summaryrefslogtreecommitdiff
path: root/gdb/ax-gdb.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
commit071ea11e85eb9d529cc5eb3d35f6247466a21b99 (patch)
tree5deda65b8d7b04d1f4cbc534c3206d328e1267ec /gdb/ax-gdb.c
parent1730ec6b1848f0f32154277f788fb29f88d8475b (diff)
downloadbinutils-gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.gz
Initial creation of sourceware repository
Diffstat (limited to 'gdb/ax-gdb.c')
-rw-r--r--gdb/ax-gdb.c1939
1 files changed, 0 insertions, 1939 deletions
diff --git a/gdb/ax-gdb.c b/gdb/ax-gdb.c
deleted file mode 100644
index cf2d90e58b5..00000000000
--- a/gdb/ax-gdb.c
+++ /dev/null
@@ -1,1939 +0,0 @@
-/* GDB-specific functions for operating on agent expressions
- Copyright 1998 Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-/* $Id$ */
-
-#include "defs.h"
-#include "symtab.h"
-#include "symfile.h"
-#include "gdbtypes.h"
-#include "value.h"
-#include "expression.h"
-#include "command.h"
-#include "gdbcmd.h"
-#include "frame.h"
-#include "ax.h"
-#include "ax-gdb.h"
-
-/* Probably the best way to read this file is to start with the types
- and enums in ax-gdb.h, and then look at gen_expr, towards the
- bottom; that's the main function that looks at the GDB expressions
- and calls everything else to generate code.
-
- I'm beginning to wonder whether it wouldn't be nicer to internally
- generate trees, with types, and then spit out the bytecode in
- linear form afterwards; we could generate fewer `swap', `ext', and
- `zero_ext' bytecodes that way; it would make good constant folding
- easier, too. But at the moment, I think we should be willing to
- pay for the simplicity of this code with less-than-optimal bytecode
- strings.
-
- Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
-
-
-
-/* Prototypes for local functions. */
-
-/* There's a standard order to the arguments of these functions:
- union exp_element ** --- pointer into expression
- struct agent_expr * --- agent expression buffer to generate code into
- struct axs_value * --- describes value left on top of stack */
-
-static struct value *const_var_ref PARAMS ((struct symbol *var));
-static struct value *const_expr PARAMS ((union exp_element **pc));
-static struct value *maybe_const_expr PARAMS ((union exp_element **pc));
-
-static void gen_traced_pop PARAMS ((struct agent_expr *, struct axs_value *));
-
-static void gen_sign_extend PARAMS ((struct agent_expr *, struct type *));
-static void gen_extend PARAMS ((struct agent_expr *, struct type *));
-static void gen_fetch PARAMS ((struct agent_expr *, struct type *));
-static void gen_left_shift PARAMS ((struct agent_expr *, int));
-
-
-static void gen_frame_args_address PARAMS ((struct agent_expr *));
-static void gen_frame_locals_address PARAMS ((struct agent_expr *));
-static void gen_offset PARAMS ((struct agent_expr *ax, int offset));
-static void gen_sym_offset PARAMS ((struct agent_expr *, struct symbol *));
-static void gen_var_ref PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct symbol *var));
-
-
-static void gen_int_literal PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- LONGEST k, struct type *type));
-
-
-static void require_rvalue PARAMS ((struct agent_expr *ax,
- struct axs_value *value));
-static void gen_usual_unary PARAMS ((struct agent_expr *ax,
- struct axs_value *value));
-static int type_wider_than PARAMS ((struct type *type1,
- struct type *type2));
-static struct type *max_type PARAMS ((struct type *type1,
- struct type *type2));
-static void gen_conversion PARAMS ((struct agent_expr *ax,
- struct type *from,
- struct type *to));
-static int is_nontrivial_conversion PARAMS ((struct type *from,
- struct type *to));
-static void gen_usual_arithmetic PARAMS ((struct agent_expr *ax,
- struct axs_value *value1,
- struct axs_value *value2));
-static void gen_integral_promotions PARAMS ((struct agent_expr *ax,
- struct axs_value *value));
-static void gen_cast PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct type *type));
-static void gen_scale PARAMS ((struct agent_expr *ax,
- enum agent_op op,
- struct type *type));
-static void gen_add PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct axs_value *value1,
