[instr[1] & 0x0F] != 0);
+ case 0xA0: /* Branch if reg less than zero */
+ return (registers[instr[1] & 0x0F] < 0);
+ case 0xB0: /* Branch if reg greater or equal to zero */
+ return (registers[instr[1] & 0x0F] >= 0);
+ case 0xC0: /* Branch if reg less than or equal to zero */
+ return (registers[instr[1] & 0x0F] <= 0);
+ case 0xD0: /* Branch if reg greater than zero */
+ return (registers[instr[1] & 0x0F] > 0);
+ default: /* oops? */
+ return 0;
+ }
+ default: /* oops? */
+ return 0;
+ }
+}
+
+static int
+branchDestination (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ default:
+ case 0: /* not a branch */
+ return 0;
+ case 1: /* RTE */
+ return registers[BPC] & ~3; /* pop BPC into PC */
+ case 2: /* JL or JMP */
+ return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
+ case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
+ return (((int) instr) & ~3) + ((char) instr[1] << 2);
+ case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
+ return ((int) instr +
+ ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) <<
+ 2));
+ case 5: /* BNE, BEQ (16-bit relative offset) */
+ case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
+ return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
+ }
+
+ /* An explanatory note: in the last three return expressions, I have
+ cast the most-significant byte of the return offset to char.
+ What this accomplishes is sign extension. If the other
+ less-significant bytes were signed as well, they would get sign
+ extended too and, if negative, their leading bits would clobber
+ the bits of the more-significant bytes ahead of them. There are
+ other ways I could have done this, but sign extension from
+ odd-sized integers is always a pain. */
+}
+
+static void
+branchSideEffects (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ case 1: /* RTE */
+ return; /* I <THINK> this is already handled... */
+ case 2: /* JL (or JMP) */
+ case 3: /* BL (or BC, BNC, BRA) */
+ case 4:
+ if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
+ registers[R14] = (registers[PC] & ~3) + 4;
+ return;
+ default: /* any other branch has no side effects */
+ return;
+ }
+}
+
+static struct STEPPING_CONTEXT
+{
+ int stepping; /* true when we've started a single-step */
+ unsigned long target_addr; /* the instr we're trying to execute */
+ unsigned long target_size; /* the size of the target instr */
+ unsigned long noop_addr; /* where we've inserted a no-op, if any */
+ unsigned long trap1_addr; /* the trap following the target instr */
+ unsigned long trap2_addr; /* the trap at a branch destination, if any */
+ unsigned short noop_save; /* instruction overwritten by our no-op */
+ unsigned short trap1_save; /* instruction overwritten by trap1 */
+ unsigned short trap2_save; /* instruction overwritten by trap2 */
+ unsigned short continue_p; /* true if NOT returning to gdb after step */
+} stepping;
+
+/* Function: prepare_to_step
+ Called from handle_exception to prepare the user program to single-step.
+ Places a trap instruction after the target instruction, with special
+ extra handling for branch instructions and for instructions in the
+ second half-word of a word.
