summaryrefslogtreecommitdiff
path: root/gdb/doublest.c
diff options
context:
space:
mode:
authorUlrich Weigand <ulrich.weigand@de.ibm.com>2017-11-06 16:04:03 +0100
committerUlrich Weigand <ulrich.weigand@de.ibm.com>2017-11-06 16:04:03 +0100
commit1cfb73dbb7503d1cfb088c14d1125a5030a1f386 (patch)
treea3446d08987ce758763ba739f3b8cb09d0f260db /gdb/doublest.c
parentb07e9c466ed24af614090ac42d6730a291608f69 (diff)
downloadbinutils-gdb-1cfb73dbb7503d1cfb088c14d1125a5030a1f386.tar.gz
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
Diffstat (limited to 'gdb/doublest.c')
-rw-r--r--gdb/doublest.c898
1 files changed, 0 insertions, 898 deletions
diff --git a/gdb/doublest.c b/gdb/doublest.c
deleted file mode 100644
index 87d3b1fcb73..00000000000
--- a/gdb/doublest.c
+++ /dev/null
@@ -1,898 +0,0 @@
-/* Floating point routines for GDB, the GNU debugger.
-
- Copyright (C) 1986-2017 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-/* Support for converting target fp numbers into host DOUBLEST format. */
-
-/* XXX - This code should really be in libiberty/floatformat.c,
- however configuration issues with libiberty made this very
- difficult to do in the available time. */
-
-#include "defs.h"
-#include "doublest.h"
-#include "floatformat.h"
-#include <math.h> /* ldexp */
-#include <algorithm>
-
-/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
- going to bother with trying to muck around with whether it is defined in
- a system header, what we do if not, etc. */
-#define FLOATFORMAT_CHAR_BIT 8
-
-/* The number of bytes that the largest floating-point type that we
- can convert to doublest will need. */
-#define FLOATFORMAT_LARGEST_BYTES 16
-
-/* Extract a field which starts at START and is LEN bytes long. DATA and
- TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
-static unsigned long
-get_field (const bfd_byte *data, enum floatformat_byteorders order,
- unsigned int total_len, unsigned int start, unsigned int len)
-{
- unsigned long result;
- unsigned int cur_byte;
- int cur_bitshift;
-
- /* Caller must byte-swap words before calling this routine. */
- gdb_assert (order == floatformat_little || order == floatformat_big);
-
- /* Start at the least significant part of the field. */
- if (order == floatformat_little)
- {
- /* We start counting from the other end (i.e, from the high bytes
- rather than the low bytes). As such, we need to be concerned
- with what happens if bit 0 doesn't start on a byte boundary.
- I.e, we need to properly handle the case where total_len is
- not evenly divisible by 8. So we compute ``excess'' which
- represents the number of bits from the end of our starting
- byte needed to get to bit 0. */
- int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
-
- cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
- cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- - FLOATFORMAT_CHAR_BIT;
- }
- else
- {
- cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
- cur_bitshift =
- ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
- }
- if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
- result = *(data + cur_byte) >> (-cur_bitshift);
- else
- result = 0;
- cur_bitshift += FLOATFORMAT_CHAR_BIT;
- if (order == floatformat_little)
- ++cur_byte;
- else
- --cur_byte;
-
- /* Move towards the most significant part of the field. */
- while (cur_bitshift < len)
- {
- result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
- cur_bitshift += FLOATFORMAT_CHAR_BIT;
- switch (order)
- {
- case floatformat_little:
- ++cur_byte;
- break;
- case floatformat_big:
- --cur_byte;
- break;
- }
- }
- if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
- /* Mask out bits which are not part of the field. */
- result &= ((1UL << len) - 1);
- return result;
-}
-
-/* Normalize the byte order of FROM into TO. If no normalization is
- needed then FMT->byteorder is returned and TO is not changed;
- otherwise the format of the normalized form in TO is returned. */
-
-static enum floatformat_byteorders
-floatformat_normalize_byteorder (const struct floatformat *fmt,
- const void *from, void *to)
-{
- const unsigned char *swapin;
- unsigned char *swapout;
- int words;
-
- if (fmt->byteorder == floatformat_little
- || fmt->byteorder == floatformat_big)
- return fmt->byteorder;
-
- words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
- words >>= 2;
-
- swapout = (unsigned char *)to;
- swapin = (const unsigned char *)from;
-
- if (fmt->byteorder == floatformat_vax)
- {
- while (words-- > 0)
- {
- *swapout++ = swapin[1];
- *swapout++ = swapin[0];
- *swapout++ = swapin[3];
- *swapout++ = swapin[2];
- swapin += 4;
- }
- /* This may look weird, since VAX is little-endian, but it is
- easier to translate to big-endian than to little-endian. */
- return floatformat_big;
- }
- else
- {
- gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
-
- while (words-- > 0)
- {
- *swapout++ = swapin[3];
- *swapout++ = swapin[2];
- *swapout++ = swapin[1];
- *swapout++ = swapin[0];
- swapin += 4;
- }
- return floatformat_big;
- }
-}
-
-/* Convert from FMT to a DOUBLEST.