- struct axs_value *value2,
- char *name));
-static void gen_sub PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct axs_value *value1,
- struct axs_value *value2));
-static void gen_binop PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct axs_value *value1,
- struct axs_value *value2,
- enum agent_op op,
- enum agent_op op_unsigned,
- int may_carry,
- char *name));
-static void gen_logical_not PARAMS ((struct agent_expr *ax,
- struct axs_value *value));
-static void gen_complement PARAMS ((struct agent_expr *ax,
- struct axs_value *value));
-static void gen_deref PARAMS ((struct agent_expr *, struct axs_value *));
-static void gen_address_of PARAMS ((struct agent_expr *, struct axs_value *));
-static int find_field PARAMS ((struct type *type, char *name));
-static void gen_bitfield_ref PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- struct type *type,
- int start, int end));
-static void gen_struct_ref PARAMS ((struct agent_expr *ax,
- struct axs_value *value,
- char *field,
- char *operator_name,
- char *operand_name));
-static void gen_repeat PARAMS ((union exp_element **pc,
- struct agent_expr *ax,
- struct axs_value *value));
-static void gen_sizeof PARAMS ((union exp_element **pc,
- struct agent_expr *ax,
- struct axs_value *value));
-static void gen_expr PARAMS ((union exp_element **pc,
- struct agent_expr *ax,
- struct axs_value *value));
-
-static void print_axs_value PARAMS ((GDB_FILE *f, struct axs_value *value));
-static void agent_command PARAMS ((char *exp, int from_tty));
-
-
-/* Detecting constant expressions. */
-
-/* If the variable reference at *PC is a constant, return its value.
- Otherwise, return zero.
-
- Hey, Wally! How can a variable reference be a constant?
-
- Well, Beav, this function really handles the OP_VAR_VALUE operator,
- not specifically variable references. GDB uses OP_VAR_VALUE to
- refer to any kind of symbolic reference: function names, enum
- elements, and goto labels are all handled through the OP_VAR_VALUE
- operator, even though they're constants. It makes sense given the
- situation.
-
- Gee, Wally, don'cha wonder sometimes if data representations that
- subvert commonly accepted definitions of terms in favor of heavily
- context-specific interpretations are really just a tool of the
- programming hegemony to preserve their power and exclude the
- proletariat? */
-
-static struct value *
-const_var_ref (var)
- struct symbol *var;
-{
- struct type *type = SYMBOL_TYPE (var);
-
- switch (SYMBOL_CLASS (var))
- {
- case LOC_CONST:
- return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
-
- case LOC_LABEL:
- return value_from_longest (type, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
-
- default:
- return 0;
- }
-}
-
-
-/* If the expression starting at *PC has a constant value, return it.
- Otherwise, return zero. If we return a value, then *PC will be
- advanced to the end of it. If we return zero, *PC could be
- anywhere. */
-static struct value *
-const_expr (pc)
- union exp_element **pc;
-{
- enum exp_opcode op = (*pc)->opcode;
- struct value *v1;
-
- switch (op)
- {
- case OP_LONG:
- {
- struct type *type = (*pc)[1].type;
- LONGEST k = (*pc)[2].longconst;
- (*pc) += 4;
- return value_from_longest (type, k);
- }
-
- case OP_VAR_VALUE:
- {
- struct value *v = const_var_ref ((*pc)[2].symbol);
- (*pc) += 4;
- return v;
- }
-
- /* We could add more operators in here. */
-
- case UNOP_NEG:
- (*pc)++;
- v1 = const_expr (pc);
- if (v1)
- return value_neg (v1);
- else
- return 0;
-
- default:
- return 0;
- }
-}
-
-
-/* Like const_expr, but guarantee also that *PC is undisturbed if the
- expression is not constant. */
-static struct value *
-maybe_const_expr (pc)
- union exp_element **pc;
-{
- union exp_element *tentative_pc = *pc;
- struct value *v = const_expr (&tentative_pc);
-
- /* If we got a value, then update the real PC. */
- if (v)
- *pc = tentative_pc;
-
- return v;
-}
-
-
-/* Generating bytecode from GDB expressions: general assumptions */
-
-/* Here are a few general assumptions made throughout the code; if you
- want to make a change that contradicts one of these, then you'd
- better scan things pretty thoroughly.
