diff options
author | Andrew Cagney <cagney@redhat.com> | 2003-08-01 21:56:58 +0000 |
---|---|---|
committer | Andrew Cagney <cagney@redhat.com> | 2003-08-01 21:56:58 +0000 |
commit | 1f79b0508b529da6a96e9548fc922e206bbfb8ff (patch) | |
tree | 166378860baafcc017d3bbe7d6a0d26554224a06 /gdb/m32r-stub.c | |
parent | ecefd967cbb6205099cb281a33280dea4f13044e (diff) | |
download | binutils-gdb-1f79b0508b529da6a96e9548fc922e206bbfb8ff.tar.gz |
2003-08-01 Andrew Cagney <cagney@redhat.com>
Import mainline multi-arch changes from Kei Sakamoto.
* gdb/NEWS: Mention that m32r is multi-arch.
* configure.tgt: Recognize m32r-*-*.
* config/m32r/m32r.mt: New file.
* m32r-rom.c, m32r-stub.c, m32r-tdep.c: Import
Diffstat (limited to 'gdb/m32r-stub.c')
-rw-r--r-- | gdb/m32r-stub.c | 3497 |
1 files changed, 1779 insertions, 1718 deletions
diff --git a/gdb/m32r-stub.c b/gdb/m32r-stub.c index d9be3eb84e6..c7033ea17a3 100644 --- a/gdb/m32r-stub.c +++ b/gdb/m32r-stub.c @@ -1,1718 +1,1779 @@ -// OBSOLETE /**************************************************************************** -// OBSOLETE -// OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED -// OBSOLETE -// OBSOLETE HP offers the following for use in the public domain. HP makes no -// OBSOLETE warranty with regard to the software or it's performance and the -// OBSOLETE user accepts the software "AS IS" with all faults. -// OBSOLETE -// OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD -// OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES -// OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. -// OBSOLETE -// OBSOLETE ****************************************************************************/ -// OBSOLETE -// OBSOLETE /**************************************************************************** -// OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ -// OBSOLETE * -// OBSOLETE * Module name: remcom.c $ -// OBSOLETE * Revision: 1.34 $ -// OBSOLETE * Date: 91/03/09 12:29:49 $ -// OBSOLETE * Contributor: Lake Stevens Instrument Division$ -// OBSOLETE * -// OBSOLETE * Description: low level support for gdb debugger. $ -// OBSOLETE * -// OBSOLETE * Considerations: only works on target hardware $ -// OBSOLETE * -// OBSOLETE * Written by: Glenn Engel $ -// OBSOLETE * ModuleState: Experimental $ -// OBSOLETE * -// OBSOLETE * NOTES: See Below $ -// OBSOLETE * -// OBSOLETE * Modified for M32R by Michael Snyder, Cygnus Support. -// OBSOLETE * -// OBSOLETE * To enable debugger support, two things need to happen. One, a -// OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints -// OBSOLETE * or error conditions to be properly intercepted and reported to gdb. -// OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This -// OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint() -// OBSOLETE * simulates a breakpoint by executing a trap #1. -// OBSOLETE * -// OBSOLETE * The external function exceptionHandler() is -// OBSOLETE * used to attach a specific handler to a specific M32R vector number. -// OBSOLETE * It should use the same privilege level it runs at. It should -// OBSOLETE * install it as an interrupt gate so that interrupts are masked -// OBSOLETE * while the handler runs. -// OBSOLETE * -// OBSOLETE * Because gdb will sometimes write to the stack area to execute function -// OBSOLETE * calls, this program cannot rely on using the supervisor stack so it -// OBSOLETE * uses it's own stack area reserved in the int array remcomStack. -// OBSOLETE * -// OBSOLETE ************* -// OBSOLETE * -// OBSOLETE * The following gdb commands are supported: -// OBSOLETE * -// OBSOLETE * command function Return value -// OBSOLETE * -// OBSOLETE * g return the value of the CPU registers hex data or ENN -// OBSOLETE * G set the value of the CPU registers OK or ENN -// OBSOLETE * -// OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN -// OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN -// OBSOLETE * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN -// OBSOLETE * AA..AA -// OBSOLETE * -// OBSOLETE * c Resume at current address SNN ( signal NN) -// OBSOLETE * cAA..AA Continue at address AA..AA SNN -// OBSOLETE * -// OBSOLETE * s Step one instruction SNN -// OBSOLETE * sAA..AA Step one instruction from AA..AA SNN -// OBSOLETE * -// OBSOLETE * k kill -// OBSOLETE * -// OBSOLETE * ? What was the last sigval ? SNN (signal NN) -// OBSOLETE * -// OBSOLETE * All commands and responses are sent with a packet which includes a -// OBSOLETE * checksum. A packet consists of -// OBSOLETE * -// OBSOLETE * $<packet info>#<checksum>. -// OBSOLETE * -// OBSOLETE * where -// OBSOLETE * <packet info> :: <characters representing the command or response> -// OBSOLETE * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> -// OBSOLETE * -// OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'. -// OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer. -// OBSOLETE * -// OBSOLETE * Example: -// OBSOLETE * -// OBSOLETE * Host: Reply: -// OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42 -// OBSOLETE * -// OBSOLETE ****************************************************************************/ -// OBSOLETE -// OBSOLETE -// OBSOLETE /************************************************************************ -// OBSOLETE * -// OBSOLETE * external low-level support routines -// OBSOLETE */ -// OBSOLETE extern void putDebugChar(); /* write a single character */ -// OBSOLETE extern int getDebugChar(); /* read and return a single char */ -// OBSOLETE extern void exceptionHandler(); /* assign an exception handler */ -// OBSOLETE -// OBSOLETE /***************************************************************************** -// OBSOLETE * BUFMAX defines the maximum number of characters in inbound/outbound buffers -// OBSOLETE * at least NUMREGBYTES*2 are needed for register packets -// OBSOLETE */ -// OBSOLETE #define BUFMAX 400 -// OBSOLETE -// OBSOLETE static char initialized; /* boolean flag. != 0 means we've been initialized */ -// OBSOLETE -// OBSOLETE int remote_debug; -// OBSOLETE /* debug > 0 prints ill-formed commands in valid packets & checksum errors */ -// OBSOLETE -// OBSOLETE static const unsigned char hexchars[]="0123456789abcdef"; -// OBSOLETE -// OBSOLETE #define NUMREGS 24 -// OBSOLETE -// OBSOLETE /* Number of bytes of registers. */ -// OBSOLETE #define NUMREGBYTES (NUMREGS * 4) -// OBSOLETE enum regnames { R0, R1, R2, R3, R4, R5, R6, R7, -// OBSOLETE R8, R9, R10, R11, R12, R13, R14, R15, -// OBSOLETE PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH }; -// OBSOLETE -// OBSOLETE enum SYS_calls { -// OBSOLETE SYS_null, -// OBSOLETE SYS_exit, -// OBSOLETE SYS_open, -// OBSOLETE SYS_close, -// OBSOLETE SYS_read, -// OBSOLETE SYS_write, -// OBSOLETE SYS_lseek, -// OBSOLETE SYS_unlink, -// OBSOLETE SYS_getpid, -// OBSOLETE SYS_kill, -// OBSOLETE SYS_fstat, -// OBSOLETE SYS_sbrk, -// OBSOLETE SYS_fork, -// OBSOLETE SYS_execve, -// OBSOLETE SYS_wait4, -// OBSOLETE SYS_link, -// OBSOLETE SYS_chdir, -// OBSOLETE SYS_stat, -// OBSOLETE SYS_utime, -// OBSOLETE SYS_chown, -// OBSOLETE SYS_chmod, -// OBSOLETE SYS_time, -// OBSOLETE SYS_pipe }; -// OBSOLETE -// OBSOLETE static int registers[NUMREGS]; -// OBSOLETE -// OBSOLETE #define STACKSIZE 8096 -// OBSOLETE static unsigned char remcomInBuffer[BUFMAX]; -// OBSOLETE static unsigned char remcomOutBuffer[BUFMAX]; -// OBSOLETE static int remcomStack[STACKSIZE/sizeof(int)]; -// OBSOLETE static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1]; -// OBSOLETE -// OBSOLETE static unsigned int save_vectors[18]; /* previous exception vectors */ -// OBSOLETE -// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ -// OBSOLETE static volatile int mem_err = 0; -// OBSOLETE -// OBSOLETE /* Store the vector number here (since GDB only gets the signal -// OBSOLETE number through the usual means, and that's not very specific). */ -// OBSOLETE int gdb_m32r_vector = -1; -// OBSOLETE -// OBSOLETE #if 0 -// OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */ -// OBSOLETE #endif -// OBSOLETE -// OBSOLETE /* Global entry points: -// OBSOLETE */ -// OBSOLETE -// OBSOLETE extern void handle_exception(int); -// OBSOLETE extern void set_debug_traps(void); -// OBSOLETE extern void breakpoint(void); -// OBSOLETE -// OBSOLETE /* Local functions: -// OBSOLETE */ -// OBSOLETE -// OBSOLETE static int computeSignal(int); -// OBSOLETE static void putpacket(unsigned char *); -// OBSOLETE static unsigned char *getpacket(void); -// OBSOLETE -// OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int); -// OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int); -// OBSOLETE static int hexToInt(unsigned char **, int *); -// OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int); -// OBSOLETE static void stash_registers(void); -// OBSOLETE static void restore_registers(void); -// OBSOLETE static int prepare_to_step(int); -// OBSOLETE static int finish_from_step(void); -// OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long); -// OBSOLETE -// OBSOLETE static void gdb_error(char *, char *); -// OBSOLETE static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int); -// OBSOLETE -// OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *); -// OBSOLETE static int strlen (const unsigned char *); -// OBSOLETE -// OBSOLETE /* -// OBSOLETE * This function does all command procesing for interfacing to gdb. -// OBSOLETE */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE handle_exception(int exceptionVector) -// OBSOLETE { -// OBSOLETE int sigval, stepping; -// OBSOLETE int addr, length, i; -// OBSOLETE unsigned char * ptr; -// OBSOLETE unsigned char buf[16]; -// OBSOLETE int binary; -// OBSOLETE -// OBSOLETE /* Do not call finish_from_step() if this is not a trap #1 -// OBSOLETE * (breakpoint trap). Without this check, the finish_from_step() -// OBSOLETE * might interpret a system call trap as a single step trap. This -// OBSOLETE * can happen if: the stub receives 's' and exits, but an interrupt -// OBSOLETE * was pending; the interrupt is now handled and causes the stub to -// OBSOLETE * be reentered because some function makes a system call. -// OBSOLETE */ -// OBSOLETE if (exceptionVector == 1) /* Trap exception? */ -// OBSOLETE if (!finish_from_step()) /* Go see if stepping state needs update. */ -// OBSOLETE return; /* "false step": let the target continue */ -// OBSOLETE -// OBSOLETE gdb_m32r_vector = exceptionVector; -// OBSOLETE -// OBSOLETE if (remote_debug) -// OBSOLETE { -// OBSOLETE mem2hex((unsigned char *) &exceptionVector, buf, 4, 0); -// OBSOLETE gdb_error("Handle exception %s, ", buf); -// OBSOLETE mem2hex((unsigned char *) ®isters[PC], buf, 4, 0); -// OBSOLETE gdb_error("PC == 0x%s\n", buf); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* reply to host that an exception has occurred */ -// OBSOLETE sigval = computeSignal( exceptionVector ); -// OBSOLETE -// OBSOLETE ptr = remcomOutBuffer; -// OBSOLETE -// OBSOLETE *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */ -// OBSOLETE *ptr++ = hexchars[sigval >> 4]; -// OBSOLETE *ptr++ = hexchars[sigval & 0xf]; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[PC >> 4]; -// OBSOLETE *ptr++ = hexchars[PC & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[PC], ptr, 4, 0); /* PC */ -// OBSOLETE *ptr++ = ';'; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[R13 >> 4]; -// OBSOLETE *ptr++ = hexchars[R13 & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[R13], ptr, 4, 0); /* FP */ -// OBSOLETE *ptr++ = ';'; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[R15 >> 4]; -// OBSOLETE *ptr++ = hexchars[R15 & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[R15], ptr, 4, 0); /* SP */ -// OBSOLETE *ptr++ = ';'; -// OBSOLETE *ptr++ = 0; -// OBSOLETE -// OBSOLETE if (exceptionVector == 0) /* simulated SYS call stuff */ -// OBSOLETE { -// OBSOLETE mem2hex((unsigned char *) ®isters[PC], buf, 4, 0); -// OBSOLETE switch (registers[R0]) { -// OBSOLETE case SYS_exit: -// OBSOLETE gdb_error("Target program has exited at %s\n", buf); -// OBSOLETE ptr = remcomOutBuffer; -// OBSOLETE *ptr++ = 'W'; -// OBSOLETE sigval = registers[R1] & 0xff; -// OBSOLETE *ptr++ = hexchars[sigval >> 4]; -// OBSOLETE *ptr++ = hexchars[sigval & 0xf]; -// OBSOLETE *ptr++ = 0; -// OBSOLETE break; -// OBSOLETE case SYS_open: -// OBSOLETE gdb_error("Target attempts SYS_open call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_close: -// OBSOLETE gdb_error("Target attempts SYS_close call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_read: -// OBSOLETE gdb_error("Target attempts SYS_read call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_write: -// OBSOLETE if (registers[R1] == 1 || /* write to stdout */ -// OBSOLETE registers[R1] == 2) /* write to stderr */ -// OBSOLETE { /* (we can do that) */ -// OBSOLETE registers[R0] = gdb_write((void *) registers[R2], registers[R3]); -// OBSOLETE return; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE gdb_error("Target attempts SYS_write call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_lseek: -// OBSOLETE gdb_error("Target attempts SYS_lseek call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_unlink: -// OBSOLETE gdb_error("Target attempts SYS_unlink call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_getpid: -// OBSOLETE gdb_error("Target attempts SYS_getpid