- FROM is the address of the extended float.
- Store the DOUBLEST in *TO. */
-
-static void
-convert_floatformat_to_doublest (const struct floatformat *fmt,
- const void *from,
- DOUBLEST *to)
-{
- unsigned char *ufrom = (unsigned char *) from;
- DOUBLEST dto;
- long exponent;
- unsigned long mant;
- unsigned int mant_bits, mant_off;
- int mant_bits_left;
- int special_exponent; /* It's a NaN, denorm or zero. */
- enum floatformat_byteorders order;
- unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
- enum float_kind kind;
-
- gdb_assert (fmt->totalsize
- <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
-
- /* For non-numbers, reuse libiberty's logic to find the correct
- format. We do not lose any precision in this case by passing
- through a double. */
- kind = floatformat_classify (fmt, (const bfd_byte *) from);
- if (kind == float_infinite || kind == float_nan)
- {
- double dto;
-
- floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
- from, &dto);
- *to = (DOUBLEST) dto;
- return;
- }
-
- order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
-
- if (order != fmt->byteorder)
- ufrom = newfrom;
-
- if (fmt->split_half)
- {
- DOUBLEST dtop, dbot;
-
- floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
- /* Preserve the sign of 0, which is the sign of the top
- half. */
- if (dtop == 0.0)
- {
- *to = dtop;
- return;
- }
- floatformat_to_doublest (fmt->split_half,
- ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
- &dbot);
- *to = dtop + dbot;
- return;
- }
-
- exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len);
- /* Note that if exponent indicates a NaN, we can't really do anything useful
- (not knowing if the host has NaN's, or how to build one). So it will
- end up as an infinity or something close; that is OK. */
-
- mant_bits_left = fmt->man_len;
- mant_off = fmt->man_start;
- dto = 0.0;
-
- special_exponent = exponent == 0 || exponent == fmt->exp_nan;
-
- /* Don't bias NaNs. Use minimum exponent for denorms. For
- simplicity, we don't check for zero as the exponent doesn't matter.
- Note the cast to int; exp_bias is unsigned, so it's important to
- make sure the operation is done in signed arithmetic. */
- if (!special_exponent)
- exponent -= fmt->exp_bias;
- else if (exponent == 0)
- exponent = 1 - fmt->exp_bias;
-
- /* Build the result algebraically. Might go infinite, underflow, etc;
- who cares. */
-
-/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
- increment the exponent by one to account for the integer bit. */
-
- if (!special_exponent)
- {
- if (fmt->intbit == floatformat_intbit_no)
- dto = ldexp (1.0, exponent);
- else
- exponent++;
- }
-
- while (mant_bits_left > 0)
- {
- mant_bits = std::min (mant_bits_left, 32);
-
- mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
-
- dto += ldexp ((double) mant, exponent - mant_bits);
- exponent -= mant_bits;
- mant_off += mant_bits;
- mant_bits_left -= mant_bits;
- }
-
- /* Negate it if negative. */
- if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
- dto = -dto;
- *to = dto;
-}
-
-/* Set a field which starts at START and is LEN bytes long. DATA and
- TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
-static void
-put_field (unsigned char *data, enum floatformat_byteorders order,
- unsigned int total_len, unsigned int start, unsigned int len,
- unsigned long stuff_to_put)
-{
- unsigned int cur_byte;
- int cur_bitshift;
-
- /* Caller must byte-swap words before calling this routine. */
- gdb_assert (order == floatformat_little || order == floatformat_big);
-
- /* Start at the least significant part of the field. */
- if (order == floatformat_little)
- {
- int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
-
- cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
- cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- - FLOATFORMAT_CHAR_BIT;
- }
- else
- {
- cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