-
- - We assume that all values occupy one stack element. For example,
- sometimes we'll swap to get at the left argument to a binary
- operator. If we decide that void values should occupy no stack
- elements, or that synthetic arrays (whose size is determined at
- run time, created by the `@' operator) should occupy two stack
- elements (address and length), then this will cause trouble.
-
- - We assume the stack elements are infinitely wide, and that we
- don't have to worry what happens if the user requests an
- operation that is wider than the actual interpreter's stack.
- That is, it's up to the interpreter to handle directly all the
- integer widths the user has access to. (Woe betide the language
- with bignums!)
-
- - We don't support side effects. Thus, we don't have to worry about
- GCC's generalized lvalues, function calls, etc.
-
- - We don't support floating point. Many places where we switch on
- some type don't bother to include cases for floating point; there
- may be even more subtle ways this assumption exists. For
- example, the arguments to % must be integers.
-
- - We assume all subexpressions have a static, unchanging type. If
- we tried to support convenience variables, this would be a
- problem.
-
- - All values on the stack should always be fully zero- or
- sign-extended.
-
- (I wasn't sure whether to choose this or its opposite --- that
- only addresses are assumed extended --- but it turns out that
- neither convention completely eliminates spurious extend
- operations (if everything is always extended, then you have to
- extend after add, because it could overflow; if nothing is
- extended, then you end up producing extends whenever you change
- sizes), and this is simpler.) */
-
-
-/* Generating bytecode from GDB expressions: the `trace' kludge */
-
-/* The compiler in this file is a general-purpose mechanism for
- translating GDB expressions into bytecode. One ought to be able to
- find a million and one uses for it.
-
- However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
- of expediency. Let he who is without sin cast the first stone.
-
- For the data tracing facility, we need to insert `trace' bytecodes
- before each data fetch; this records all the memory that the
- expression touches in the course of evaluation, so that memory will
- be available when the user later tries to evaluate the expression
- in GDB.
-
- This should be done (I think) in a post-processing pass, that walks
- an arbitrary agent expression and inserts `trace' operations at the
- appropriate points. But it's much faster to just hack them
- directly into the code. And since we're in a crunch, that's what
- I've done.
-
- Setting the flag trace_kludge to non-zero enables the code that
- emits the trace bytecodes at the appropriate points. */
-static int trace_kludge;
-
-/* Trace the lvalue on the stack, if it needs it. In either case, pop
- the value. Useful on the left side of a comma, and at the end of
- an expression being used for tracing. */
-static void
-gen_traced_pop (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- if (trace_kludge)
- switch (value->kind)
- {
- case axs_rvalue:
- /* We don't trace rvalues, just the lvalues necessary to
- produce them. So just dispose of this value. */
- ax_simple (ax, aop_pop);
- break;
-
- case axs_lvalue_memory:
- {
- int length = TYPE_LENGTH (value->type);
-
- /* There's no point in trying to use a trace_quick bytecode
- here, since "trace_quick SIZE pop" is three bytes, whereas
- "const8 SIZE trace" is also three bytes, does the same
- thing, and the simplest code which generates that will also
- work correctly for objects with large sizes. */
- ax_const_l (ax, length);
- ax_simple (ax, aop_trace);
- }
- break;
-
- case axs_lvalue_register:
- /* We need to mention the register somewhere in the bytecode,
- so ax_reqs will pick it up and add it to the mask of
- registers used. */
- ax_reg (ax, value->u.reg);
- ax_simple (ax, aop_pop);
- break;
- }
- else
- /* If we're not tracing, just pop the value. */
- ax_simple (ax, aop_pop);
-}
-
-
-
-/* Generating bytecode from GDB expressions: helper functions */
-
-/* Assume that the lower bits of the top of the stack is a value of
- type TYPE, and the upper bits are zero. Sign-extend if necessary. */