call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_kill: -// OBSOLETE gdb_error("Target attempts SYS_kill call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE case SYS_fstat: -// OBSOLETE gdb_error("Target attempts SYS_fstat call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE default: -// OBSOLETE gdb_error("Target attempts unknown SYS call at %s\n", buf); -// OBSOLETE break; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE putpacket(remcomOutBuffer); -// OBSOLETE -// OBSOLETE stepping = 0; -// OBSOLETE -// OBSOLETE while (1==1) { -// OBSOLETE remcomOutBuffer[0] = 0; -// OBSOLETE ptr = getpacket(); -// OBSOLETE binary = 0; -// OBSOLETE switch (*ptr++) { -// OBSOLETE default: /* Unknown code. Return an empty reply message. */ -// OBSOLETE break; -// OBSOLETE case 'R': -// OBSOLETE if (hexToInt (&ptr, &addr)) -// OBSOLETE registers[PC] = addr; -// OBSOLETE strcpy(remcomOutBuffer, "OK"); -// OBSOLETE break; -// OBSOLETE case '!': -// OBSOLETE strcpy(remcomOutBuffer, "OK"); -// OBSOLETE break; -// OBSOLETE case 'X': /* XAA..AA,LLLL:<binary data>#cs */ -// OBSOLETE binary = 1; -// OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ -// OBSOLETE /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */ -// OBSOLETE { -// OBSOLETE if (hexToInt(&ptr,&addr)) -// OBSOLETE if (*(ptr++) == ',') -// OBSOLETE if (hexToInt(&ptr,&length)) -// OBSOLETE if (*(ptr++) == ':') -// OBSOLETE { -// OBSOLETE mem_err = 0; -// OBSOLETE if (binary) -// OBSOLETE bin2mem (ptr, (unsigned char *) addr, length, 1); -// OBSOLETE else -// OBSOLETE hex2mem(ptr, (unsigned char*) addr, length, 1); -// OBSOLETE if (mem_err) { -// OBSOLETE strcpy (remcomOutBuffer, "E03"); -// OBSOLETE gdb_error ("memory fault", ""); -// OBSOLETE } else { -// OBSOLETE strcpy(remcomOutBuffer,"OK"); -// OBSOLETE } -// OBSOLETE ptr = 0; -// OBSOLETE } -// OBSOLETE if (ptr) -// OBSOLETE { -// OBSOLETE strcpy(remcomOutBuffer,"E02"); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE break; -// OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ -// OBSOLETE /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */ -// OBSOLETE if (hexToInt(&ptr,&addr)) -// OBSOLETE if (*(ptr++) == ',') -// OBSOLETE if (hexToInt(&ptr,&length)) -// OBSOLETE { -// OBSOLETE ptr = 0; -// OBSOLETE mem_err = 0; -// OBSOLETE mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1); -// OBSOLETE if (mem_err) { -// OBSOLETE strcpy (remcomOutBuffer, "E03"); -// OBSOLETE gdb_error ("memory fault", ""); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE if (ptr) -// OBSOLETE { -// OBSOLETE strcpy(remcomOutBuffer,"E01"); -// OBSOLETE } -// OBSOLETE break; -// OBSOLETE case '?': -// OBSOLETE remcomOutBuffer[0] = 'S'; -// OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4]; -// OBSOLETE remcomOutBuffer[2] = hexchars[sigval % 16]; -// OBSOLETE remcomOutBuffer[3] = 0; -// OBSOLETE break; -// OBSOLETE case 'd': -// OBSOLETE remote_debug = !(remote_debug); /* toggle debug flag */ -// OBSOLETE break; -// OBSOLETE case 'g': /* return the value of the CPU registers */ -// OBSOLETE mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0); -// OBSOLETE break; -// OBSOLETE case 'P': /* set the value of a single CPU register - return OK */ -// OBSOLETE { -// OBSOLETE int regno; -// OBSOLETE -// OBSOLETE if (hexToInt (&ptr, ®no) && *ptr++ == '=') -// OBSOLETE if (regno >= 0 && regno < NUMREGS) -// OBSOLETE { -// OBSOLETE int stackmode; -// OBSOLETE -// OBSOLETE hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0); -// OBSOLETE /* -// OBSOLETE * Since we just changed a single CPU register, let's -// OBSOLETE * make sure to keep the several stack pointers consistant. -// OBSOLETE */ -// OBSOLETE stackmode = registers[PSW] & 0x80; -// OBSOLETE if (regno == R15) /* stack pointer changed */ -// OBSOLETE { /* need to change SPI or SPU */ -// OBSOLETE if (stackmode == 0) -// OBSOLETE registers[SPI] = registers[R15]; -// OBSOLETE else -// OBSOLETE registers[SPU] = registers[R15]; -// OBSOLETE } -// OBSOLETE else if (regno == SPU) /* "user" stack pointer changed */ -// OBSOLETE { -// OBSOLETE if (stackmode != 0) /* stack in user mode: copy SP */ -// OBSOLETE registers[R15] = registers[SPU]; -// OBSOLETE } -// OBSOLETE else if (regno == SPI) /* "interrupt" stack pointer changed */ -// OBSOLETE { -// OBSOLETE if (stackmode == 0) /* stack in interrupt mode: copy SP */ -// OBSOLETE registers[R15] = registers[SPI]; -// OBSOLETE } -// OBSOLETE else if (regno == PSW) /* stack mode may have changed! */ -// OBSOLETE { /* force SP to either SPU or SPI */ -// OBSOLETE if (stackmode == 0) /* stack in user mode */ -// OBSOLETE registers[R15] = registers[SPI]; -// OBSOLETE else /* stack in interrupt mode */ -// OBSOLETE registers[R15] = registers[SPU]; -// OBSOLETE } -// OBSOLETE strcpy (remcomOutBuffer, "OK"); -// OBSOLETE break; -// OBSOLETE } -// OBSOLETE strcpy (remcomOutBuffer, "E01"); -// OBSOLETE break; -// OBSOLETE } -// OBSOLETE case 'G': /* set the value of the CPU registers - return OK */ -// OBSOLETE hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0); -// OBSOLETE strcpy(remcomOutBuffer,"OK"); -// OBSOLETE break; -// OBSOLETE case 's': /* sAA..AA Step one instruction from AA..AA(optional) */ -// OBSOLETE stepping = 1; -// OBSOLETE case 'c': /* cAA..AA Continue from address AA..AA(optional) */ -// OBSOLETE /* try to read optional parameter, pc unchanged if no parm */ -// OBSOLETE if (hexToInt(&ptr,&addr)) -// OBSOLETE registers[ PC ] = addr; -// OBSOLETE -// OBSOLETE if (stepping) /* single-stepping */ -// OBSOLETE { -// OBSOLETE if (!prepare_to_step(0)) /* set up for single-step */ -// OBSOLETE { -// OBSOLETE /* prepare_to_step has already emulated the target insn: -// OBSOLETE Send SIGTRAP to gdb, don't resume the target at all. */ -// OBSOLETE ptr = remcomOutBuffer; -// OBSOLETE *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */ -// OBSOLETE *ptr++ = '0'; -// OBSOLETE *ptr++ = '5'; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[PC >> 4]; /* send PC */ -// OBSOLETE *ptr++ = hexchars[PC & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[PC], ptr, 4, 0); -// OBSOLETE *ptr++ = ';'; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[R13 >> 4]; /* send FP */ -// OBSOLETE *ptr++ = hexchars[R13 & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[R13], ptr, 4, 0); -// OBSOLETE *ptr++ = ';'; -// OBSOLETE -// OBSOLETE *ptr++ = hexchars[R15 >> 4]; /* send SP */ -// OBSOLETE *ptr++ = hexchars[R15 & 0xf]; -// OBSOLETE *ptr++ = ':'; -// OBSOLETE ptr = mem2hex((unsigned char *)®isters[R15], ptr, 4, 0); -// OBSOLETE *ptr++ = ';'; -// OBSOLETE *ptr++ = 0; -// OBSOLETE -// OBSOLETE break; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE else /* continuing, not single-stepping */ -// OBSOLETE { -// OBSOLETE /* OK, about to do a "continue". First check to see if the -// OBSOLETE target pc is on an odd boundary (second instruction in the -// OBSOLETE word). If so, we must do a single-step first, because -// OBSOLETE ya can't jump or return back to an odd boundary! */ -// OBSOLETE if ((registers[PC] & 2) != 0) -// OBSOLETE prepare_to_step(1); -// OBSOLETE } -// OBSOLETE -// OBSOLETE return; -// OBSOLETE -// OBSOLETE case 'D': /* Detach */ -// OBSOLETE #if 0 -// OBSOLETE /* I am interpreting this to mean, release the board from control -// OBSOLETE by the remote stub. To do this, I am restoring the original -// OBSOLETE (or at least previous) exception vectors. -// OBSOLETE */ -// OBSOLETE for (i = 0; i < 18; i++) -// OBSOLETE exceptionHandler (i, save_vectors[i]); -// OBSOLETE putpacket ("OK"); -// OBSOLETE return; /* continue the inferior */ -// OBSOLETE #else -// OBSOLETE strcpy(remcomOutBuffer,"OK"); -// OBSOLETE break; -// OBSOLETE #endif -// OBSOLETE case 'q': -// OBSOLETE if (*ptr++ == 'C' && -// OBSOLETE *ptr++ == 'R' && -// OBSOLETE *ptr++ == 'C' && -// OBSOLETE *ptr++ == ':') -// OBSOLETE { -// OBSOLETE unsigned long start, len, our_crc; -// OBSOLETE -// OBSOLETE if (hexToInt (&ptr, (int *) &start) && -// OBSOLETE *ptr++ == ',' && -// OBSOLETE hexToInt (&ptr, (int *) &len)) -// OBSOLETE { -// OBSOLETE remcomOutBuffer[0] = 'C'; -// OBSOLETE our_crc = crc32 ((unsigned char *) start, len, 0xffffffff); -// OBSOLETE mem2hex ((char *) &our_crc, -// OBSOLETE &remcomOutBuffer[1], -// OBSOLETE sizeof (long), -// OBSOLETE 0); -// OBSOLETE } /* else do nothing */ -// OBSOLETE } /* else do nothing */ -// OBSOLETE break; -// OBSOLETE -// OBSOLETE case 'k': /* kill the program */ -// OBSOLETE continue; -// OBSOLETE } /* switch */ -// OBSOLETE -// OBSOLETE /* reply to the request */ -// OBSOLETE putpacket(remcomOutBuffer); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* qCRC support */ -// OBSOLETE -// OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */ -// OBSOLETE static unsigned long crc32_table[256] = {0, 0}; -// OBSOLETE -// OBSOLETE static unsigned long -// OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc) -// OBSOLETE { -// OBSOLETE if (! crc32_table[1]) -// OBSOLETE { -// OBSOLETE /* Initialize the CRC table and the decoding table. */ -// OBSOLETE int i, j; -// OBSOLETE unsigned long c; -// OBSOLETE -// OBSOLETE for (i = 0; i < 256; i++) -// OBSOLETE { -// OBSOLETE for (c = i << 24, j = 8; j > 0; --j) -// OBSOLETE c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); -// OBSOLETE crc32_table[i] = c; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE while (len--) -// OBSOLETE { -// OBSOLETE crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; -// OBSOLETE buf++; -// OBSOLETE } -// OBSOLETE return crc; -// OBSOLETE } -// OBSOLETE -// OBSOLETE static int -// OBSOLETE hex (unsigned char ch) -// OBSOLETE { -// OBSOLETE if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10); -// OBSOLETE if ((ch >= '0') && (ch <= '9')) return (ch-'0'); -// OBSOLETE if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10); -// OBSOLETE return (-1); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* scan for the sequence $<data>#<checksum> */ -// OBSOLETE -// OBSOLETE unsigned char * -// OBSOLETE getpacket (void) -// OBSOLETE { -// OBSOLETE unsigned char *buffer = &remcomInBuffer[0]; -// OBSOLETE unsigned char checksum; -// OBSOLETE unsigned char xmitcsum; -// OBSOLETE int count; -// OBSOLETE char ch; -// OBSOLETE -// OBSOLETE while (1) -// OBSOLETE { -// OBSOLETE /* wait around for the start character, ignore all other characters */ -// OBSOLETE while ((ch = getDebugChar ()) != '$') -// OBSOLETE ; -// OBSOLETE -// OBSOLETE retry: -// OBSOLETE checksum = 0; -// OBSOLETE xmitcsum = -1; -// OBSOLETE count = 0; -// OBSOLETE -// OBSOLETE /* now, read until a # or end of buffer is found */ -// OBSOLETE while (count < BUFMAX) -// OBSOLETE { -// OBSOLETE ch = getDebugChar (); -// OBSOLETE if (ch == '$') -// OBSOLETE goto retry; -// OBSOLETE if (ch == '#') -// OBSOLETE break; -// OBSOLETE checksum = checksum + ch; -// OBSOLETE buffer[count] = ch; -// OBSOLETE count = count + 1; -// OBSOLETE } -// OBSOLETE buffer[count] = 0; -// OBSOLETE -// OBSOLETE if (ch == '#') -// OBSOLETE { -// OBSOLETE ch = getDebugChar (); -// OBSOLETE xmitcsum = hex (ch) << 4; -// OBSOLETE ch = getDebugChar (); -// OBSOLETE xmitcsum += hex (ch); -// OBSOLETE -// OBSOLETE if (checksum != xmitcsum) -// OBSOLETE { -// OBSOLETE if (remote_debug) -// OBSOLETE { -// OBSOLETE unsigned char buf[16]; -// OBSOLETE -// OBSOLETE mem2hex((unsigned char *) &checksum, buf, 4, 0); -// OBSOLETE gdb_error("Bad checksum: my count = %s, ", buf); -// OBSOLETE mem2hex((unsigned char *) &xmitcsum, buf, 4, 0); -// OBSOLETE gdb_error("sent count = %s\n", buf); -// OBSOLETE gdb_error(" -- Bad buffer: \"%s\"\n", buffer); -// OBSOLETE } -// OBSOLETE putDebugChar ('-'); /* failed checksum */ -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE putDebugChar ('+'); /* successful transfer */ -// OBSOLETE -// OBSOLETE /* if a sequence char is present, reply the sequence ID */ -// OBSOLETE if (buffer[2] == ':') -// OBSOLETE { -// OBSOLETE putDebugChar (buffer[0]); -// OBSOLETE putDebugChar (buffer[1]); -// OBSOLETE -// OBSOLETE return &buffer[3]; -// OBSOLETE } -// OBSOLETE -// OBSOLETE return &buffer[0]; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* send the packet in buffer. */ -// OBSOLETE -// OBSOLETE static void -// OBSOLETE putpacket (unsigned char *buffer) -// OBSOLETE { -// OBSOLETE unsigned char checksum; -// OBSOLETE int count; -// OBSOLETE char ch; -// OBSOLETE -// OBSOLETE /* $<packet info>#<checksum>. */ -// OBSOLETE do { -// OBSOLETE putDebugChar('$'); -// OBSOLETE checksum = 0; -// OBSOLETE count = 0; -// OBSOLETE -// OBSOLETE while (ch=buffer[count]) { -// OBSOLETE putDebugChar(ch); -// OBSOLETE checksum += ch; -// OBSOLETE count += 1; -// OBSOLETE } -// OBSOLETE putDebugChar('#'); -// OBSOLETE putDebugChar(hexchars[checksum >> 4]); -// OBSOLETE putDebugChar(hexchars[checksum % 16]); -// OBSOLETE } while (getDebugChar() != '+'); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Address of a routine to RTE to if we get a memory fault. */ -// OBSOLETE -// OBSOLETE static void (*volatile mem_fault_routine)() = 0; -// OBSOLETE -// OBSOLETE static void -// OBSOLETE set_mem_err (void) -// OBSOLETE { -// OBSOLETE mem_err = 1; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Check the address for safe access ranges. As currently defined, -// OBSOLETE this routine will reject the "expansion bus" address