+
+ Returns: True if we should actually execute the instruction;
+ False if we are going to emulate executing the instruction,
+ in which case we simply report to GDB that the instruction
+ has already been executed. */
+
+#define TRAP1 0x10f1; /* trap #1 instruction */
+#define NOOP 0x7000; /* noop instruction */
+
+static unsigned short trap1 = TRAP1;
+static unsigned short noop = NOOP;
+
+static int
+prepare_to_step (continue_p)
+ int continue_p; /* if this isn't REALLY a single-step (see below) */
+{
+ unsigned long pc = registers[PC];
+ int branchCode = isBranch ((unsigned char *) pc);
+ unsigned char *p;
+
+ /* zero out the stepping context
+ (paranoia -- it should already be zeroed) */
+ for (p = (unsigned char *) &stepping;
+ p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+ *p = 0;
+
+ if (branchCode != 0) /* next instruction is a branch */
+ {
+ branchSideEffects ((unsigned char *) pc, branchCode);
+ if (willBranch ((unsigned char *) pc, branchCode))
+ registers[PC] = branchDestination ((unsigned char *) pc, branchCode);
+ else
+ registers[PC] = pc + INSTRUCTION_SIZE (pc);
+ return 0; /* branch "executed" -- just notify GDB */
+ }
+ else if (((int) pc & 2) != 0) /* "second-slot" instruction */
+ {
+ /* insert no-op before pc */
+ stepping.noop_addr = pc - 2;
+ stepping.noop_save = *(unsigned short *) stepping.noop_addr;
+ *(unsigned short *) stepping.noop_addr = noop;
+ /* insert trap after pc */
+ stepping.trap1_addr = pc + 2;
+ stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+ *(unsigned short *) stepping.trap1_addr = trap1;
+ }
+ else /* "first-slot" instruction */
+ {
+ /* insert trap after pc */
+ stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc);
+ stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+ *(unsigned short *) stepping.trap1_addr = trap1;
+ }
+ /* "continue_p" means that we are actually doing a continue, and not
+ being requested to single-step by GDB. Sometimes we have to do
+ one single-step before continuing, because the PC is on a half-word
+ boundary. There's no way to simply resume at such an address. */
+ stepping.continue_p = continue_p;
+ stepping.stepping = 1; /* starting a single-step */
+ return 1;
+}
+
+/* Function: finish_from_step
+ Called from handle_exception to finish up when the user program
+ returns from a single-step. Replaces the instructions that had
+ been overwritten by traps or no-ops,
+
+ Returns: True if we should notify GDB that the target stopped.
+ False if we only single-stepped because we had to before we
+ could continue (ie. we were trying to continue at a
+ half-word boundary). In that case don't notify GDB:
+ just "continue continuing". */
+
+static int
+finish_from_step (void)
+{
+ if (stepping.stepping) /* anything to do? */
+ {
+ int continue_p = stepping.continue_p;
+ unsigned char *p;
+
+ if (stepping.noop_addr) /* replace instr "under" our no-op */
+ *(unsigned short *) stepping.noop_addr = stepping.noop_save;
+ if (stepping.trap1_addr) /* replace instr "under" our trap */
+ *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
+ if (stepping.trap2_addr) /* ditto our other trap, if any */
+ *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
+
+ for (p = (unsigned char *) &stepping; /* zero out the stepping context */
+ p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+ *p = 0;
+
+ return !(continue_p);
+ }
+ else /* we didn't single-step, therefore this must be a legitimate stop */
+ return 1;
+}
+
+struct PSWreg
+{ /* separate out the bit flags in the PSW register */
+ int pad1:16;
+ int bsm:1;
+ int bie:1;
+ int pad2:5;
+ int bc:1;
+ int sm:1;
+ int ie:1;
+ int pad3:5;
+ int c:1;
+} *psw;
+
+/* Upon entry the value for LR to save has been pushed.
+ We unpush that so that the value for the stack pointer saved is correct.
+ Upon entry, all other registers are assumed to have not been modified
+ since the interrupt/trap occured. */
+
+asm ("\n\
+stash_registers:\n\
+ push r0\n\
+ push r1\n\
+ seth r1, #shigh(registers)\n\
+ add3 r1, r1, #low(registers)\n\
+ pop r0 ; r1\n\
+ st r0, @(4,r1)\n\
+ pop r0 ; r0\n\
+ st r0, @r1\n\
+ addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\
+ st r2, @+r1\n\
+ st r3, @+r1\n\
+ st r4, @+r1\n\
+ st r5, @+r1\n\
+ st r6, @+r1\n\
+ st r7, @+r1\n\
+ st r8, @+r1\n\
+ st r9, @+r1\n\
+ st r10, @+r1\n\
+ st r11, @+r1\n\
+ st r12, @+r1\n\
+ st r13, @+r1 ; fp\n\
+ pop r0 ; lr (r14)\n\
+ st r0, @+r1\n\
+ st sp, @+r1 ; sp contains right value at this point\n\
+ mvfc r0, cr0\n\
+ st r0, @+r1 ; cr0 == PSW\n\
+ mvfc r0, cr1\n\
+ st r0, @+r1 ; cr1 == CBR\n\
+ mvfc r0, cr2\n\
+ st r0, @+r1 ; cr2 == SPI\n\
+ mvfc r0, cr3\n\
+ st r0, @+r1 ; cr3 == SPU\n\
+ mvfc r0, cr6\n\
+ st r0, @+r1 ; cr6 == BPC\n\
+ st r0, @+r1 ; PC == BPC\n\
+ mvfaclo r0\n\
+ st r0, @+r1 ; ACCL\n\
+ mvfachi r0\n\
+ st r0, @+r1 ; ACCH\n\
+ jmp lr");
+
+/* C routine to clean up what stash_registers did.