-static void
-gen_sign_extend (ax, type)
- struct agent_expr *ax;
- struct type *type;
-{
- /* Do we need to sign-extend this? */
- if (! TYPE_UNSIGNED (type))
- ax_ext (ax, type->length * TARGET_CHAR_BIT);
-}
-
-
-/* Assume the lower bits of the top of the stack hold a value of type
- TYPE, and the upper bits are garbage. Sign-extend or truncate as
- needed. */
-static void
-gen_extend (ax, type)
- struct agent_expr *ax;
- struct type *type;
-{
- int bits = type->length * TARGET_CHAR_BIT;
- /* I just had to. */
- ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
-}
-
-
-/* Assume that the top of the stack contains a value of type "pointer
- to TYPE"; generate code to fetch its value. Note that TYPE is the
- target type, not the pointer type. */
-static void
-gen_fetch (ax, type)
- struct agent_expr *ax;
- struct type *type;
-{
- if (trace_kludge)
- {
- /* Record the area of memory we're about to fetch. */
- ax_trace_quick (ax, TYPE_LENGTH (type));
- }
-
- switch (type->code)
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_ENUM:
- case TYPE_CODE_INT:
- case TYPE_CODE_CHAR:
- /* It's a scalar value, so we know how to dereference it. How
- many bytes long is it? */
- switch (type->length)
- {
- case 8 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref8 ); break;
- case 16 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref16); break;
- case 32 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref32); break;
- case 64 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref64); break;
-
- /* Either our caller shouldn't have asked us to dereference
- that pointer (other code's fault), or we're not
- implementing something we should be (this code's fault).
- In any case, it's a bug the user shouldn't see. */
- default:
- error ("GDB bug: ax-gdb.c (gen_fetch): strange size");
- }
-
- gen_sign_extend (ax, type);
- break;
-
- default:
- /* Either our caller shouldn't have asked us to dereference that
- pointer (other code's fault), or we're not implementing
- something we should be (this code's fault). In any case,
- it's a bug the user shouldn't see. */
- error ("GDB bug: ax-gdb.c (gen_fetch): bad type code");
- }
-}
-
-
-/* Generate code to left shift the top of the stack by DISTANCE bits, or
- right shift it by -DISTANCE bits if DISTANCE < 0. This generates
- unsigned (logical) right shifts. */
-static void
-gen_left_shift (ax, distance)
- struct agent_expr *ax;
- int distance;
-{
- if (distance > 0)
- {
- ax_const_l (ax, distance);
- ax_simple (ax, aop_lsh);
- }
- else if (distance < 0)
- {
- ax_const_l (ax, -distance);
- ax_simple (ax, aop_rsh_unsigned);
- }
-}
-
-
-
-/* Generating bytecode from GDB expressions: symbol references */
-
-/* Generate code to push the base address of the argument portion of
- the top stack frame. */
-static void
-gen_frame_args_address (ax)
- struct agent_expr *ax;
-{
- long frame_reg, frame_offset;
-
- TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
- ax_reg (ax, frame_reg);
- gen_offset (ax, frame_offset);
-}
-
-
-/* Generate code to push the base address of the locals portion of the
- top stack frame. */
-static void
-gen_frame_locals_address (ax)
- struct agent_expr *ax;
-{
- long frame_reg, frame_offset;
-
- TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
- ax_reg (ax, frame_reg);
- gen_offset (ax, frame_offset);
-}
-
-
-/* Generate code to add OFFSET to the top of the stack. Try to
- generate short and readable code. We use this for getting to
- variables on the stack, and structure members. If we were
- programming in ML, it would be clearer why these are the same
- thing. */
-static void
-gen_offset (ax, offset)
- struct agent_expr *ax;
- int offset;
-{
- /* It would suffice to simply push the offset and add it, but this
- makes it easier to read positive and negative offsets in the
- bytecode. */
- if (offset > 0)
- {
- ax_const_l (ax, offset);
- ax_simple (ax, aop_add);
- }
- else if (offset < 0)
- {
- ax_const_l (ax, -offset);
- ax_simple (ax, aop_sub);
- }
-}
-
-
-/* In many cases, a symbol's value is the offset from some other
- address (stack frame, base register, etc.) Generate code to add
- VAR's value to the top of the stack. */
-static void
-gen_sym_offset (ax, var)