- cur_bitshift =
- ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
- }
- if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
- {
- *(data + cur_byte) &=
- ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
- << (-cur_bitshift));
- *(data + cur_byte) |=
- (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
- }
- cur_bitshift += FLOATFORMAT_CHAR_BIT;
- if (order == floatformat_little)
- ++cur_byte;
- else
- --cur_byte;
-
- /* Move towards the most significant part of the field. */
- while (cur_bitshift < len)
- {
- if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
- {
- /* This is the last byte. */
- *(data + cur_byte) &=
- ~((1 << (len - cur_bitshift)) - 1);
- *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
- }
- else
- *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
- & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
- cur_bitshift += FLOATFORMAT_CHAR_BIT;
- if (order == floatformat_little)
- ++cur_byte;
- else
- --cur_byte;
- }
-}
-
-/* The converse: convert the DOUBLEST *FROM to an extended float and
- store where TO points. Neither FROM nor TO have any alignment
- restrictions. */
-
-static void
-convert_doublest_to_floatformat (const struct floatformat *fmt,
- const DOUBLEST *from, void *to)
-{
- DOUBLEST dfrom;
- int exponent;
- DOUBLEST mant;
- unsigned int mant_bits, mant_off;
- int mant_bits_left;
- unsigned char *uto = (unsigned char *) to;
- enum floatformat_byteorders order = fmt->byteorder;
- unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
-
- if (order != floatformat_little)
- order = floatformat_big;
-
- if (order != fmt->byteorder)
- uto = newto;
-
- memcpy (&dfrom, from, sizeof (dfrom));
- memset (uto, 0, floatformat_totalsize_bytes (fmt));
-
- if (fmt->split_half)
- {
- /* Use static volatile to ensure that any excess precision is
- removed via storing in memory, and so the top half really is
- the result of converting to double. */
- static volatile double dtop, dbot;
- DOUBLEST dtopnv, dbotnv;
-
- dtop = (double) dfrom;
- /* If the rounded top half is Inf, the bottom must be 0 not NaN
- or Inf. */
- if (dtop + dtop == dtop && dtop != 0.0)
- dbot = 0.0;
- else
- dbot = (double) (dfrom - (DOUBLEST) dtop);
- dtopnv = dtop;
- dbotnv = dbot;
- floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
- floatformat_from_doublest (fmt->split_half, &dbotnv,
- (uto
- + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
- return;
- }
-
- if (dfrom == 0)
- goto finalize_byteorder; /* Result is zero */
- if (dfrom != dfrom) /* Result is NaN */
- {
- /* From is NaN */
- put_field (uto, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len, fmt->exp_nan);
- /* Be sure it's not infinity, but NaN value is irrel. */
- put_field (uto, order, fmt->totalsize, fmt->man_start,
- fmt->man_len, 1);
- goto finalize_byteorder;
- }
-
- /* If negative, set the sign bit. */
- if (dfrom < 0)
- {
- put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
- dfrom = -dfrom;
- }
-
- if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
- {
- /* Infinity exponent is same as NaN's. */
- put_field (uto, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len, fmt->exp_nan);
- /* Infinity mantissa is all zeroes. */
- put_field (uto, order, fmt->totalsize, fmt->man_start,
- fmt->man_len, 0);
- goto finalize_byteorder;
- }
-
-#ifdef HAVE_LONG_DOUBLE
- mant = frexpl (dfrom, &exponent);
-#else
- mant = frexp (dfrom, &exponent);
-#endif
-
- if (exponent + fmt->exp_bias <= 0)
- {
- /* The value is too small to be expressed in the destination
- type (not enough bits in the exponent. Treat as 0. */
- put_field (uto, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len, 0);
- put_field (uto, order, fmt->totalsize, fmt->man_start,
- fmt->man_len, 0);
- goto finalize_byteorder;
- }
-
- if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
- {
- /* The value is too large to fit into the destination.