+ It is called after calling stash_registers.
+ This is separate from stash_registers as we want to do this in C
+ but doing stash_registers in C isn't straightforward. */
+
+static void
+cleanup_stash (void)
+{
+ psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
+ psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
+ psw->ie = psw->bie;
+ psw->c = psw->bc;
+ registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
+
+#if 0 /* FIXME: Was in previous version. Necessary?
+ (Remember that we use the "rte" insn to return from the
+ trap/interrupt so the values of bsm, bie, bc are important. */
+ psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
+#endif
+
+ /* FIXME: Copied from previous version. This can probably be deleted
+ since methinks stash_registers has already done this. */
+ registers[PC] = registers[BPC]; /* pre-trap PC */
+
+ /* FIXME: Copied from previous version. Necessary? */
+ if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
+ registers[SPU] = registers[R15];
+ else
+ registers[SPI] = registers[R15];
+}
+
+asm ("\n\
+restore_and_return:\n\
+ seth r0, #shigh(registers+8)\n\
+ add3 r0, r0, #low(registers+8)\n\
+ ld r2, @r0+ ; restore r2\n\
+ ld r3, @r0+ ; restore r3\n\
+ ld r4, @r0+ ; restore r4\n\
+ ld r5, @r0+ ; restore r5\n\
+ ld r6, @r0+ ; restore r6\n\
+ ld r7, @r0+ ; restore r7\n\
+ ld r8, @r0+ ; restore r8\n\
+ ld r9, @r0+ ; restore r9\n\
+ ld r10, @r0+ ; restore r10\n\
+ ld r11, @r0+ ; restore r11\n\
+ ld r12, @r0+ ; restore r12\n\
+ ld r13, @r0+ ; restore r13\n\
+ ld r14, @r0+ ; restore r14\n\
+ ld r15, @r0+ ; restore r15\n\
+ ld r1, @r0+ ; restore cr0 == PSW\n\
+ mvtc r1, cr0\n\
+ ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\
+ mvtc r1, cr1\n\
+ ld r1, @r0+ ; restore cr2 == SPI\n\
+ mvtc r1, cr2\n\
+ ld r1, @r0+ ; restore cr3 == SPU\n\
+ mvtc r1, cr3\n\
+ addi r0, #4 ; skip BPC\n\
+ ld r1, @r0+ ; restore cr6 (BPC) == PC\n\
+ mvtc r1, cr6\n\
+ ld r1, @r0+ ; restore ACCL\n\
+ mvtaclo r1\n\
+ ld r1, @r0+ ; restore ACCH\n\
+ mvtachi r1\n\
+ seth r0, #shigh(registers)\n\
+ add3 r0, r0, #low(registers)\n\
+ ld r1, @(4,r0) ; restore r1\n\
+ ld r0, @r0 ; restore r0\n\
+ rte");
+
+/* General trap handler, called after the registers have been stashed.