- struct agent_expr *ax;
- struct symbol *var;
-{
- gen_offset (ax, SYMBOL_VALUE (var));
-}
-
-
-/* Generate code for a variable reference to AX. The variable is the
- symbol VAR. Set VALUE to describe the result. */
-
-static void
-gen_var_ref (ax, value, var)
- struct agent_expr *ax;
- struct axs_value *value;
- struct symbol *var;
-{
- /* Dereference any typedefs. */
- value->type = check_typedef (SYMBOL_TYPE (var));
-
- /* I'm imitating the code in read_var_value. */
- switch (SYMBOL_CLASS (var))
- {
- case LOC_CONST: /* A constant, like an enum value. */
- ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
- value->kind = axs_rvalue;
- break;
-
- case LOC_LABEL: /* A goto label, being used as a value. */
- ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
- value->kind = axs_rvalue;
- break;
-
- case LOC_CONST_BYTES:
- error ("GDB bug: ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
-
- /* Variable at a fixed location in memory. Easy. */
- case LOC_STATIC:
- /* Push the address of the variable. */
- ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_ARG: /* var lives in argument area of frame */
- gen_frame_args_address (ax);
- gen_sym_offset (ax, var);
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_REF_ARG: /* As above, but the frame slot really
- holds the address of the variable. */
- gen_frame_args_address (ax);
- gen_sym_offset (ax, var);
- /* Don't assume any particular pointer size. */
- gen_fetch (ax, lookup_pointer_type (builtin_type_void));
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_LOCAL: /* var lives in locals area of frame */
- case LOC_LOCAL_ARG:
- gen_frame_locals_address (ax);
- gen_sym_offset (ax, var);
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_BASEREG: /* relative to some base register */
- case LOC_BASEREG_ARG:
- ax_reg (ax, SYMBOL_BASEREG (var));
- gen_sym_offset (ax, var);
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_TYPEDEF:
- error ("Cannot compute value of typedef `%s'.",
- SYMBOL_SOURCE_NAME (var));
- break;
-
- case LOC_BLOCK:
- ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
- value->kind = axs_rvalue;
- break;
-
- case LOC_REGISTER:
- case LOC_REGPARM:
- /* Don't generate any code at all; in the process of treating
- this as an lvalue or rvalue, the caller will generate the
- right code. */
- value->kind = axs_lvalue_register;
- value->u.reg = SYMBOL_VALUE (var);
- break;
-
- /* A lot like LOC_REF_ARG, but the pointer lives directly in a
- register, not on the stack. Simpler than LOC_REGISTER and
- LOC_REGPARM, because it's just like any other case where the
- thing has a real address. */
- case LOC_REGPARM_ADDR:
- ax_reg (ax, SYMBOL_VALUE (var));
- value->kind = axs_lvalue_memory;
- break;
-
- case LOC_UNRESOLVED:
- {
- struct minimal_symbol *msym
- = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
- if (! msym)
- error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
-
- /* Push the address of the variable. */
- ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
- value->kind = axs_lvalue_memory;
- }
- break;
-
- case LOC_OPTIMIZED_OUT:
- error ("The variable `%s' has been optimized out.",
- SYMBOL_SOURCE_NAME (var));
- break;
-
- default:
- error ("Cannot find value of botched symbol `%s'.",
- SYMBOL_SOURCE_NAME (var));
- break;
- }
-}
-
-
-
-/* Generating bytecode from GDB expressions: literals */
-
-static void
-gen_int_literal (ax, value, k, type)
- struct agent_expr *ax;
- struct axs_value *value;
- LONGEST k;
- struct type *type;
-{
- ax_const_l (ax, k);
- value->kind = axs_rvalue;
- value->type = type;
-}
-
-
-
-/* Generating bytecode from GDB expressions: unary conversions, casts */
-
-/* Take what's on the top of the stack (as described by VALUE), and
- try to make an rvalue out of it. Signal an error if we can't do
- that. */
-static void
-require_rvalue (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- switch (value->kind)
- {
- case axs_rvalue:
- /* It's already an rvalue. */
- break;
-
- case axs_lvalue_memory:
- /* The top of stack is the address of the object. Dereference. */
- gen_fetch (ax, value->type);
- break;
-
- case axs_lvalue_register:
- /* There's nothing on the stack, but value->u.reg is the
- register number containing the value.