- Treat as infinity. */
- put_field (uto, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len, fmt->exp_nan);
- put_field (uto, order, fmt->totalsize, fmt->man_start,
- fmt->man_len, 0);
- goto finalize_byteorder;
- }
-
- put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
- exponent + fmt->exp_bias - 1);
-
- mant_bits_left = fmt->man_len;
- mant_off = fmt->man_start;
- while (mant_bits_left > 0)
- {
- unsigned long mant_long;
-
- mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
-
- mant *= 4294967296.0;
- mant_long = ((unsigned long) mant) & 0xffffffffL;
- mant -= mant_long;
-
- /* If the integer bit is implicit, then we need to discard it.
- If we are discarding a zero, we should be (but are not) creating
- a denormalized number which means adjusting the exponent
- (I think). */
- if (mant_bits_left == fmt->man_len
- && fmt->intbit == floatformat_intbit_no)
- {
- mant_long <<= 1;
- mant_long &= 0xffffffffL;
- /* If we are processing the top 32 mantissa bits of a doublest
- so as to convert to a float value with implied integer bit,
- we will only be putting 31 of those 32 bits into the
- final value due to the discarding of the top bit. In the
- case of a small float value where the number of mantissa
- bits is less than 32, discarding the top bit does not alter
- the number of bits we will be adding to the result. */
- if (mant_bits == 32)
- mant_bits -= 1;
- }
-
- if (mant_bits < 32)
- {
- /* The bits we want are in the most significant MANT_BITS bits of
- mant_long. Move them to the least significant. */
- mant_long >>= 32 - mant_bits;
- }
-
- put_field (uto, order, fmt->totalsize,
- mant_off, mant_bits, mant_long);
- mant_off += mant_bits;
- mant_bits_left -= mant_bits;
- }
-
- finalize_byteorder:
- /* Do we need to byte-swap the words in the result? */
- if (order != fmt->byteorder)
- floatformat_normalize_byteorder (fmt, newto, to);
-}
-
-/* Check if VAL (which is assumed to be a floating point number whose
- format is described by FMT) is negative. */
-
-int
-floatformat_is_negative (const struct floatformat *fmt,
- const bfd_byte *uval)
-{
- enum floatformat_byteorders order;
- unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
-
- gdb_assert (fmt != NULL);
- gdb_assert (fmt->totalsize
- <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
-
- /* An IBM long double (a two element array of double) always takes the
- sign of the first double. */
- if (fmt->split_half)
- fmt = fmt->split_half;
-
- order = floatformat_normalize_byteorder (fmt, uval, newfrom);
-
- if (order != fmt->byteorder)
- uval = newfrom;
-
- return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
-}
-
-/* Check if VAL is "not a number" (NaN) for FMT. */
-
-enum float_kind
-floatformat_classify (const struct floatformat *fmt,
- const bfd_byte *uval)
-{
- long exponent;
- unsigned long mant;
- unsigned int mant_bits, mant_off;
- int mant_bits_left;
- enum floatformat_byteorders order;
- unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
- int mant_zero;
-
- gdb_assert (fmt != NULL);
- gdb_assert (fmt->totalsize
- <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
-
- /* An IBM long double (a two element array of double) can be classified
- by looking at the first double. inf and nan are specified as
- ignoring the second double. zero and subnormal will always have
- the second double 0.0 if the long double is correctly rounded. */
- if (fmt->split_half)
- fmt = fmt->split_half;
-
- order = floatformat_normalize_byteorder (fmt, uval, newfrom);
-
- if (order != fmt->byteorder)
- uval = newfrom;
-
- exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
- fmt->exp_len);
-
- mant_bits_left = fmt->man_len;
- mant_off = fmt->man_start;
-
- mant_zero = 1;
- while (mant_bits_left > 0)
- {
- mant_bits = std::min (mant_bits_left, 32);
-
- mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
-
- /* If there is an explicit integer bit, mask it off. */
- if (mant_off == fmt->man_start
- && fmt->intbit == floatformat_intbit_yes)
- mant &= ~(1 << (mant_bits - 1));
-
- if (mant)
- {
- mant_zero = 0;
- break;
- }
-
- mant_off += mant_bits;
- mant_bits_left -= mant_bits;
- }
-
- /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
- supported. */
- if (! fmt->exp_nan)