+ NUM is the trap/exception number. */
+
+static void
+process_exception (int num)
+{
+ cleanup_stash ();
+ asm volatile ("\n\
+ seth r1, #shigh(stackPtr)\n\
+ add3 r1, r1, #low(stackPtr)\n\
+ ld r15, @r1 ; setup local stack (protect user stack)\n\
+ mv r0, %0\n\
+ bl handle_exception\n\
+ bl restore_and_return"::"r" (num):"r0", "r1");
+}
+
+void _catchException0 ();
+
+asm ("\n\
+_catchException0:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #0\n\
+ bl process_exception");
+
+void _catchException1 ();
+
+asm ("\n\
+_catchException1:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ bl cleanup_stash\n\
+ seth r1, #shigh(stackPtr)\n\
+ add3 r1, r1, #low(stackPtr)\n\
+ ld r15, @r1 ; setup local stack (protect user stack)\n\
+ seth r1, #shigh(registers + 21*4) ; PC\n\
+ add3 r1, r1, #low(registers + 21*4)\n\
+ ld r0, @r1\n\
+ addi r0, #-4 ; back up PC for breakpoint trap.\n\
+ st r0, @r1 ; FIXME: what about bp in right slot?\n\
+ ldi r0, #1\n\
+ bl handle_exception\n\
+ bl restore_and_return");
+
+void _catchException2 ();
+
+asm ("\n\
+_catchException2:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #2\n\
+ bl process_exception");
+
+void _catchException3 ();
+
+asm ("\n\
+_catchException3:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #3\n\
+ bl process_exception");
+
+void _catchException4 ();
+
+asm ("\n\
+_catchException4:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #4\n\
+ bl process_exception");
+
+void _catchException5 ();
+
+asm ("\n\
+_catchException5:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #5\n\
+ bl process_exception");
+
+void _catchException6 ();
+
+asm ("\n\
+_catchException6:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #6\n\
+ bl process_exception");
+
+void _catchException7 ();
+
+asm ("\n\
+_catchException7:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #7\n\
+ bl process_exception");
+
+void _catchException8 ();
+
+asm ("\n\
+_catchException8:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #8\n\
+ bl process_exception");
+
+void _catchException9 ();
+
+asm ("\n\
+_catchException9:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #9\n\
+ bl process_exception");
+
+void _catchException10 ();
+
+asm ("\n\
+_catchException10:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #10\n\
+ bl process_exception");
+
+void _catchException11 ();
+
+asm ("\n\
+_catchException11:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #11\n\
+ bl process_exception");
+
+void _catchException12 ();
+
+asm ("\n\
+_catchException12:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #12\n\
+ bl process_exception");
+
+void _catchException13 ();
+
+asm ("\n\
+_catchException13:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #13\n\
+ bl process_exception");
+
+void _catchException14 ();
+
+asm ("\n\
+_catchException14:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #14\n\
+ bl process_exception");
+
+void _catchException15 ();
+
+asm ("\n\
+_catchException15:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #15\n\
+ bl process_exception");
+
+void _catchException16 ();
+
+asm ("\n\
+_catchException16:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #16\n\
+ bl process_exception");
+
+void _catchException17 ();
+
+asm ("\n\
+_catchException17:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #17\n\
+ bl process_exception");
+
+
+/* this function is used to set up exception handlers for tracing and
+ breakpoints */
+void
+set_debug_traps (void)
+{
+ /* extern void remcomHandler(); */
+ int i;
+
+ for (i = 0; i < 18; i++) /* keep a copy of old vectors */
+ if (save_vectors[i] == 0) /* only copy them the first time */
+ save_vectors[i] = getExceptionHandler (i);
+
+ stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+ exceptionHandler (0, _catchException0);
+ exceptionHandler (1, _catchException1);
+ exceptionHandler (2, _catchException2);
+ exceptionHandler (3, _catchException3);
+ exceptionHandler (4, _catchException4);
+ exceptionHandler (5, _catchException5);
+ exceptionHandler (6, _catchException6);
+ exceptionHandler (7, _catchException7);
+ exceptionHandler (8, _catchException8);
+ exceptionHandler (9, _catchException9);
+ exceptionHandler (10, _catchException10);
+ exceptionHandler (11, _catchException11);
+ exceptionHandler (12, _catchException12);
+ exceptionHandler (13, _catchException13);
+ exceptionHandler (14, _catchException14);
+ exceptionHandler (15, _catchException15);
+ exceptionHandler (16, _catchException16);
+ /* exceptionHandler (17, _catchException17); */
+
+ initialized = 1;
+}
+
+/* This function will generate a breakpoint exception. It is used at the
+ beginning of a program to sync up with a debugger and can be used
+ otherwise as a quick means to stop program execution and "break" into
+ the debugger. */
+
+#define BREAKPOINT() asm volatile (" trap #2");
+
+void
+breakpoint (void)
+{
+ if (initialized)
+ BREAKPOINT ();
+}
+
+/* STDOUT section:
+ Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
+ Functions: gdb_putchar(char ch)
+ gdb_puts(char *str)
+ gdb_write(char *str, int len)
+ gdb_error(char *format, char *parm)
+ */
+
+/* Function: gdb_putchar(int)
+ Make gdb write a char to stdout.