-
- When we add floating-point support, this is going to have to
- change. What about SPARC register pairs, for example? */
- ax_reg (ax, value->u.reg);
- gen_extend (ax, value->type);
- break;
- }
-
- value->kind = axs_rvalue;
-}
-
-
-/* Assume the top of the stack is described by VALUE, and perform the
- usual unary conversions. This is motivated by ANSI 6.2.2, but of
- course GDB expressions are not ANSI; they're the mishmash union of
- a bunch of languages. Rah.
-
- NOTE! This function promises to produce an rvalue only when the
- incoming value is of an appropriate type. In other words, the
- consumer of the value this function produces may assume the value
- is an rvalue only after checking its type.
-
- The immediate issue is that if the user tries to use a structure or
- union as an operand of, say, the `+' operator, we don't want to try
- to convert that structure to an rvalue; require_rvalue will bomb on
- structs and unions. Rather, we want to simply pass the struct
- lvalue through unchanged, and let `+' raise an error. */
-
-static void
-gen_usual_unary (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- /* We don't have to generate any code for the usual integral
- conversions, since values are always represented as full-width on
- the stack. Should we tweak the type? */
-
- /* Some types require special handling. */
- switch (value->type->code)
- {
- /* Functions get converted to a pointer to the function. */
- case TYPE_CODE_FUNC:
- value->type = lookup_pointer_type (value->type);
- value->kind = axs_rvalue; /* Should always be true, but just in case. */
- break;
-
- /* Arrays get converted to a pointer to their first element, and
- are no longer an lvalue. */
- case TYPE_CODE_ARRAY:
- {
- struct type *elements = TYPE_TARGET_TYPE (value->type);
- value->type = lookup_pointer_type (elements);
- value->kind = axs_rvalue;
- /* We don't need to generate any code; the address of the array
- is also the address of its first element. */
- }
- break;
-
- /* Don't try to convert structures and unions to rvalues. Let the
- consumer signal an error. */
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- return;
-
- /* If the value is an enum, call it an integer. */
- case TYPE_CODE_ENUM:
- value->type = builtin_type_int;
- break;
- }
-
- /* If the value is an lvalue, dereference it. */
- require_rvalue (ax, value);
-}
-
-
-/* Return non-zero iff the type TYPE1 is considered "wider" than the
- type TYPE2, according to the rules described in gen_usual_arithmetic. */
-static int
-type_wider_than (type1, type2)
- struct type *type1, *type2;
-{
- return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
- || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
- && TYPE_UNSIGNED (type1)
- && ! TYPE_UNSIGNED (type2)));
-}
-
-
-/* Return the "wider" of the two types TYPE1 and TYPE2. */
-static struct type *
-max_type (type1, type2)
- struct type *type1, *type2;
-{
- return type_wider_than (type1, type2) ? type1 : type2;
-}
-
-
-/* Generate code to convert a scalar value of type FROM to type TO. */
-static void
-gen_conversion (ax, from, to)
- struct agent_expr *ax;
- struct type *from, *to;
-{
- /* Perhaps there is a more graceful way to state these rules. */
-
- /* If we're converting to a narrower type, then we need to clear out
- the upper bits. */
- if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
- gen_extend (ax, from);
-
- /* If the two values have equal width, but different signednesses,
- then we need to extend. */
- else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
- {
- if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
- gen_extend (ax, to);
- }
-
- /* If we're converting to a wider type, and becoming unsigned, then
- we need to zero out any possible sign bits. */
- else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
- {
- if (TYPE_UNSIGNED (to))
- gen_extend (ax, to);
- }
-}
-
-
-/* Return non-zero iff the type FROM will require any bytecodes to be
- emitted to be converted to the type TO. */
-static int
-is_nontrivial_conversion (from, to)
- struct type *from, *to;
-{
- struct agent_expr *ax = new_agent_expr (0);
- int nontrivial;
-
- /* Actually generate the code, and see if anything came out. At the
- moment, it would be trivial to replicate the code in
- gen_conversion here, but in the future, when we're supporting