range(s). -// OBSOLETE To make those ranges useable, someone must implement code to detect -// OBSOLETE whether there's anything connected to the expansion bus. */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE mem_safe (unsigned char *addr) -// OBSOLETE { -// OBSOLETE #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000) -// OBSOLETE #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000) -// OBSOLETE #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000) -// OBSOLETE #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000) -// OBSOLETE -// OBSOLETE if (addr < BAD_RANGE_ONE_START) return 1; /* safe */ -// OBSOLETE if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */ -// OBSOLETE if (addr < BAD_RANGE_TWO_START) return 1; /* safe */ -// OBSOLETE if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */ -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* These are separate functions so that they are so short and sweet -// OBSOLETE that the compiler won't save any registers (if there is a fault -// OBSOLETE to mem_fault, they won't get restored, so there better not be any -// OBSOLETE saved). */ -// OBSOLETE static int -// OBSOLETE get_char (unsigned char *addr) -// OBSOLETE { -// OBSOLETE #if 1 -// OBSOLETE if (mem_fault_routine && !mem_safe(addr)) -// OBSOLETE { -// OBSOLETE mem_fault_routine (); -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE #endif -// OBSOLETE return *addr; -// OBSOLETE } -// OBSOLETE -// OBSOLETE static void -// OBSOLETE set_char (unsigned char *addr, unsigned char val) -// OBSOLETE { -// OBSOLETE #if 1 -// OBSOLETE if (mem_fault_routine && !mem_safe (addr)) -// OBSOLETE { -// OBSOLETE mem_fault_routine (); -// OBSOLETE return; -// OBSOLETE } -// OBSOLETE #endif -// OBSOLETE *addr = val; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf. -// OBSOLETE Return a pointer to the last char put in buf (null). -// OBSOLETE If MAY_FAULT is non-zero, then we should set mem_err in response to -// OBSOLETE a fault; if zero treat a fault like any other fault in the stub. */ -// OBSOLETE -// OBSOLETE static unsigned char * -// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) -// OBSOLETE { -// OBSOLETE int i; -// OBSOLETE unsigned char ch; -// OBSOLETE -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = set_mem_err; -// OBSOLETE for (i=0;i<count;i++) { -// OBSOLETE ch = get_char (mem++); -// OBSOLETE if (may_fault && mem_err) -// OBSOLETE return (buf); -// OBSOLETE *buf++ = hexchars[ch >> 4]; -// OBSOLETE *buf++ = hexchars[ch % 16]; -// OBSOLETE } -// OBSOLETE *buf = 0; -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = 0; -// OBSOLETE return(buf); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem. -// OBSOLETE Return a pointer to the character AFTER the last byte written. */ -// OBSOLETE -// OBSOLETE static unsigned char* -// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) -// OBSOLETE { -// OBSOLETE int i; -// OBSOLETE unsigned char ch; -// OBSOLETE -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = set_mem_err; -// OBSOLETE for (i=0;i<count;i++) { -// OBSOLETE ch = hex(*buf++) << 4; -// OBSOLETE ch = ch + hex(*buf++); -// OBSOLETE set_char (mem++, ch); -// OBSOLETE if (may_fault && mem_err) -// OBSOLETE return (mem); -// OBSOLETE } -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = 0; -// OBSOLETE return(mem); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Convert the binary stream in BUF to memory. -// OBSOLETE -// OBSOLETE Gdb will escape $, #, and the escape char (0x7d). -// OBSOLETE COUNT is the total number of bytes to write into -// OBSOLETE memory. */ -// OBSOLETE static unsigned char * -// OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) -// OBSOLETE { -// OBSOLETE int i; -// OBSOLETE unsigned char ch; -// OBSOLETE -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = set_mem_err; -// OBSOLETE for (i = 0; i < count; i++) -// OBSOLETE { -// OBSOLETE /* Check for any escaped characters. Be paranoid and -// OBSOLETE only unescape chars that should be escaped. */ -// OBSOLETE if (*buf == 0x7d) -// OBSOLETE { -// OBSOLETE switch (*(buf+1)) -// OBSOLETE { -// OBSOLETE case 0x3: /* # */ -// OBSOLETE case 0x4: /* $ */ -// OBSOLETE case 0x5d: /* escape char */ -// OBSOLETE buf++; -// OBSOLETE *buf |= 0x20; -// OBSOLETE break; -// OBSOLETE default: -// OBSOLETE /* nothing */ -// OBSOLETE break; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE set_char (mem++, *buf++); -// OBSOLETE -// OBSOLETE if (may_fault && mem_err) -// OBSOLETE return mem; -// OBSOLETE } -// OBSOLETE -// OBSOLETE if (may_fault) -// OBSOLETE mem_fault_routine = 0; -// OBSOLETE return mem; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* this function takes the m32r exception vector and attempts to -// OBSOLETE translate this number into a unix compatible signal value */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE computeSignal (int exceptionVector) -// OBSOLETE { -// OBSOLETE int sigval; -// OBSOLETE switch (exceptionVector) { -// OBSOLETE case 0 : sigval = 23; break; /* I/O trap */ -// OBSOLETE case 1 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 2 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 3 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 4 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 5 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 6 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 7 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 8 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 9 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 10 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 11 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 12 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 13 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 14 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 15 : sigval = 5; break; /* breakpoint */ -// OBSOLETE case 16 : sigval = 10; break; /* BUS ERROR (alignment) */ -// OBSOLETE case 17 : sigval = 2; break; /* INTerrupt */ -// OBSOLETE default : sigval = 7; break; /* "software generated" */ -// OBSOLETE } -// OBSOLETE return (sigval); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /**********************************************/ -// OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ -// OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED */ -// OBSOLETE /**********************************************/ -// OBSOLETE static int -// OBSOLETE hexToInt (unsigned char **ptr, int *intValue) -// OBSOLETE { -// OBSOLETE int numChars = 0; -// OBSOLETE int hexValue; -// OBSOLETE -// OBSOLETE *intValue = 0; -// OBSOLETE while (**ptr) -// OBSOLETE { -// OBSOLETE hexValue = hex(**ptr); -// OBSOLETE if (hexValue >=0) -// OBSOLETE { -// OBSOLETE *intValue = (*intValue <<4) | hexValue; -// OBSOLETE numChars ++; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE break; -// OBSOLETE (*ptr)++; -// OBSOLETE } -// OBSOLETE return (numChars); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* -// OBSOLETE Table of branch instructions: -// OBSOLETE -// OBSOLETE 10B6 RTE return from trap or exception -// OBSOLETE 1FCr JMP jump -// OBSOLETE 1ECr JL jump and link -// OBSOLETE 7Fxx BRA branch -// OBSOLETE FFxxxxxx BRA branch (long) -// OBSOLETE B09rxxxx BNEZ branch not-equal-zero -// OBSOLETE Br1rxxxx BNE branch not-equal -// OBSOLETE 7Dxx BNC branch not-condition -// OBSOLETE FDxxxxxx BNC branch not-condition (long) -// OBSOLETE B0Arxxxx BLTZ branch less-than-zero -// OBSOLETE B0Crxxxx BLEZ branch less-equal-zero -// OBSOLETE 7Exx BL branch and link -// OBSOLETE FExxxxxx BL branch and link (long) -// OBSOLETE B0Drxxxx BGTZ branch greater-than-zero -// OBSOLETE B0Brxxxx BGEZ branch greater-equal-zero -// OBSOLETE B08rxxxx BEQZ branch equal-zero -// OBSOLETE Br0rxxxx BEQ branch equal -// OBSOLETE 7Cxx BC branch condition -// OBSOLETE FCxxxxxx BC branch condition (long) -// OBSOLETE */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE isShortBranch (unsigned char *instr) -// OBSOLETE { -// OBSOLETE unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */ -// OBSOLETE -// OBSOLETE if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */ -// OBSOLETE return 1; /* return from trap or exception */ -// OBSOLETE -// OBSOLETE if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */ -// OBSOLETE if ((instr[1] & 0xF0) == 0xC0) -// OBSOLETE return 2; /* jump thru a register */ -// OBSOLETE -// OBSOLETE if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */ -// OBSOLETE instr0 == 0x7E || instr0 == 0x7F) -// OBSOLETE return 3; /* eight bit PC offset */ -// OBSOLETE -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE -// OBSOLETE static int -// OBSOLETE isLongBranch (unsigned char *instr) -// OBSOLETE { -// OBSOLETE if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */ -// OBSOLETE instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */ -// OBSOLETE return 4; -// OBSOLETE if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */ -// OBSOLETE { -// OBSOLETE if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */ -// OBSOLETE (instr[1] & 0xF0) == 0x10) -// OBSOLETE return 5; -// OBSOLETE if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */ -// OBSOLETE if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || -// OBSOLETE (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 || -// OBSOLETE (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0) -// OBSOLETE return 6; -// OBSOLETE } -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, -// OBSOLETE then it's a 2-byte instruction, else it's a 4-byte instruction. */ -// OBSOLETE -// OBSOLETE #define INSTRUCTION_SIZE(addr) \ -// OBSOLETE ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4) -// OBSOLETE -// OBSOLETE static int -// OBSOLETE isBranch (unsigned char *instr) -// OBSOLETE { -// OBSOLETE if (INSTRUCTION_SIZE(instr) == 2) -// OBSOLETE return isShortBranch(instr); -// OBSOLETE else -// OBSOLETE return isLongBranch(instr); -// OBSOLETE } -// OBSOLETE -// OBSOLETE static int -// OBSOLETE willBranch (unsigned char *instr, int branchCode) -// OBSOLETE { -// OBSOLETE switch (branchCode) -// OBSOLETE { -// OBSOLETE case 0: return 0; /* not a branch */ -// OBSOLETE case 1: return 1; /* RTE */ -// OBSOLETE case 2: return 1; /* JL or JMP */ -// OBSOLETE case 3: /* BC, BNC, BL, BRA (short) */ -// OBSOLETE case 4: /* BC, BNC, BL, BRA (long) */ -// OBSOLETE switch (instr[0] & 0x0F) -// OBSOLETE { -// OBSOLETE case 0xC: /* Branch if Condition Register */ -// OBSOLETE return (registers[CBR] != 0); -// OBSOLETE case 0xD: /* Branch if NOT Condition Register */ -// OBSOLETE return (registers[CBR] == 0); -// OBSOLETE case 0xE: /* Branch and Link */ -// OBSOLETE case 0xF: /* Branch (unconditional) */ -// OBSOLETE return 1; -// OBSOLETE default: /* oops? */ -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE case 5: /* BNE, BEQ */ -// OBSOLETE switch (instr[1] & 0xF0) -// OBSOLETE { -// OBSOLETE case 0x00: /* Branch if r1 equal to r2 */ -// OBSOLETE return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]); -// OBSOLETE case 0x10: /* Branch if r1 NOT equal to r2 */ -// OBSOLETE return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]); -// OBSOLETE default: /* oops? */ -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */ -// OBSOLETE switch (instr[1] & 0xF0) -// OBSOLETE { -// OBSOLETE case 0x80: /* Branch if reg equal to zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] == 0); -// OBSOLETE case 0x90: /* Branch if reg NOT equal to zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] != 0); -// OBSOLETE case 0xA0: /* Branch if reg less than zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] < 0); -// OBSOLETE case 0xB0: /* Branch if reg greater or equal to zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] >= 0); -// OBSOLETE case 0xC0: /* Branch if reg less than or equal to zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] <= 0); -// OBSOLETE case 0xD0: /* Branch if reg greater than zero */ -// OBSOLETE return (registers[instr[1] & 0x0F] > 0); -// OBSOLETE default: /* oops? */ -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE default: /* oops? */ -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE static int -// OBSOLETE branchDestination (unsigned char *instr, int branchCode) -// OBSOLETE { -// OBSOLETE switch (branchCode) { -// OBSOLETE default: -// OBSOLETE case 0: /* not a branch */ -// OBSOLETE return 0; -// OBSOLETE case 1: /* RTE */ -// OBSOLETE return registers[BPC] & ~3; /* pop BPC into PC */ -// OBSOLETE case 2: /* JL or JMP */ -// OBSOLETE return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */ -// OBSOLETE case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */ -// OBSOLETE return (((int) instr) & ~3) + ((char) instr[1] << 2); -// OBSOLETE case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */ -// OBSOLETE return ((int) instr + -// OBSOLETE ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2)); -// OBSOLETE case 5: /* BNE, BEQ (16-bit relative offset) */ -// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ -// OBSOLETE return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* An explanatory note: in the last three return expressions, I have -// OBSOLETE cast the most-significant byte of the return offset to char. -// OBSOLETE What this accomplishes