- {
- if (mant_zero)
- return float_zero;
- else
- return float_normal;
- }
-
- if (exponent == 0)
- {
- if (mant_zero)
- return float_zero;
- else
- return float_subnormal;
- }
-
- if (exponent == fmt->exp_nan)
- {
- if (mant_zero)
- return float_infinite;
- else
- return float_nan;
- }
-
- return float_normal;
-}
-
-/* Convert the mantissa of VAL (which is assumed to be a floating
- point number whose format is described by FMT) into a hexadecimal
- and store it in a static string. Return a pointer to that string. */
-
-const char *
-floatformat_mantissa (const struct floatformat *fmt,
- const bfd_byte *val)
-{
- unsigned char *uval = (unsigned char *) val;
- unsigned long mant;
- unsigned int mant_bits, mant_off;
- int mant_bits_left;
- static char res[50];
- char buf[9];
- int len;
- enum floatformat_byteorders order;
- unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
-
- gdb_assert (fmt != NULL);
- gdb_assert (fmt->totalsize
- <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
-
- /* For IBM long double (a two element array of double), return the
- mantissa of the first double. The problem with returning the
- actual mantissa from both doubles is that there can be an
- arbitrary number of implied 0's or 1's between the mantissas
- of the first and second double. In any case, this function
- is only used for dumping out nans, and a nan is specified to
- ignore the value in the second double. */
- if (fmt->split_half)
- fmt = fmt->split_half;
-
- order = floatformat_normalize_byteorder (fmt, uval, newfrom);
-
- if (order != fmt->byteorder)
- uval = newfrom;
-
- if (! fmt->exp_nan)
- return 0;
-
- /* Make sure we have enough room to store the mantissa. */
- gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
-
- mant_off = fmt->man_start;
- mant_bits_left = fmt->man_len;
- mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
-
- mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
-
- len = xsnprintf (res, sizeof res, "%lx", mant);
-
- mant_off += mant_bits;
- mant_bits_left -= mant_bits;
-
- while (mant_bits_left > 0)
- {
- mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
-
- xsnprintf (buf, sizeof buf, "%08lx", mant);
- gdb_assert (len + strlen (buf) <= sizeof res);
- strcat (res, buf);
-
- mant_off += 32;
- mant_bits_left -= 32;
- }
-
- return res;
-}
-
-/* Return the precision of the floating point format FMT. */
-
-static int
-floatformat_precision (const struct floatformat *fmt)
-{
- /* Assume the precision of and IBM long double is twice the precision
- of the underlying double. This matches what GCC does. */
- if (fmt->split_half)
- return 2 * floatformat_precision (fmt->split_half);
-
- /* Otherwise, the precision is the size of mantissa in bits,
- including the implicit bit if present. */
- int prec = fmt->man_len;
- if (fmt->intbit == floatformat_intbit_no)
- prec++;
-
- return prec;
-}
-
-
-/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
-
- If the host and target formats agree, we just copy the raw data
- into the appropriate type of variable and return, letting the host
- increase precision as necessary. Otherwise, we call the conversion
- routine and let it do the dirty work. Note that even if the target
- and host floating-point formats match, the length of the types
- might still be different, so the conversion routines must make sure
- to not overrun any buffers. For example, on x86, long double is
- the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
- but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
- 64-bit, for alignment reasons. See comment in store_typed_floating
- for a discussion about zeroing out remaining bytes in the target
- buffer. */
-
-static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
-static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
-static const struct floatformat *host_long_double_format
- = GDB_HOST_LONG_DOUBLE_FORMAT;
-
-/* See doublest.h. */
-
-size_t
-floatformat_totalsize_bytes (const struct floatformat *fmt)
-{
- return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
- / FLOATFORMAT_CHAR_BIT);
-}
-
-void
-floatformat_to_doublest (const struct floatformat *fmt,
- const void *in, DOUBLEST *out)
-{
- gdb_assert (fmt != NULL);
-