+ Returns: the char */
+
+static int
+gdb_putchar (int ch)
+{
+ char buf[4];
+
+ buf[0] = 'O';
+ buf[1] = hexchars[ch >> 4];
+ buf[2] = hexchars[ch & 0x0F];
+ buf[3] = 0;
+ putpacket (buf);
+ return ch;
+}
+
+/* Function: gdb_write(char *, int)
+ Make gdb write n bytes to stdout (not assumed to be null-terminated).
+ Returns: number of bytes written */
+
+static int
+gdb_write (char *data, int len)
+{
+ char *buf, *cpy;
+ int i;
+
+ buf = remcomOutBuffer;
+ buf[0] = 'O';
+ i = 0;
+ while (i < len)
+ {
+ for (cpy = buf + 1;
+ i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++)
+ {
+ *cpy++ = hexchars[data[i] >> 4];
+ *cpy++ = hexchars[data[i] & 0x0F];
+ }
+ *cpy = 0;
+ putpacket (buf);
+ }
+ return len;
+}
+
+/* Function: gdb_puts(char *)
+ Make gdb write a null-terminated string to stdout.
+ Returns: the length of the string */
+
+static int
+gdb_puts (char *str)
+{
+ return gdb_write (str, strlen (str));
+}
+
+/* Function: gdb_error(char *, char *)
+ Send an error message to gdb's stdout.
+ First string may have 1 (one) optional "%s" in it, which
+ will cause the optional second string to be inserted. */
+
+static void
+gdb_error (char *format, char *parm)
+{
+ char buf[400], *cpy;
+ int len;
+
+ if (remote_debug)
+ {
+ if (format && *format)
+ len = strlen (format);
+ else
+ return; /* empty input */
+
+ if (parm && *parm)
+ len += strlen (parm);
+
+ for (cpy = buf; *format;)
+ {
+ if (format[0] == '%' && format[1] == 's') /* include second string */
+ {
+ format += 2; /* advance two chars instead of just one */
+ while (parm && *parm)
+ *cpy++ = *parm++;
+ }
+ else
+ *cpy++ = *format++;
+ }
+ *cpy = '\0';
+ gdb_puts (buf);
+ }
+}
+
+static unsigned char *
+strcpy (unsigned char *dest, const unsigned char *src)
+{
+ unsigned char *ret = dest;
+
+ if (dest && src)
+ {
+ while (*src)
+ *dest++ = *src++;
+ *dest = 0;
+ }
+ return ret;
+}
+
+static int
+strlen (const unsigned char *src)
+{
+ int ret;
+
+ for (ret = 0; *src; src++)
+ ret++;
+
+ return ret;
+}
+
+#if 0
+void
+exit (code)
+ int code;
+{
+ _exit (code);
+}
+
+int
+atexit (void *p)
+{
+ return 0;
+}
+
+void
+abort (void)
+{
+ _exit (1);
+}
+#endif