- floating point and the like, it may not be. Doing things this
- way allows this function to be independent of the logic in
- gen_conversion. */
- gen_conversion (ax, from, to);
- nontrivial = ax->len > 0;
- free_agent_expr (ax);
- return nontrivial;
-}
-
-
-/* Generate code to perform the "usual arithmetic conversions" (ANSI C
- 6.2.1.5) for the two operands of an arithmetic operator. This
- effectively finds a "least upper bound" type for the two arguments,
- and promotes each argument to that type. *VALUE1 and *VALUE2
- describe the values as they are passed in, and as they are left. */
-static void
-gen_usual_arithmetic (ax, value1, value2)
- struct agent_expr *ax;
- struct axs_value *value1, *value2;
-{
- /* Do the usual binary conversions. */
- if (TYPE_CODE (value1->type) == TYPE_CODE_INT
- && TYPE_CODE (value2->type) == TYPE_CODE_INT)
- {
- /* The ANSI integral promotions seem to work this way: Order the
- integer types by size, and then by signedness: an n-bit
- unsigned type is considered "wider" than an n-bit signed
- type. Promote to the "wider" of the two types, and always
- promote at least to int. */
- struct type *target = max_type (builtin_type_int,
- max_type (value1->type, value2->type));
-
- /* Deal with value2, on the top of the stack. */
- gen_conversion (ax, value2->type, target);
-
- /* Deal with value1, not on the top of the stack. Don't
- generate the `swap' instructions if we're not actually going
- to do anything. */
- if (is_nontrivial_conversion (value1->type, target))
- {
- ax_simple (ax, aop_swap);
- gen_conversion (ax, value1->type, target);
- ax_simple (ax, aop_swap);
- }
-
- value1->type = value2->type = target;
- }
-}
-
-
-/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
- the value on the top of the stack, as described by VALUE. Assume
- the value has integral type. */
-static void
-gen_integral_promotions (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- if (! type_wider_than (value->type, builtin_type_int))
- {
- gen_conversion (ax, value->type, builtin_type_int);
- value->type = builtin_type_int;
- }
- else if (! type_wider_than (value->type, builtin_type_unsigned_int))
- {
- gen_conversion (ax, value->type, builtin_type_unsigned_int);
- value->type = builtin_type_unsigned_int;
- }
-}
-
-
-/* Generate code for a cast to TYPE. */
-static void
-gen_cast (ax, value, type)
- struct agent_expr *ax;
- struct axs_value *value;
- struct type *type;
-{
- /* GCC does allow casts to yield lvalues, so this should be fixed
- before merging these changes into the trunk. */
- require_rvalue (ax, value);
- /* Dereference typedefs. */
- type = check_typedef (type);
-
- switch (type->code)
- {
- case TYPE_CODE_PTR:
- /* It's implementation-defined, and I'll bet this is what GCC
- does. */
- break;
-
- case TYPE_CODE_ARRAY:
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_FUNC:
- error ("Illegal type cast: intended type must be scalar.");
-
- case TYPE_CODE_ENUM:
- /* We don't have to worry about the size of the value, because
- all our integral values are fully sign-extended, and when
- casting pointers we can do anything we like. Is there any
- way for us to actually know what GCC actually does with a
- cast like this? */
- value->type = type;
- break;
-
- case TYPE_CODE_INT:
- gen_conversion (ax, value->type, type);
- break;
-
- case TYPE_CODE_VOID:
- /* We could pop the value, and rely on everyone else to check
- the type and notice that this value doesn't occupy a stack
- slot. But for now, leave the value on the stack, and
- preserve the "value == stack element" assumption. */
- break;
-
- default:
- error ("Casts to requested type are not yet implemented.");
- }
-
- value->type = type;
-}
-
-
-
-/* Generating bytecode from GDB expressions: arithmetic */
-
-/* Scale the integer on the top of the stack by the size of the target
- of the pointer type TYPE. */
-static void
-gen_scale (ax, op, type)
- struct agent_expr *ax;
- enum agent_op op;
- struct type *type;
-{
- struct type *element = TYPE_TARGET_TYPE (type);
-
- if (element->length != 1)
- {
- ax_const_l (ax, element->length);
- ax_simple (ax, op);
- }
-}
-
-
-/* Generate code for an addition; non-trivial because we deal with
- pointer arithmetic. We set VALUE to describe the result value; we
- assume VALUE1 and VALUE2 describe the two operands, and that