is sign extension. If the other -// OBSOLETE less-significant bytes were signed as well, they would get sign -// OBSOLETE extended too and, if negative, their leading bits would clobber -// OBSOLETE the bits of the more-significant bytes ahead of them. There are -// OBSOLETE other ways I could have done this, but sign extension from -// OBSOLETE odd-sized integers is always a pain. */ -// OBSOLETE } -// OBSOLETE -// OBSOLETE static void -// OBSOLETE branchSideEffects (unsigned char *instr, int branchCode) -// OBSOLETE { -// OBSOLETE switch (branchCode) -// OBSOLETE { -// OBSOLETE case 1: /* RTE */ -// OBSOLETE return; /* I <THINK> this is already handled... */ -// OBSOLETE case 2: /* JL (or JMP) */ -// OBSOLETE case 3: /* BL (or BC, BNC, BRA) */ -// OBSOLETE case 4: -// OBSOLETE if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */ -// OBSOLETE registers[R14] = (registers[PC] & ~3) + 4; -// OBSOLETE return; -// OBSOLETE default: /* any other branch has no side effects */ -// OBSOLETE return; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE static struct STEPPING_CONTEXT { -// OBSOLETE int stepping; /* true when we've started a single-step */ -// OBSOLETE unsigned long target_addr; /* the instr we're trying to execute */ -// OBSOLETE unsigned long target_size; /* the size of the target instr */ -// OBSOLETE unsigned long noop_addr; /* where we've inserted a no-op, if any */ -// OBSOLETE unsigned long trap1_addr; /* the trap following the target instr */ -// OBSOLETE unsigned long trap2_addr; /* the trap at a branch destination, if any */ -// OBSOLETE unsigned short noop_save; /* instruction overwritten by our no-op */ -// OBSOLETE unsigned short trap1_save; /* instruction overwritten by trap1 */ -// OBSOLETE unsigned short trap2_save; /* instruction overwritten by trap2 */ -// OBSOLETE unsigned short continue_p; /* true if NOT returning to gdb after step */ -// OBSOLETE } stepping; -// OBSOLETE -// OBSOLETE /* Function: prepare_to_step -// OBSOLETE Called from handle_exception to prepare the user program to single-step. -// OBSOLETE Places a trap instruction after the target instruction, with special -// OBSOLETE extra handling for branch instructions and for instructions in the -// OBSOLETE second half-word of a word. -// OBSOLETE -// OBSOLETE Returns: True if we should actually execute the instruction; -// OBSOLETE False if we are going to emulate executing the instruction, -// OBSOLETE in which case we simply report to GDB that the instruction -// OBSOLETE has already been executed. */ -// OBSOLETE -// OBSOLETE #define TRAP1 0x10f1; /* trap #1 instruction */ -// OBSOLETE #define NOOP 0x7000; /* noop instruction */ -// OBSOLETE -// OBSOLETE static unsigned short trap1 = TRAP1; -// OBSOLETE static unsigned short noop = NOOP; -// OBSOLETE -// OBSOLETE static int -// OBSOLETE prepare_to_step(continue_p) -// OBSOLETE int continue_p; /* if this isn't REALLY a single-step (see below) */ -// OBSOLETE { -// OBSOLETE unsigned long pc = registers[PC]; -// OBSOLETE int branchCode = isBranch((unsigned char *) pc); -// OBSOLETE unsigned char *p; -// OBSOLETE -// OBSOLETE /* zero out the stepping context -// OBSOLETE (paranoia -- it should already be zeroed) */ -// OBSOLETE for (p = (unsigned char *) &stepping; -// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping); -// OBSOLETE p++) -// OBSOLETE *p = 0; -// OBSOLETE -// OBSOLETE if (branchCode != 0) /* next instruction is a branch */ -// OBSOLETE { -// OBSOLETE branchSideEffects((unsigned char *) pc, branchCode); -// OBSOLETE if (willBranch((unsigned char *)pc, branchCode)) -// OBSOLETE registers[PC] = branchDestination((unsigned char *) pc, branchCode); -// OBSOLETE else -// OBSOLETE registers[PC] = pc + INSTRUCTION_SIZE(pc); -// OBSOLETE return 0; /* branch "executed" -- just notify GDB */ -// OBSOLETE } -// OBSOLETE else if (((int) pc & 2) != 0) /* "second-slot" instruction */ -// OBSOLETE { -// OBSOLETE /* insert no-op before pc */ -// OBSOLETE stepping.noop_addr = pc - 2; -// OBSOLETE stepping.noop_save = *(unsigned short *) stepping.noop_addr; -// OBSOLETE *(unsigned short *) stepping.noop_addr = noop; -// OBSOLETE /* insert trap after pc */ -// OBSOLETE stepping.trap1_addr = pc + 2; -// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; -// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1; -// OBSOLETE } -// OBSOLETE else /* "first-slot" instruction */ -// OBSOLETE { -// OBSOLETE /* insert trap after pc */ -// OBSOLETE stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc); -// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; -// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1; -// OBSOLETE } -// OBSOLETE /* "continue_p" means that we are actually doing a continue, and not -// OBSOLETE being requested to single-step by GDB. Sometimes we have to do -// OBSOLETE one single-step before continuing, because the PC is on a half-word -// OBSOLETE boundary. There's no way to simply resume at such an address. */ -// OBSOLETE stepping.continue_p = continue_p; -// OBSOLETE stepping.stepping = 1; /* starting a single-step */ -// OBSOLETE return 1; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: finish_from_step -// OBSOLETE Called from handle_exception to finish up when the user program -// OBSOLETE returns from a single-step. Replaces the instructions that had -// OBSOLETE been overwritten by traps or no-ops, -// OBSOLETE -// OBSOLETE Returns: True if we should notify GDB that the target stopped. -// OBSOLETE False if we only single-stepped because we had to before we -// OBSOLETE could continue (ie. we were trying to continue at a -// OBSOLETE half-word boundary). In that case don't notify GDB: -// OBSOLETE just "continue continuing". */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE finish_from_step (void) -// OBSOLETE { -// OBSOLETE if (stepping.stepping) /* anything to do? */ -// OBSOLETE { -// OBSOLETE int continue_p = stepping.continue_p; -// OBSOLETE unsigned char *p; -// OBSOLETE -// OBSOLETE if (stepping.noop_addr) /* replace instr "under" our no-op */ -// OBSOLETE *(unsigned short *) stepping.noop_addr = stepping.noop_save; -// OBSOLETE if (stepping.trap1_addr) /* replace instr "under" our trap */ -// OBSOLETE *(unsigned short *) stepping.trap1_addr = stepping.trap1_save; -// OBSOLETE if (stepping.trap2_addr) /* ditto our other trap, if any */ -// OBSOLETE *(unsigned short *) stepping.trap2_addr = stepping.trap2_save; -// OBSOLETE -// OBSOLETE for (p = (unsigned char *) &stepping; /* zero out the stepping context */ -// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping); -// OBSOLETE p++) -// OBSOLETE *p = 0; -// OBSOLETE -// OBSOLETE return !(continue_p); -// OBSOLETE } -// OBSOLETE else /* we didn't single-step, therefore this must be a legitimate stop */ -// OBSOLETE return 1; -// OBSOLETE } -// OBSOLETE -// OBSOLETE struct PSWreg { /* separate out the bit flags in the PSW register */ -// OBSOLETE int pad1 : 16; -// OBSOLETE int bsm : 1; -// OBSOLETE int bie : 1; -// OBSOLETE int pad2 : 5; -// OBSOLETE int bc : 1; -// OBSOLETE int sm : 1; -// OBSOLETE int ie : 1; -// OBSOLETE int pad3 : 5; -// OBSOLETE int c : 1; -// OBSOLETE } *psw; -// OBSOLETE -// OBSOLETE /* Upon entry the value for LR to save has been pushed. -// OBSOLETE We unpush that so that the value for the stack pointer saved is correct. -// OBSOLETE Upon entry, all other registers are assumed to have not been modified -// OBSOLETE since the interrupt/trap occured. */ -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE stash_registers: -// OBSOLETE push r0 -// OBSOLETE push r1 -// OBSOLETE seth r1, #shigh(registers) -// OBSOLETE add3 r1, r1, #low(registers) -// OBSOLETE pop r0 ; r1 -// OBSOLETE st r0, @(4,r1) -// OBSOLETE pop r0 ; r0 -// OBSOLETE st r0, @r1 -// OBSOLETE addi r1, #4 ; only add 4 as subsequent saves are `pre inc' -// OBSOLETE st r2, @+r1 -// OBSOLETE st r3, @+r1 -// OBSOLETE st r4, @+r1 -// OBSOLETE st r5, @+r1 -// OBSOLETE st r6, @+r1 -// OBSOLETE st r7, @+r1 -// OBSOLETE st r8, @+r1 -// OBSOLETE st r9, @+r1 -// OBSOLETE st r10, @+r1 -// OBSOLETE st r11, @+r1 -// OBSOLETE st r12, @+r1 -// OBSOLETE st r13, @+r1 ; fp -// OBSOLETE pop r0 ; lr (r14) -// OBSOLETE st r0, @+r1 -// OBSOLETE st sp, @+r1 ; sp contains right value at this point -// OBSOLETE mvfc r0, cr0 -// OBSOLETE st r0, @+r1 ; cr0 == PSW -// OBSOLETE mvfc r0, cr1 -// OBSOLETE st r0, @+r1 ; cr1 == CBR -// OBSOLETE mvfc r0, cr2 -// OBSOLETE st r0, @+r1 ; cr2 == SPI -// OBSOLETE mvfc r0, cr3 -// OBSOLETE st r0, @+r1 ; cr3 == SPU -// OBSOLETE mvfc r0, cr6 -// OBSOLETE st r0, @+r1 ; cr6 == BPC -// OBSOLETE st r0, @+r1 ; PC == BPC -// OBSOLETE mvfaclo r0 -// OBSOLETE st r0, @+r1 ; ACCL -// OBSOLETE mvfachi r0 -// OBSOLETE st r0, @+r1 ; ACCH -// OBSOLETE jmp lr"); -// OBSOLETE -// OBSOLETE /* C routine to clean up what stash_registers did. -// OBSOLETE It is called after calling stash_registers. -// OBSOLETE This is separate from stash_registers as we want to do this in C -// OBSOLETE but doing stash_registers in C isn't straightforward. */ -// OBSOLETE -// OBSOLETE static void -// OBSOLETE cleanup_stash (void) -// OBSOLETE { -// OBSOLETE psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */ -// OBSOLETE psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */ -// OBSOLETE psw->ie = psw->bie; -// OBSOLETE psw->c = psw->bc; -// OBSOLETE registers[CBR] = psw->bc; /* fix up pre-trap "C" register */ -// OBSOLETE -// OBSOLETE #if 0 /* FIXME: Was in previous version. Necessary? -// OBSOLETE (Remember that we use the "rte" insn to return from the -// OBSOLETE trap/interrupt so the values of bsm, bie, bc are important. */ -// OBSOLETE psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */ -// OBSOLETE #endif -// OBSOLETE -// OBSOLETE /* FIXME: Copied from previous version. This can probably be deleted -// OBSOLETE since methinks stash_registers has already done this. */ -// OBSOLETE registers[PC] = registers[BPC]; /* pre-trap PC */ -// OBSOLETE -// OBSOLETE /* FIXME: Copied from previous version. Necessary? */ -// OBSOLETE if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */ -// OBSOLETE registers[SPU] = registers[R15]; -// OBSOLETE else -// OBSOLETE registers[SPI] = registers[R15]; -// OBSOLETE } -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE restore_and_return: -// OBSOLETE seth r0, #shigh(registers+8) -// OBSOLETE add3 r0, r0, #low(registers+8) -// OBSOLETE ld r2, @r0+ ; restore r2 -// OBSOLETE ld r3, @r0+ ; restore r3 -// OBSOLETE ld r4, @r0+ ; restore r4 -// OBSOLETE ld r5, @r0+ ; restore r5 -// OBSOLETE ld r6, @r0+ ; restore r6 -// OBSOLETE ld r7, @r0+ ; restore r7 -// OBSOLETE ld r8, @r0+ ; restore r8 -// OBSOLETE ld r9, @r0+ ; restore r9 -// OBSOLETE ld r10, @r0+ ; restore r10 -// OBSOLETE ld r11, @r0+ ; restore r11 -// OBSOLETE ld r12, @r0+ ; restore r12 -// OBSOLETE ld r13, @r0+ ; restore r13 -// OBSOLETE ld r14, @r0+ ; restore r14 -// OBSOLETE ld r15, @r0+ ; restore r15 -// OBSOLETE addi r0, #4 ; don't restore PSW (rte will do it) -// OBSOLETE ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only) -// OBSOLETE mvtc r1, cr1 -// OBSOLETE ld r1, @r0+ ; restore cr2 == SPI -// OBSOLETE mvtc r1, cr2 -// OBSOLETE ld r1, @r0+ ; restore cr3 == SPU -// OBSOLETE mvtc r1, cr3 -// OBSOLETE addi r0, #4 ; skip BPC -// OBSOLETE ld r1, @r0+ ; restore cr6 (BPC) == PC -// OBSOLETE mvtc r1, cr6 -// OBSOLETE ld r1, @r0+ ; restore ACCL -// OBSOLETE mvtaclo r1 -// OBSOLETE ld r1, @r0+ ; restore ACCH -// OBSOLETE mvtachi r1 -// OBSOLETE seth r0, #shigh(registers) -// OBSOLETE add3 r0, r0, #low(registers) -// OBSOLETE ld r1, @(4,r0) ; restore r1 -// OBSOLETE ld r0, @r0 ; restore r0 -// OBSOLETE rte"); -// OBSOLETE -// OBSOLETE /* General trap handler, called after the registers have been stashed. -// OBSOLETE NUM is the trap/exception number. */ -// OBSOLETE -// OBSOLETE static void -// OBSOLETE process_exception (int num) -// OBSOLETE { -// OBSOLETE cleanup_stash (); -// OBSOLETE asm volatile (" -// OBSOLETE seth r1, #shigh(stackPtr) -// OBSOLETE add3 r1, r1, #low(stackPtr) -// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack) -// OBSOLETE mv r0, %0 -// OBSOLETE bl handle_exception -// OBSOLETE bl restore_and_return" -// OBSOLETE : : "r" (num) : "r0", "r1"); -// OBSOLETE } -// OBSOLETE -// OBSOLETE void _catchException0 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException0: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #0 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException1 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException1: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE bl cleanup_stash -// OBSOLETE seth r1, #shigh(stackPtr) -// OBSOLETE add3 r1, r1, #low(stackPtr) -// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack) -// OBSOLETE seth r1, #shigh(registers + 21*4) ; PC -// OBSOLETE add3 r1, r1, #low(registers + 21*4) -// OBSOLETE ld r0, @r1 -// OBSOLETE addi r0, #-4 ; back up PC for breakpoint trap. -// OBSOLETE st r0, @r1 ; FIXME: what about bp in right slot? -// OBSOLETE ldi r0, #1 -// OBSOLETE bl handle_exception -// OBSOLETE bl restore_and_return"); -// OBSOLETE -// OBSOLETE void _catchException2 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException2: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #2 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException3 