- if (fmt == host_float_format)
- {
- float val = 0;
-
- memcpy (&val, in, floatformat_totalsize_bytes (fmt));
- *out = val;
- }
- else if (fmt == host_double_format)
- {
- double val = 0;
-
- memcpy (&val, in, floatformat_totalsize_bytes (fmt));
- *out = val;
- }
- else if (fmt == host_long_double_format)
- {
- long double val = 0;
-
- memcpy (&val, in, floatformat_totalsize_bytes (fmt));
- *out = val;
- }
- else
- convert_floatformat_to_doublest (fmt, in, out);
-}
-
-void
-floatformat_from_doublest (const struct floatformat *fmt,
- const DOUBLEST *in, void *out)
-{
- gdb_assert (fmt != NULL);
-
- if (fmt == host_float_format)
- {
- float val = *in;
-
- memcpy (out, &val, floatformat_totalsize_bytes (fmt));
- }
- else if (fmt == host_double_format)
- {
- double val = *in;
-
- memcpy (out, &val, floatformat_totalsize_bytes (fmt));
- }
- else if (fmt == host_long_double_format)
- {
- long double val = *in;
-
- memcpy (out, &val, floatformat_totalsize_bytes (fmt));
- }
- else
- convert_doublest_to_floatformat (fmt, in, out);
-}
-
-/* Convert the byte-stream ADDR, interpreted as floating-point format FMT,
- to a string, optionally using the print format FORMAT. */
-std::string
-floatformat_to_string (const struct floatformat *fmt,
- const gdb_byte *in, const char *format)
-{
- /* Unless we need to adhere to a specific format, provide special
- output for certain cases. */
- if (format == nullptr)
- {
- /* Detect invalid representations. */
- if (!floatformat_is_valid (fmt, in))
- return "<invalid float value>";
-
- /* Handle NaN and Inf. */
- enum float_kind kind = floatformat_classify (fmt, in);
- if (kind == float_nan)
- {
- const char *sign = floatformat_is_negative (fmt, in)? "-" : "";
- const char *mantissa = floatformat_mantissa (fmt, in);
- return string_printf ("%snan(0x%s)", sign, mantissa);
- }
- else if (kind == float_infinite)
- {
- const char *sign = floatformat_is_negative (fmt, in)? "-" : "";
- return string_printf ("%sinf", sign);
- }
- }
-
- /* Determine the format string to use on the host side. */
- std::string host_format;
- char conversion;
-
- if (format == nullptr)
- {
- /* If no format was specified, print the number using a format string
- where the precision is set to the DECIMAL_DIG value for the given
- floating-point format. This value is computed as
-
- ceil(1 + p * log10(b)),
-
- where p is the precision of the floating-point format in bits, and
- b is the base (which is always 2 for the formats we support). */
- const double log10_2 = .30102999566398119521;
- double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
- int decimal_dig = d_decimal_dig;
- if (decimal_dig < d_decimal_dig)
- decimal_dig++;
-
- host_format = string_printf ("%%.%d", decimal_dig);
- conversion = 'g';
- }
- else
- {
- /* Use the specified format, stripping out the conversion character
- and length modifier, if present. */
- size_t len = strlen (format);
- gdb_assert (len > 1);
- conversion = format[--len];
- gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
- || conversion == 'E' || conversion == 'G');
- if (format[len - 1] == 'L')
- len--;
-
- host_format = std::string (format, len);
- }
-
- /* Add the length modifier and conversion character appropriate for
- handling the host DOUBLEST type. */
-#ifdef HAVE_LONG_DOUBLE
- host_format += 'L';
-#endif
- host_format += conversion;
-
- DOUBLEST doub;
- floatformat_to_doublest (fmt, in, &doub);
- return string_printf (host_format.c_str (), doub);
-}
-
-/* Parse string STRING into a target floating-number of format FMT and
- store it as byte-stream ADDR. Return whether parsing succeeded. */
-bool
-floatformat_from_string (const struct floatformat *fmt, gdb_byte *out,
- const std::string &in)
-{
- DOUBLEST doub;
- int n, num;
-#ifdef HAVE_LONG_DOUBLE
- const char *scan_format = "%Lg%n";
-#else
- const char *scan_format = "%lg%n";
-#endif
- num = sscanf (in.c_str (), scan_format, &doub, &n);
-
- /* The sscanf man page suggests not making any assumptions on the effect
- of %n on the result, so we don't.
- That is why we simply test num == 0. */
- if (num == 0)
- return false;
-
- /* We only accept the whole string. */
- if (in[n])
- return false;
-
- floatformat_from_doublest (fmt, &doub, out);
- return true;
-}