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException3: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #3 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException4 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException4: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #4 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException5 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException5: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #5 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException6 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException6: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #6 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException7 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException7: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #7 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException8 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException8: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #8 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException9 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException9: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #9 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException10 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException10: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #10 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException11 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException11: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #11 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException12 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException12: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #12 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException13 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException13: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #13 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException14 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException14: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #14 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException15 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException15: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #15 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException16 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException16: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #16 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE void _catchException17 (); -// OBSOLETE -// OBSOLETE asm (" -// OBSOLETE _catchException17: -// OBSOLETE push lr -// OBSOLETE bl stash_registers -// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped -// OBSOLETE ldi r0, #17 -// OBSOLETE bl process_exception"); -// OBSOLETE -// OBSOLETE -// OBSOLETE /* this function is used to set up exception handlers for tracing and -// OBSOLETE breakpoints */ -// OBSOLETE void -// OBSOLETE set_debug_traps (void) -// OBSOLETE { -// OBSOLETE /* extern void remcomHandler(); */ -// OBSOLETE int i; -// OBSOLETE -// OBSOLETE for (i = 0; i < 18; i++) /* keep a copy of old vectors */ -// OBSOLETE if (save_vectors[i] == 0) /* only copy them the first time */ -// OBSOLETE save_vectors[i] = getExceptionHandler (i); -// OBSOLETE -// OBSOLETE stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1]; -// OBSOLETE -// OBSOLETE exceptionHandler (0, _catchException0); -// OBSOLETE exceptionHandler (1, _catchException1); -// OBSOLETE exceptionHandler (2, _catchException2); -// OBSOLETE exceptionHandler (3, _catchException3); -// OBSOLETE exceptionHandler (4, _catchException4); -// OBSOLETE exceptionHandler (5, _catchException5); -// OBSOLETE exceptionHandler (6, _catchException6); -// OBSOLETE exceptionHandler (7, _catchException7); -// OBSOLETE exceptionHandler (8, _catchException8); -// OBSOLETE exceptionHandler (9, _catchException9); -// OBSOLETE exceptionHandler (10, _catchException10); -// OBSOLETE exceptionHandler (11, _catchException11); -// OBSOLETE exceptionHandler (12, _catchException12); -// OBSOLETE exceptionHandler (13, _catchException13); -// OBSOLETE exceptionHandler (14, _catchException14); -// OBSOLETE exceptionHandler (15, _catchException15); -// OBSOLETE exceptionHandler (16, _catchException16); -// OBSOLETE /* exceptionHandler (17, _catchException17); */ -// OBSOLETE -// OBSOLETE initialized = 1; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* This function will generate a breakpoint exception. It is used at the -// OBSOLETE beginning of a program to sync up with a debugger and can be used -// OBSOLETE otherwise as a quick means to stop program execution and "break" into -// OBSOLETE the debugger. */ -// OBSOLETE -// OBSOLETE #define BREAKPOINT() asm volatile (" trap #2"); -// OBSOLETE -// OBSOLETE void -// OBSOLETE breakpoint (void) -// OBSOLETE { -// OBSOLETE if (initialized) -// OBSOLETE BREAKPOINT(); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* STDOUT section: -// OBSOLETE Stuff pertaining to simulating stdout by sending chars to gdb to be echoed. -// OBSOLETE Functions: gdb_putchar(char ch) -// OBSOLETE gdb_puts(char *str) -// OBSOLETE gdb_write(char *str, int len) -// OBSOLETE gdb_error(char *format, char *parm) -// OBSOLETE */ -// OBSOLETE -// OBSOLETE /* Function: gdb_putchar(int) -// OBSOLETE Make gdb write a char to stdout. -// OBSOLETE Returns: the char */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE gdb_putchar (int ch) -// OBSOLETE { -// OBSOLETE char buf[4]; -// OBSOLETE -// OBSOLETE buf[0] = 'O'; -// OBSOLETE buf[1] = hexchars[ch >> 4]; -// OBSOLETE buf[2] = hexchars[ch & 0x0F]; -// OBSOLETE buf[3] = 0; -// OBSOLETE putpacket(buf); -// OBSOLETE return ch; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: gdb_write(char *, int) -// OBSOLETE Make gdb write n bytes to stdout (not assumed to be null-terminated). -// OBSOLETE Returns: number of bytes written */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE gdb_write (char *data, int len) -// OBSOLETE { -// OBSOLETE char *buf, *cpy; -// OBSOLETE int i; -// OBSOLETE -// OBSOLETE buf = remcomOutBuffer; -// OBSOLETE buf[0] = 'O'; -// OBSOLETE i = 0; -// OBSOLETE while (i < len) -// OBSOLETE { -// OBSOLETE for (cpy = buf+1; -// OBSOLETE i < len && cpy < buf + sizeof(remcomOutBuffer) - 3; -// OBSOLETE i++) -// OBSOLETE { -// OBSOLETE *cpy++ = hexchars[data[i] >> 4]; -// OBSOLETE *cpy++ = hexchars[data[i] & 0x0F]; -// OBSOLETE } -// OBSOLETE *cpy = 0; -// OBSOLETE putpacket(buf); -// OBSOLETE } -// OBSOLETE return len; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: gdb_puts(char *) -// OBSOLETE Make gdb write a null-terminated string to stdout. -// OBSOLETE Returns: the length of the string */ -// OBSOLETE -// OBSOLETE static int -// OBSOLETE gdb_puts (char *str) -// OBSOLETE { -// OBSOLETE return gdb_write(str, strlen(str)); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: gdb_error(char *, char *) -// OBSOLETE Send an error message to gdb's stdout. -// OBSOLETE First string may have 1 (one) optional "%s" in it, which -// OBSOLETE will cause the optional second string to be inserted. */ -// OBSOLETE -// OBSOLETE static void -// OBSOLETE gdb_error (char *format, char *parm) -// OBSOLETE { -// OBSOLETE char buf[400], *cpy; -// OBSOLETE int len; -// OBSOLETE -// OBSOLETE if (remote_debug) -// OBSOLETE { -// OBSOLETE if (format && *format) -// OBSOLETE len = strlen(format); -// OBSOLETE else -// OBSOLETE return; /* empty input */ -// OBSOLETE -// OBSOLETE if (parm && *parm) -// OBSOLETE len += strlen(parm); -// OBSOLETE -// OBSOLETE for (cpy = buf; *format; ) -// OBSOLETE { -// OBSOLETE if (format[0] == '%' && format[1] == 's') /* include second string */ -// OBSOLETE { -// OBSOLETE format += 2; /* advance two chars instead of just one */ -// OBSOLETE while (parm && *parm) -// OBSOLETE *cpy++ = *parm++; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE *cpy++ = *format++; -// OBSOLETE } -// OBSOLETE *cpy = '\0'; -// OBSOLETE gdb_puts(buf); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE static unsigned char * -// OBSOLETE strcpy (unsigned char *dest, const unsigned char *src) -// OBSOLETE { -// OBSOLETE unsigned char *ret = dest; -// OBSOLETE -// OBSOLETE if (dest && src) -// OBSOLETE { -// OBSOLETE while (*src) -// OBSOLETE *dest++ = *src++; -// OBSOLETE *dest = 0; -// OBSOLETE } -// OBSOLETE return ret; -// OBSOLETE } -// OBSOLETE -// OBSOLETE static int -// OBSOLETE strlen (const unsigned char *src) -// OBSOLETE { -// OBSOLETE int ret; -// OBSOLETE -// OBSOLETE for (ret = 0; *src; src++) -// OBSOLETE ret++; -// OBSOLETE -// OBSOLETE return ret; -// OBSOLETE } -// OBSOLETE -// OBSOLETE #if 0 -// OBSOLETE void exit (code) -// OBSOLETE int code; -// OBSOLETE { -// OBSOLETE _exit (code); -// OBSOLETE } -// OBSOLETE -// OBSOLETE int atexit (void *p) -// OBSOLETE { -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE -// OBSOLETE void abort (void) -// OBSOLETE { -// OBSOLETE _exit (1); -// OBSOLETE } -// OBSOLETE #endif +/**************************************************************************** + + THIS SOFTWARE IS NOT COPYRIGHTED + + HP offers the following for use in the public domain. HP makes no + warranty with regard to the software or it's performance and the + user accepts the software "AS IS" with all faults. + + HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD + TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES + OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. + +****************************************************************************/ + +/**************************************************************************** + * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ + * + * Module name: remcom.c $ + * Revision: 1.34 $ + * Date: 91/03/09 12:29:49 $ + * Contributor: Lake Stevens Instrument Division$ + * + * Description: low level support for gdb debugger. $ + * + * Considerations: only works on target hardware $ + * + * Written by: Glenn Engel $ + * ModuleState: Experimental $ + * + * NOTES: See Below $ + * + * Modified for M32R by Michael Snyder, Cygnus Support. + * + * To enable debugger support, two things need to happen. One, a + * call to set_debug_traps() is necessary in order to allow any breakpoints + * or error conditions to be properly intercepted and reported to gdb. + * Two, a breakpoint needs to be generated to begin communication. This + * is most easily accomplished by a call to breakpoint(). Breakpoint() + * simulates a breakpoint by executing a trap #1. + * + * The external function exceptionHandler() is + * used to attach a specific handler to a specific M32R vector number. + * It should use the same privilege level it runs at. It should + * install it as an interrupt gate so that interrupts are masked + * while the handler runs. + * + * Because gdb will sometimes write to the stack area to execute function + * calls, this program cannot rely on using the supervisor stack so it + * uses it's own stack area reserved in the int array remcomStack. + * + ************* + * + * The following gdb commands are supported: + * + * command function Return value + * + * g return the value of the CPU registers hex data or ENN + * G set the value of the CPU registers OK or ENN + * + * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN + * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN + * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN + * AA..AA + * + * c Resume at current address SNN ( signal NN) + * cAA..AA Continue at address AA..AA SNN + * + * s Step one instruction SNN + * sAA..AA Step one instruction from AA..AA SNN + * + * k kill + * + * ? What was the last sigval ? SNN (signal NN) + * + * All commands and responses are sent with a packet which includes a + * checksum. A packet consists of + * + * $<packet info>#<checksum>. + * + * where + * <packet info> :: <characters representing the command or response> + * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> + * + * When a packet is received, it is first acknowledged with either '+' or '-'. + * '+' indicates a successful transfer. '-' indicates a failed transfer. + * + * Example: + * + * Host: Reply: + * $m0,10#2a +$00010203040506070809101112131415#42 + * + ****************************************************************************/ + + +/************************************************************************ + * + * external low-level support routines + */ +extern void putDebugChar (); /* write a single character */ +extern int getDebugChar (); /* read and return a single char */ +extern void exceptionHandler (); /* assign an exception handler */ + +/***************************************************************************** + * BUFMAX defines the maximum number of characters in inbound/outbound buffers + * at least NUMREGBYTES*2 are needed for register packets + */ +#define BUFMAX 400 + +static char initialized; /* boolean flag. != 0 means we've been initialized */ + +int remote_debug; +/* debug > 0 prints ill-formed commands in valid packets & checksum errors */ + +static const unsigned char hexchars[] = "0123456789abcdef"; + +#define NUMREGS 24 + +/* Number of bytes of registers. */ +#define NUMREGBYTES (NUMREGS * 4) +enum regnames +{ R0, R1, R2, R3, R4, R5, R6, R7, + R8, R9, R10, R11, R12, R13, R14, R15, + PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH +}; + +enum SYS_calls +{ + SYS_null, + SYS_exit, + SYS_open, + SYS_close, + SYS_read, + SYS_write, + SYS_lseek, + SYS_unlink, + SYS_getpid, + SYS_kill, + SYS_fstat, + SYS_sbrk, + SYS_fork, + SYS_execve, + SYS_wait4, + SYS_link, + SYS_chdir, + SYS_stat, + SYS_utime, + SYS_chown, + SYS_chmod, + SYS_time, + SYS_pipe +}; + +static int registers[NUMREGS]; + +#define STACKSIZE 8096 +static unsigned char remcomInBuffer[BUFMAX]; +static unsigned char remcomOutBuffer[BUFMAX]; +static int remcomStack[STACKSIZE / sizeof (int)]; +static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; + +static unsigned int save_vectors[18]; /* previous exception vectors */ + +/* Indicate to caller of mem2hex or hex2mem that there has been an error. */ +static volatile int mem_err = 0; + +/* Store the vector number here (since GDB only gets the signal + number through the usual means, and that's not very specific). */ +int gdb_m32r_vector = -1; + +#if 0 +#include "syscall.h" /* for SYS_exit, SYS_write etc. */ +#endif + +/* Global entry points: + */ + +extern void handle_exception (int); +extern void set_debug_traps (void); +extern void breakpoint (void); + +/* Local functions: + */ + +static int computeSignal (int); +static void putpacket (unsigned char *); +static unsigned char *getpacket (void); + +static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int); +static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int); +static int hexToInt (unsigned char **, int *); +static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int); +static void stash_registers (void); +static void restore_registers (void); +static int prepare_to_step (int); +static int finish_from_step (void); +static unsigned long crc32 (unsigned char *, int, unsigned long); + +static void gdb_error (char *, char *); +static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int); + +static unsigned char *strcpy (unsigned char *, const unsigned char *); +static int strlen (const unsigned char *); + +/* + * This function does all command procesing for interfacing to gdb. + */ + +void +handle_exception (int exceptionVector) +{ + int sigval, stepping; + int addr, length, i; + unsigned char *ptr; + unsigned char buf[16]; + int binary; + + if (!finish_from_step ()) + return; /* "false step": let the target continue */ + + gdb_m32r_vector = exceptionVector; + + if (remote_debug) + { + mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0); + gdb_error ("Handle exception %s, ", buf); + mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); + gdb_error ("PC == 0x%s\n", buf); + } + + /* reply to host that an exception has occurred */ + sigval = computeSignal (exceptionVector); + + ptr = remcomOutBuffer; + + *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */ + *ptr++ = hexchars[sigval >> 4]; + *ptr++ = hexchars[sigval & 0xf]; + + *ptr++ = hexchars[PC >> 4]; + *ptr++ = hexchars[PC & 0xf]; + *ptr++ = ':'; + ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); /* PC */ + *ptr++ = ';'; + + *ptr++ = hexchars[R13 >> 4]; + *ptr++ = hexchars[R13 & 0xf]; + *ptr++ = ':'; + ptr = mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); /* FP */ + *ptr++ = ';'; + + *ptr++ = hexchars[R15 >> 4]; + *ptr++ = hexchars[R15 & 0xf]; + *ptr++ = ':'; + ptr = mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); /* SP */ + *ptr++ = ';'; + *ptr++ = 0; + + if (exceptionVector == 0) /* simulated SYS call stuff */ + { + mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); + switch (registers[R0]) + { + case SYS_exit: + gdb_error ("Target program has exited at %s\n", buf); + ptr = remcomOutBuffer; + *ptr++ = 'W'; + sigval = registers[R1] & 0xff; + *ptr++ = hexchars[sigval >> 4]; + *ptr++ = hexchars[sigval & 0xf]; + *ptr++ = 0; + break; + case SYS_open: + gdb_error ("Target attempts SYS_open call at %s\n", buf); + break; + case SYS_close: + gdb_error ("Target attempts SYS_close call at %s\n", buf); + break; + case SYS_read: + gdb_error ("Target attempts SYS_read call at %s\n", buf); + break; + case SYS_write: + if (registers[R1] == 1 || /* write to stdout */ + registers[R1] == 2) /* write to stderr */ + { /* (we can do that) */ + registers[R0] = + gdb_write ((void *) registers[R2], registers[R3]); + return; + } + else + gdb_error ("Target attempts SYS_write call at %s\n", buf); + break; + case SYS_lseek: + gdb_error ("Target attempts SYS_lseek call at %s\n", buf); + break; + case SYS_unlink: + gdb_error ("Target attempts SYS_unlink call at %s\n", buf); + break; + case SYS_getpid: + gdb_error ("Target attempts SYS_getpid call at %s\n", buf); + break; + case SYS_kill: + gdb_error ("Target attempts SYS_kill call at %s\n", buf); + break; + case SYS_fstat: + gdb_error ("Target attempts SYS_fstat call at %s\n", buf); + break; + default: + gdb_error ("Target attempts unknown SYS call at %s\n", buf); + break; + } + } + + putpacket (remcomOutBuffer); + + stepping = 0; + + while (1 == 1) + { + remcomOutBuffer[0] = 0; + ptr = getpacket (); + binary = 0; + switch (*ptr++) + { + default: /* Unknown code. Return an empty reply message. */ + break; + case 'R': + if (hexToInt (&ptr, &addr)) + registers[PC] = addr; + strcpy (remcomOutBuffer, "OK"); + break; + case '!': + strcpy (remcomOutBuffer, "OK"); + break; + case 'X': /* XAA..AA,LLLL:<binary data>#cs */ + binary = 1; + case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ + /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */ + { + if (hexToInt (&ptr, &addr)) + if (*(ptr++) == ',') + if (hexToInt (&ptr, &length)) + if (*(ptr++) == ':') + { + mem_err = 0; + if (binary) + bin2mem (ptr, (unsigned char *) addr, length, 1); + else + hex2mem (ptr, (unsigned char *) addr, length, 1); + if (mem_err) + { + strcpy (remcomOutBuffer, "E03"); + gdb_error ("memory fault", ""); + } + else + { + strcpy (remcomOutBuffer, "OK"); + } + ptr = 0; + } + if (ptr) + { + strcpy (remcomOutBuffer, "E02"); + } + } + break; + case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ + /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */ + if (hexToInt (&ptr, &addr)) + if (*(ptr++) == ',') + if (hexToInt (&ptr, &length)) + { + ptr = 0; + mem_err = 0; + mem2hex ((unsigned char *) addr, remcomOutBuffer, length, + 1); + if (mem_err) + { + strcpy (remcomOutBuffer, "E03"); + gdb_error ("memory fault", ""); + } + } + if (ptr) + { + strcpy (remcomOutBuffer, "E01"); + } + break; + case '?': + remcomOutBuffer[0] = 'S'; + remcomOutBuffer[1] = hexchars[sigval >> 4]; + remcomOutBuffer[2] = hexchars[sigval % 16]; + remcomOutBuffer[3] = 0; + break; + case 'd': + remote_debug = !(remote_debug); /* toggle debug flag */ + break; + case 'g': /* return the value of the CPU registers */ + mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES, + 0); + break; + case 'P': /* set the value of a single CPU register - return OK */ + { + int regno; + + if (hexToInt (&ptr, ®no) && *ptr++ == '=') + if (regno >= 0 && regno < NUMREGS) + { + int stackmode; + + hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0); + /* + * Since we just changed a single CPU register, let's + * make sure to keep the several stack pointers consistant. + */ + stackmode = registers[PSW] & 0x80; + if (regno == R15) /* stack pointer changed */ + { /* need to change SPI or SPU */ + if (stackmode == 0) + registers[SPI] = registers[R15]; + else + registers[SPU] = registers[R15]; + } + else if (regno == SPU) /* "user" stack pointer changed */ + { + if (stackmode != 0) /* stack in user mode: copy SP */ + registers[R15] = registers[SPU]; + } + else if (regno == SPI) /* "interrupt" stack pointer changed */ + { + if (stackmode == 0) /* stack in interrupt mode: copy SP */ + registers[R15] = registers[SPI]; + } + else if (regno == PSW) /* stack mode may have changed! */ + { /* force SP to either SPU or SPI */ + if (stackmode == 0) /* stack in user mode */ + registers[R15] = registers[SPI]; + else /* stack in interrupt mode */ + registers[R15] = registers[SPU]; + } + strcpy (remcomOutBuffer, "OK"); + break; + } + strcpy (remcomOutBuffer, "E01"); + break; + } + case 'G': /* set the value of the CPU registers - return OK */ + hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0); + strcpy (remcomOutBuffer, "OK"); + break; + case 's': /* sAA..AA Step one instruction from AA..AA(optional) */ + stepping = 1; + case 'c': /* cAA..AA Continue from address AA..AA(optional) */ + /* try to read optional parameter, pc unchanged if no parm */ + if (hexToInt (&ptr, &addr)) + registers[PC] = addr; + + if (stepping) /* single-stepping */ + { + if (!prepare_to_step (0)) /* set up for single-step */ + { + /* prepare_to_step has already emulated the target insn: + Send SIGTRAP to gdb, don't resume the target at all. */ + ptr = remcomOutBuffer; + *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */ + *ptr++ = '0'; + *ptr++ = '5'; + + *ptr++ = hexchars[PC >> 4]; /* send PC */ + *ptr++ = hexchars[PC & 0xf]; + *ptr++ = ':'; + ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); + *ptr++ = ';'; + + *ptr++ = hexchars[R13 >> 4]; /* send FP */ + *ptr++ = hexchars[R13 & 0xf]; + *ptr++ = ':'; + ptr = + mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); + *ptr++ = ';'; + + *ptr++ = hexchars[R15 >> 4]; /* send SP */ + *ptr++ = hexchars[R15 & 0xf]; + *ptr++ = ':'; + ptr = + mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); + *ptr++ = ';'; + *ptr++ = 0; + + break; + } + } + else /* continuing, not single-stepping */ + { + /* OK, about to do a "continue". First check to see if the + target pc is on an odd boundary (second instruction in the + word). If so, we must do a single-step first, because + ya can't jump or return back to an odd boundary! */ + if ((registers[PC] & 2) != 0) + prepare_to_step (1); + } + + return; + + case 'D': /* Detach */ +#if 0 + /* I am interpreting this to mean, release the board from control + by the remote stub. To do this, I am restoring the original + (or at least previous) exception vectors. + */ + for (i = 0; i < 18; i++) + exceptionHandler (i, save_vectors[i]); + putpacket ("OK"); + return; /* continue the inferior */ +#else + strcpy (remcomOutBuffer, "OK"); + break; +#endif + case 'q': + if (*ptr++ == 'C' && + *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':') + { + unsigned long start, len, our_crc; + + if (hexToInt (&ptr, (int *) &start) && + *ptr++ == ',' && hexToInt (&ptr, (int *) &len)) + { + remcomOutBuffer[0] = 'C'; + our_crc = crc32 ((unsigned char *) start, len, 0xffffffff); + mem2hex ((char *) &our_crc, + &remcomOutBuffer[1], sizeof (long), 0); + } /* else do nothing */ + } /* else do nothing */ + break; + + case 'k': /* kill the program */ + continue; + } /* switch */ + + /* reply to the request */ + putpacket (remcomOutBuffer); + } +} + +/* qCRC support */ + +/* Table used by the crc32 function to calcuate the checksum. */ +static unsigned long crc32_table[256] = { 0, 0 }; + +static unsigned long +crc32 (unsigned char *buf, int len, unsigned long crc) +{ + if (!crc32_table[1]) + { + /* Initialize the CRC table and the decoding table. */ + int i, j; + unsigned long c; + + for (i = 0; i < 256; i++) + { + for (c = i << 24, j = 8; j > 0; --j) + c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); + crc32_table[i] = c; + } + } + + while (len--) + { + crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; + buf++; + } + return crc; +} + +static int +hex (unsigned char ch) +{ + if ((ch >= 'a') && (ch <= 'f')) + return (ch - 'a' + 10); + if ((ch >= '0') && (ch <= '9')) + return (ch - '0'); + if ((ch >= 'A') && (ch <= 'F')) + return (ch - 'A' + 10); + return (-1); +} + +/* scan for the sequence $<data>#<checksum> */ + +unsigned char * +getpacket (void) +{ + unsigned char *buffer = &remcomInBuffer[0]; + unsigned char checksum; + unsigned char xmitcsum; + int count; + char ch; + + while (1) + { + /* wait around for the start character, ignore all other characters */ + while ((ch = getDebugChar ()) != '$') + ; + + retry: + checksum = 0; + xmitcsum = -1; + count = 0; + + /* now, read until a # or end of buffer is found */ + while (count < BUFMAX) + { + ch = getDebugChar (); + if (ch == '$') + goto retry; + if (ch == '#') + break; + checksum = checksum + ch; + buffer[count] = ch; + count = count + 1; + } + buffer[count] = 0; + + if (ch == '#') + { + ch = getDebugChar (); + xmitcsum = hex (ch) << 4; + ch = getDebugChar (); + xmitcsum += hex (ch); + + if (checksum != xmitcsum) + { + if (remote_debug) + { + unsigned char buf[16]; + + mem2hex ((unsigned char *) &checksum, buf, 4, 0); + gdb_error ("Bad checksum: my count = %s, ", buf); + mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0); + gdb_error ("sent count = %s\n", buf); + gdb_error (" -- Bad buffer: \"%s\"\n", buffer); + } + putDebugChar ('-'); /* failed checksum */ + } + else + { + putDebugChar ('+'); /* successful transfer */ + + /* if a sequence char is present, reply the sequence ID */ + if (buffer[2] == ':') + { + putDebugChar (buffer[0]); + putDebugChar (buffer[1]); + + return &buffer[3]; + } + + return &buffer[0]; + } + } + } +} + +/* send the packet in buffer. */ + +static void +putpacket (unsigned char *buffer) +{ + unsigned char checksum; + int count; + char ch; + + /* $<packet info>#<checksum>. */ + do + { + putDebugChar ('$'); + checksum = 0; + count = 0; + + while (ch = buffer[count]) + { + putDebugChar (ch); + checksum += ch; + count += 1; + } + putDebugChar ('#'); + putDebugChar (hexchars[checksum >> 4]); + putDebugChar (hexchars[checksum % 16]); + } + while (getDebugChar () != '+'); +} + +/* Address of a routine to RTE to if we get a memory fault. */ + +static void (*volatile mem_fault_routine) () = 0; + +static void +set_mem_err (void) +{ + mem_err = 1; +} + +/* Check the address for safe access ranges. As currently defined, + this routine will reject the "expansion bus" address range(s). + To make those ranges useable, someone must implement code to detect + whether there's anything connected to the expansion bus. */ + +static int +mem_safe (unsigned char *addr) +{ +#define BAD_RANGE_ONE_START ((unsigned char *) 0x600000) +#define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000) +#define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000) +#define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000) + + if (addr < BAD_RANGE_ONE_START) + return 1; /* safe */ + if (addr < BAD_RANGE_ONE_END) + return 0; /* unsafe */ + if (addr < BAD_RANGE_TWO_START) + return 1; /* safe */ + if (addr < BAD_RANGE_TWO_END) + return 0; /* unsafe */ +} + +/* These are separate functions so that they are so short and sweet + that the compiler won't save any registers (if there is a fault + to mem_fault, they won't get restored, so there better not be any + saved). */ +static int +get_char (unsigned char *addr) +{ +#if 1 + if (mem_fault_routine && !mem_safe (addr)) + { + mem_fault_routine (); + return 0; + } +#endif + return *addr; +} + +static void +set_char (unsigned char *addr, unsigned char val) +{ +#if 1 + if (mem_fault_routine && !mem_safe (addr)) + { + mem_fault_routine (); + return; + } +#endif + *addr = val; +} + +/* Convert the memory pointed to by mem into hex, placing result in buf. + Return a pointer to the last char put in buf (null). + If MAY_FAULT is non-zero, then we should set mem_err in response to + a fault; if zero treat a fault like any other fault in the stub. */ + +static unsigned char * +mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) +{ + int i; + unsigned char ch; + + if (may_fault) + mem_fault_routine = set_mem_err; + for (i = 0; i < count; i++) + { + ch = get_char (mem++); + if (may_fault && mem_err) + return (buf); + *buf++ = hexchars[ch >> 4]; + *buf++ = hexchars[ch % 16]; + } + *buf = 0; + if (may_fault) + mem_fault_routine = 0; + return (buf); +} + +/* Convert the hex array pointed to by buf into binary to be placed in mem. + Return a pointer to the character AFTER the last byte written. */ + +static unsigned char * +hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) +{ + int i; + unsigned char ch; + + if (may_fault) + mem_fault_routine = set_mem_err; + for (i = 0; i < count; i++) + { + ch = hex (*buf++) << 4; + ch = ch + hex (*buf++); + set_char (mem++, ch); + if (may_fault && mem_err) + return (mem); + } + if (may_fault) + mem_fault_routine = 0; + return (mem); +} + +/* Convert the binary stream in BUF to memory. + + Gdb will escape $, #, and the escape char (0x7d). + COUNT is the total number of bytes to write into + memory. */ +static unsigned char * +bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) +{ + int i; + unsigned char ch; + + if (may_fault) + mem_fault_routine = set_mem_err; + for (i = 0; i < count; i++) + { + /* Check for any escaped characters. Be paranoid and + only unescape chars that should be escaped. */ + if (*buf == 0x7d) + { + switch (*(buf + 1)) + { + case 0x3: /* # */ + case 0x4: /* $ */ + case 0x5d: /* escape char */ + buf++; + *buf |= 0x20; + break; + default: + /* nothing */ + break; + } + } + + set_char (mem++, *buf++); + + if (may_fault && mem_err) + return mem; + } + + if (may_fault) + mem_fault_routine = 0; + return mem; +} + +/* this function takes the m32r exception vector and attempts to + translate this number into a unix compatible signal value */ + +static int +computeSignal (int exceptionVector) +{ + int sigval; + switch (exceptionVector) + { + case 0: + sigval = 23; + break; /* I/O trap */ + case 1: + sigval = 5; + break; /* breakpoint */ + case 2: + sigval = 5; + break; /* breakpoint */ + case 3: + sigval = 5; + break; /* breakpoint */ + case 4: + sigval = 5; + break; /* breakpoint */ + case 5: + sigval = 5; + break; /* breakpoint */ + case 6: + sigval = 5; + break; /* breakpoint */ + case 7: + sigval = 5; + break; /* breakpoint */ + case 8: + sigval = 5; + break; /* breakpoint */ + case 9: + sigval = 5; + break; /* breakpoint */ + case 10: + sigval = 5; + break; /* breakpoint */ + case 11: + sigval = 5; + break; /* breakpoint */ + case 12: + sigval = 5; + break; /* breakpoint */ + case 13: + sigval = 5; + break; /* breakpoint */ + case 14: + sigval = 5; + break; /* breakpoint */ + case 15: + sigval = 5; + break; /* breakpoint */ + case 16: + sigval = 10; + break; /* BUS ERROR (alignment) */ + case 17: + sigval = 2; + break; /* INTerrupt */ + default: + sigval = 7; + break; /* "software generated" */ + } + return (sigval); +} + +/**********************************************/ +/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ +/* RETURN NUMBER OF CHARS PROCESSED */ +/**********************************************/ +static int +hexToInt (unsigned char **ptr, int *intValue) +{ + int numChars = 0; + int hexValue; + + *intValue = 0; + while (**ptr) + { + hexValue = hex (**ptr); + if (hexValue >= 0) + { + *intValue = (*intValue << 4) | hexValue; + numChars++; + } + else + break; + (*ptr)++; + } + return (numChars); +} + +/* + Table of branch instructions: + + 10B6 RTE return from trap or exception + 1FCr JMP jump + 1ECr JL jump and link + 7Fxx BRA branch + FFxxxxxx BRA branch (long) + B09rxxxx BNEZ branch not-equal-zero + Br1rxxxx BNE branch not-equal + 7Dxx BNC branch not-condition + FDxxxxxx BNC branch not-condition (long) + B0Arxxxx BLTZ branch less-than-zero + B0Crxxxx BLEZ branch less-equal-zero + 7Exx BL branch and link + FExxxxxx BL branch and link (long) + B0Drxxxx BGTZ branch greater-than-zero + B0Brxxxx BGEZ branch greater-equal-zero + B08rxxxx BEQZ branch equal-zero + Br0rxxxx BEQ branch equal + 7Cxx BC branch condition + FCxxxxxx BC branch condition (long) + */ + +static int +isShortBranch (unsigned char *instr) +{ + unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */ + + if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */ + return 1; /* return from trap or exception */ + + if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */ + if ((instr[1] & 0xF0) == 0xC0) + return 2; /* jump thru a register */ + + if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */ + instr0 == 0x7E || instr0 == 0x7F) + return 3; /* eight bit PC offset */ + + return 0; +} + +static int +isLongBranch (unsigned char *instr) +{ + if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */ + instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */ + return 4; + if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */ + { + if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */ + (instr[1] & 0xF0) == 0x10) + return 5; + if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */ + if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || + (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 || + (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0) + return 6; + } + return 0; +} + +/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, + then it's a 2-byte instruction, else it's a 4-byte instruction. */ + +#define INSTRUCTION_SIZE(addr) \ + ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4) + +static int +isBranch (unsigned char *instr) +{ + if (INSTRUCTION_SIZE (instr) == 2) + return isShortBranch (instr); + else + return isLongBranch (instr); +} + +static int +willBranch (unsigned char *instr, int branchCode) +{ + switch (branchCode) + { + case 0: + return 0; /* not a branch */ + case 1: + return 1; /* RTE */ + case 2: + return 1; /* JL or JMP */ + case 3: /* BC, BNC, BL, BRA (short) */ + case 4: /* BC, BNC, BL, BRA (long) */ + switch (instr[0] & 0x0F) + { + case 0xC: /* Branch if Condition Register */ + return (registers[CBR] != 0); + case 0xD: /* Branch if NOT Condition Register */ + return (registers[CBR] == 0); + case 0xE: /* Branch and Link */ + case 0xF: /* Branch (unconditional) */ + return 1; + default: /* oops? */ + return 0; + } + case 5: /* BNE, BEQ */ + switch (instr[1] & 0xF0) + { + case 0x00: /* Branch if r1 equal to r2 */ + return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]); + case 0x10: /* Branch if r1 NOT equal to r2 */ + return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]); + default: /* oops? */ + return 0; + } + case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */ + switch (instr[1] & 0xF0) + { + case 0x80: /* Branch if reg equal to zero */ + return (registers[instr[1] & 0x0F] == 0); + case 0x90: /* Branch if reg NOT equal to zero */ + return (registers[instr[1] & 0x0F] != 0); + case 0xA0: /* Branch if reg less than zero */ + return (registers[instr[1] & 0x0F] < 0); + case 0xB0: /* Branch if reg greater or equal to zero */ + return (registers[instr[1] & 0x0F] >= 0); + case 0xC0: /* Branch if reg less than or equal to zero */ + return (registers[instr[1] & 0x0F] <= 0); + case 0xD0: /* Branch if reg greater than zero */ + return (registers[instr[1] & 0x0F] > 0); + default: /* oops? */ + return 0; + } + default: /* oops? */ + return 0; + } +} + +static int +branchDestination (unsigned char *instr, int branchCode) +{ + switch (branchCode) + { + default: + case 0: /* not a branch */ + return 0; + case 1: /* RTE */ + return registers[BPC] & ~3; /* pop BPC into PC */ + case 2: /* JL or JMP */ + return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */ + case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */ + return (((int) instr) & ~3) + ((char) instr[1] << 2); + case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */ + return ((int) instr + + ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << + 2)); + case 5: /* BNE, BEQ (16-bit relative offset) */ + case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ + return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); + } + + /* An explanatory note: in the last three return expressions, I have + cast the most-significant byte of the return offset to char. + What this accomplishes is sign extension. If the other + less-significant bytes were signed as well, they would get sign + extended too and, if negative, their leading bits would clobber + the bits of the more-significant bytes ahead of them. There are + other ways I could have done this, but sign extension from + odd-sized integers is always a pain. */ +} + +static void +branchSideEffects (unsigned char *instr, int branchCode) +{ + switch (branchCode) + { + case 1: /* RTE */ + return; /* I <THINK> this is already handled... */ + case 2: /* JL (or JMP) */ + case 3: /* BL (or BC, BNC, BRA) */ + case 4: + if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */ + registers[R14] = (registers[PC] & ~3) + 4; + return; + default: /* any other branch has no side effects */ + return; + } +} + +static struct STEPPING_CONTEXT +{ + int stepping; /* true when we've started a single-step */ + unsigned long target_addr; /* the instr we're trying to execute */ + unsigned long target_size; /* the size of the target instr */ + unsigned long noop_addr; /* where we've inserted a no-op, if any */ + unsigned long trap1_addr; /* the trap following the target instr */ + unsigned long trap2_addr; /* the trap at a branch destination, if any */ + unsigned short noop_save; /* instruction overwritten by our no-op */ + unsigned short trap1_save; /* instruction overwritten by trap1 */ + unsigned short trap2_save; /* instruction overwritten by trap2 */ + unsigned short continue_p; /* true if NOT returning to gdb after step */ +} stepping; + +/* Function: prepare_to_step + Called from handle_exception to prepare the user program to single-step. + Places a trap instruction after the target instruction, with special + extra handling for branch instructions and for instructions in the + second half-word of a word. + + Returns: True if we should actually execute the instruction; + False if we are going to emulate executing the instruction, + in which case we simply report to GDB that the instruction + has already been executed. */ + +#define TRAP1 0x10f1; /* trap #1 instruction */ +#define NOOP 0x7000; /* noop instruction */ + +static unsigned short trap1 = TRAP1; +static unsigned short noop = NOOP; + +static int +prepare_to_step (continue_p) + int continue_p; /* if this isn't REALLY a single-step (see below) */ +{ + unsigned long pc = registers[PC]; + int branchCode = isBranch ((unsigned char *) pc); + unsigned char *p; + + /* zero out the stepping context + (paranoia -- it should already be zeroed) */ + for (p = (unsigned char *) &stepping; + p < ((unsigned char *) &stepping) + sizeof (stepping); p++) + *p = 0; + + if (branchCode != 0) /* next instruction is a branch */ + { + branchSideEffects ((unsigned char *) pc, branchCode); + if (willBranch ((unsigned char *) pc, branchCode)) + registers[PC] = branchDestination ((unsigned char *) pc, branchCode); + else + registers[PC] = pc + INSTRUCTION_SIZE (pc); + return 0; /* branch "executed" -- just notify GDB */ + } + else if (((int) pc & 2) != 0) /* "second-slot" instruction */ + { + /* insert no-op before pc */ + stepping.noop_addr = pc - 2; + stepping.noop_save = *(unsigned short *) stepping.noop_addr; + *(unsigned short *) stepping.noop_addr = noop; + /* insert trap after pc */ + stepping.trap1_addr = pc + 2; + stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; + *(unsigned short *) stepping.trap1_addr = trap1; + } + else /* "first-slot" instruction */ + { + /* insert trap after pc */ + stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc); + stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; + *(unsigned short *) stepping.trap1_addr = trap1; + } + /* "continue_p" means that we are actually doing a continue, and not + being requested to single-step by GDB. Sometimes we have to do + one single-step before continuing, because the PC is on a half-word + boundary. There's no way to simply resume at such an address. */ + stepping.continue_p = continue_p; + stepping.stepping = 1; /* starting a single-step */ + return 1; +} + +/* Function: finish_from_step + Called from handle_exception to finish up when the user program + returns from a single-step. Replaces the instructions that had + been overwritten by traps or no-ops, + + Returns: True if we should notify GDB that the target stopped. + False if we only single-stepped because we had to before we + could continue (ie. we were trying to continue at a + half-word boundary). In that case don't notify GDB: + just "continue continuing". */ + +static int +finish_from_step (void) +{ + if (stepping.stepping) /* anything to do? */ + { + int continue_p = stepping.continue_p; + unsigned char *p; + + if (stepping.noop_addr) /* replace instr "under" our no-op */ + *(unsigned short *) stepping.noop_addr = stepping.noop_save; + if (stepping.trap1_addr) /* replace instr "under" our trap */ + *(unsigned short *) stepping.trap1_addr = stepping.trap1_save; + if (stepping.trap2_addr) /* ditto our other trap, if any */ + *(unsigned short *) stepping.trap2_addr = stepping.trap2_save; + + for (p = (unsigned char *) &stepping; /* zero out the stepping context */ + p < ((unsigned char *) &stepping) + sizeof (stepping); p++) + *p = 0; + + return !(continue_p); + } + else /* we didn't single-step, therefore this must be a legitimate stop */ + return 1; +} + +struct PSWreg +{ /* separate out the bit flags in the PSW register */ + int pad1:16; + int bsm:1; + int bie:1; + int pad2:5; + int bc:1; + int sm:1; + int ie:1; + int pad3:5; + int c:1; +} *psw; + +/* Upon entry the value for LR to save has been pushed. + We unpush that so that the value for the stack pointer saved is correct. + Upon entry, all other registers are assumed to have not been modified + since the interrupt/trap occured. */ + +asm ("\n\ +stash_registers:\n\ + push r0\n\ + push r1\n\ + seth r1, #shigh(registers)\n\ + add3 r1, r1, #low(registers)\n\ + pop r0 ; r1\n\ + st r0, @(4,r1)\n\ + pop r0 ; r0\n\ + st r0, @r1\n\ + addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\ + st r2, @+r1\n\ + st r3, @+r1\n\ + st r4, @+r1\n\ + st r5, @+r1\n\ + st r6, @+r1\n\ + st r7, @+r1\n\ + st r8, @+r1\n\ + st r9, @+r1\n\ + st r10, @+r1\n\ + st r11, @+r1\n\ + st r12, @+r1\n\ + st r13, @+r1 ; fp\n\ + pop r0 ; lr (r14)\n\ + st r0, @+r1\n\ + st sp, @+r1 ; sp contains right value at this point\n\ + mvfc r0, cr0\n\ + st r0, @+r1 ; cr0 == PSW\n\ + mvfc r0, cr1\n\ + st r0, @+r1 ; cr1 == CBR\n\ + mvfc r0, cr2\n\ + st r0, @+r1 ; cr2 == SPI\n\ + mvfc r0, cr3\n\ + st r0, @+r1 ; cr3 == SPU\n\ + mvfc r0, cr6\n\ + st r0, @+r1 ; cr6 == BPC\n\ + st r0, @+r1 ; PC == BPC\n\ + mvfaclo r0\n\ + st r0, @+r1 ; ACCL\n\ + mvfachi r0\n\ + st r0, @+r1 ; ACCH\n\ + jmp lr"); + +/* C routine to clean up what stash_registers did. + It is called after calling stash_registers. + This is separate from stash_registers as we want to do this in C + but doing stash_registers in C isn't straightforward. */ + +static void +cleanup_stash (void) +{ + psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */ + psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */ + psw->ie = psw->bie; + psw->c = psw->bc; + registers[CBR] = psw->bc; /* fix up pre-trap "C" register */ + +#if 0 /* FIXME: Was in previous version. Necessary? + (Remember that we use the "rte" insn to return from the + trap/interrupt so the values of bsm, bie, bc are important. */ + psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */ +#endif + + /* FIXME: Copied from previous version. This can probably be deleted + since methinks stash_registers has already done this. */ + registers[PC] = registers[BPC]; /* pre-trap PC */ + + /* FIXME: Copied from previous version. Necessary? */ + if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */ + registers[SPU] = registers[R15]; + else + registers[SPI] = registers[R15]; +} + +asm ("\n\ +restore_and_return:\n\ + seth r0, #shigh(registers+8)\n\ + add3 r0, r0, #low(registers+8)\n\ + ld r2, @r0+ ; restore r2\n\ + ld r3, @r0+ ; restore r3\n\ + ld r4, @r0+ ; restore r4\n\ + ld r5, @r0+ ; restore r5\n\ + ld r6, @r0+ ; restore r6\n\ + ld r7, @r0+ ; restore r7\n\ + ld r8, @r0+ ; restore r8\n\ + ld r9, @r0+ ; restore r9\n\ + ld r10, @r0+ ; restore r10\n\ + ld r11, @r0+ ; restore r11\n\ + ld r12, @r0+ ; restore r12\n\ + ld r13, @r0+ ; restore r13\n\ + ld r14, @r0+ ; restore r14\n\ + ld r15, @r0+ ; restore r15\n\ + ld r1, @r0+ ; restore cr0 == PSW\n\ + mvtc r1, cr0\n\ + ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\ + mvtc r1, cr1\n\ + ld r1, @r0+ ; restore cr2 == SPI\n\ + mvtc r1, cr2\n\ + ld r1, @r0+ ; restore cr3 == SPU\n\ + mvtc r1, cr3\n\ + addi r0, #4 ; skip BPC\n\ + ld r1, @r0+ ; restore cr6 (BPC) == PC\n\ + mvtc r1, cr6\n\ + ld r1, @r0+ ; restore ACCL\n\ + mvtaclo r1\n\ + ld r1, @r0+ ; restore ACCH\n\ + mvtachi r1\n\ + seth r0, #shigh(registers)\n\ + add3 r0, r0, #low(registers)\n\ + ld r1, @(4,r0) ; restore r1\n\ + ld r0, @r0 ; restore r0\n\ + rte"); + +/* General trap handler, called after the registers have been stashed. + NUM is the trap/exception number. */ + +static void +process_exception (int num) +{ + cleanup_stash (); + asm volatile ("\n\ + seth r1, #shigh(stackPtr)\n\ + add3 r1, r1, #low(stackPtr)\n\ + ld r15, @r1 ; setup local stack (protect user stack)\n\ + mv r0, %0\n\ + bl handle_exception\n\ + bl restore_and_return"::"r" (num):"r0", "r1"); +} + +void _catchException0 (); + +asm ("\n\ +_catchException0:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #0\n\ + bl process_exception"); + +void _catchException1 (); + +asm ("\n\ +_catchException1:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + bl cleanup_stash\n\ + seth r1, #shigh(stackPtr)\n\ + add3 r1, r1, #low(stackPtr)\n\ + ld r15, @r1 ; setup local stack (protect user stack)\n\ + seth r1, #shigh(registers + 21*4) ; PC\n\ + add3 r1, r1, #low(registers + 21*4)\n\ + ld r0, @r1\n\ + addi r0, #-4 ; back up PC for breakpoint trap.\n\ + st r0, @r1 ; FIXME: what about bp in right slot?\n\ + ldi r0, #1\n\ + bl handle_exception\n\ + bl restore_and_return"); + +void _catchException2 (); + +asm ("\n\ +_catchException2:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #2\n\ + bl process_exception"); + +void _catchException3 (); + +asm ("\n\ +_catchException3:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #3\n\ + bl process_exception"); + +void _catchException4 (); + +asm ("\n\ +_catchException4:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #4\n\ + bl process_exception"); + +void _catchException5 (); + +asm ("\n\ +_catchException5:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #5\n\ + bl process_exception"); + +void _catchException6 (); + +asm ("\n\ +_catchException6:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #6\n\ + bl process_exception"); + +void _catchException7 (); + +asm ("\n\ +_catchException7:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #7\n\ + bl process_exception"); + +void _catchException8 (); + +asm ("\n\ +_catchException8:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #8\n\ + bl process_exception"); + +void _catchException9 (); + +asm ("\n\ +_catchException9:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #9\n\ + bl process_exception"); + +void _catchException10 (); + +asm ("\n\ +_catchException10:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #10\n\ + bl process_exception"); + +void _catchException11 (); + +asm ("\n\ +_catchException11:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #11\n\ + bl process_exception"); + +void _catchException12 (); + +asm ("\n\ +_catchException12:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #12\n\ + bl process_exception"); + +void _catchException13 (); + +asm ("\n\ +_catchException13:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #13\n\ + bl process_exception"); + +void _catchException14 (); + +asm ("\n\ +_catchException14:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #14\n\ + bl process_exception"); + +void _catchException15 (); + +asm ("\n\ +_catchException15:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #15\n\ + bl process_exception"); + +void _catchException16 (); + +asm ("\n\ +_catchException16:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #16\n\ + bl process_exception"); + +void _catchException17 (); + +asm ("\n\ +_catchException17:\n\ + push lr\n\ + bl stash_registers\n\ + ; Note that at this point the pushed value of `lr' has been popped\n\ + ldi r0, #17\n\ + bl process_exception"); + + +/* this function is used to set up exception handlers for tracing and + breakpoints */ +void +set_debug_traps (void) +{ + /* extern void remcomHandler(); */ + int i; + + for (i = 0; i < 18; i++) /* keep a copy of old vectors */ + if (save_vectors[i] == 0) /* only copy them the first time */ + save_vectors[i] = getExceptionHandler (i); + + stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; + + exceptionHandler (0, _catchException0); + exceptionHandler (1, _catchException1); + exceptionHandler (2, _catchException2); + exceptionHandler (3, _catchException3); + exceptionHandler (4, _catchException4); + exceptionHandler (5, _catchException5); + exceptionHandler (6, _catchException6); + exceptionHandler (7, _catchException7); + exceptionHandler (8, _catchException8); + exceptionHandler (9, _catchException9); + exceptionHandler (10, _catchException10); + exceptionHandler (11, _catchException11); + exceptionHandler (12, _catchException12); + exceptionHandler (13, _catchException13); + exceptionHandler (14, _catchException14); + exceptionHandler (15, _catchException15); + exceptionHandler (16, _catchException16); + /* exceptionHandler (17, _catchException17); */ + + initialized = 1; +} + +/* This function will generate a breakpoint exception. It is used at the + beginning of a program to sync up with a debugger and can be used + otherwise as a quick means to stop program execution and "break" into + the debugger. */ + +#define BREAKPOINT() asm volatile (" trap #2"); + +void +breakpoint (void) +{ + if (initialized) + BREAKPOINT (); +} + +/* STDOUT section: + Stuff pertaining to simulating stdout by sending chars to gdb to be echoed. + Functions: gdb_putchar(char ch) + gdb_puts(char *str) + gdb_write(char *str, int len) + gdb_error(char *format, char *parm) + */ + +/* Function: gdb_putchar(int) + Make gdb write a char to stdout. + Returns: the char */ + +static int +gdb_putchar (int ch) +{ + char buf[4]; + + buf[0] = 'O'; + buf[1] = hexchars[ch >> 4]; + buf[2] = hexchars[ch & 0x0F]; + buf[3] = 0; + putpacket (buf); + return ch; +} + +/* Function: gdb_write(char *, int) + Make gdb write n bytes to stdout (not assumed to be null-terminated). + Returns: number of bytes written */ + +static int +gdb_write (char *data, int len) +{ + char *buf, *cpy; + int i; + + buf = remcomOutBuffer; + buf[0] = 'O'; + i = 0; + while (i < len) + { + for (cpy = buf + 1; + i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++) + { + *cpy++ = hexchars[data[i] >> 4]; + *cpy++ = hexchars[data[i] & 0x0F]; + } + *cpy = 0; + putpacket (buf); + } + return len; +} + +/* Function: gdb_puts(char *) + Make gdb write a null-terminated string to stdout. + Returns: the length of the string */ + +static int +gdb_puts (char *str) +{ + return gdb_write (str, strlen (str)); +} + +/* Function: gdb_error(char *, char *) + Send an error message to gdb's stdout. + First string may have 1 (one) optional "%s" in it, which + will cause the optional second string to be inserted. */ + +static void +gdb_error (char *format, char *parm) +{ + char buf[400], *cpy; + int len; + + if (remote_debug) + { + if (format && *format) + len = strlen (format); + else + return; /* empty input */ + + if (parm && *parm) + len += strlen (parm); + + for (cpy = buf; *format;) + { + if (format[0] == '%' && format[1] == 's') /* include second string */ + { + format += 2; /* advance two chars instead of just one */ + while (parm && *parm) + *cpy++ = *parm++; + } + else + *cpy++ = *format++; + } + *cpy = '\0'; + gdb_puts (buf); + } +} + +static unsigned char * +strcpy (unsigned char *dest, const unsigned char *src) +{ + unsigned char *ret = dest; + + if (dest && src) + { + while (*src) + *dest++ = *src++; + *dest = 0; + } + return ret; +} + +static int +strlen (const unsigned char *src) +{ + int ret; + + for (ret = 0; *src; src++) + ret++; + + return ret; +} + +#if 0 +void +exit (code) + int code; +{ + _exit (code); +} + +int +atexit (void *p) +{ + return 0; +} + +void +abort (void) +{ + _exit (1); +} +#endif |