- they've undergone the usual binary conversions. Used by both
- BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
-static void
-gen_add (ax, value, value1, value2, name)
- struct agent_expr *ax;
- struct axs_value *value, *value1, *value2;
- char *name;
-{
- /* Is it INT+PTR? */
- if (value1->type->code == TYPE_CODE_INT
- && value2->type->code == TYPE_CODE_PTR)
- {
- /* Swap the values and proceed normally. */
- ax_simple (ax, aop_swap);
- gen_scale (ax, aop_mul, value2->type);
- ax_simple (ax, aop_add);
- gen_extend (ax, value2->type); /* Catch overflow. */
- value->type = value2->type;
- }
-
- /* Is it PTR+INT? */
- else if (value1->type->code == TYPE_CODE_PTR
- && value2->type->code == TYPE_CODE_INT)
- {
- gen_scale (ax, aop_mul, value1->type);
- ax_simple (ax, aop_add);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- }
-
- /* Must be number + number; the usual binary conversions will have
- brought them both to the same width. */
- else if (value1->type->code == TYPE_CODE_INT
- && value2->type->code == TYPE_CODE_INT)
- {
- ax_simple (ax, aop_add);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- }
-
- else
- error ("Illegal combination of types in %s.", name);
-
- value->kind = axs_rvalue;
-}
-
-
-/* Generate code for an addition; non-trivial because we have to deal
- with pointer arithmetic. We set VALUE to describe the result
- value; we assume VALUE1 and VALUE2 describe the two operands, and
- that they've undergone the usual binary conversions. */
-static void
-gen_sub (ax, value, value1, value2)
- struct agent_expr *ax;
- struct axs_value *value, *value1, *value2;
-{
- struct type *element;
-
- if (value1->type->code == TYPE_CODE_PTR)
- {
- /* Is it PTR - INT? */
- if (value2->type->code == TYPE_CODE_INT)
- {
- gen_scale (ax, aop_mul, value1->type);
- ax_simple (ax, aop_sub);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- }
-
- /* Is it PTR - PTR? Strictly speaking, the types ought to
- match, but this is what the normal GDB expression evaluator
- tests for. */
- else if (value2->type->code == TYPE_CODE_PTR
- && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
- == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
- {
- ax_simple (ax, aop_sub);
- gen_scale (ax, aop_div_unsigned, value1->type);
- value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
- }
- else
- error ("\
-First argument of `-' is a pointer, but second argument is neither\n\
-an integer nor a pointer of the same type.");
- }
-
- /* Must be number + number. */
- else if (value1->type->code == TYPE_CODE_INT
- && value2->type->code == TYPE_CODE_INT)
- {
- ax_simple (ax, aop_sub);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- }
-
- else
- error ("Illegal combination of types in subtraction.");
-
- value->kind = axs_rvalue;
-}
-
-/* Generate code for a binary operator that doesn't do pointer magic.
- We set VALUE to describe the result value; we assume VALUE1 and
- VALUE2 describe the two operands, and that they've undergone the
- usual binary conversions. MAY_CARRY should be non-zero iff the
- result needs to be extended. NAME is the English name of the
- operator, used in error messages */
-static void
-gen_binop (ax, value, value1, value2, op, op_unsigned, may_carry, name)
- struct agent_expr *ax;
- struct axs_value *value, *value1, *value2;
- enum agent_op op, op_unsigned;
- int may_carry;
- char *name;
-{
- /* We only handle INT op INT. */
- if ((value1->type->code != TYPE_CODE_INT)
- || (value2->type->code != TYPE_CODE_INT))
- error ("Illegal combination of types in %s.", name);
-
- ax_simple (ax,
- TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
- if (may_carry)
- gen_extend (ax, value1->type); /* catch overflow */
- value->type = value1->type;
- value->kind = axs_rvalue;
-}
-
-
-static void
-gen_logical_not (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- if (TYPE_CODE (value->type) != TYPE_CODE_INT
- && TYPE_CODE (value->type) != TYPE_CODE_PTR)
- error ("Illegal type of operand to `!'.");
-
- gen_usual_unary (ax, value);
- ax_simple (ax, aop_log_not);
- value->type = builtin_type_int;
-}
-
-
-static void
-gen_complement (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- if (TYPE_CODE (value->type) != TYPE_CODE_INT)
- error ("Illegal type of operand to `~'.");
-
- gen_usual_unary (ax, value);
- gen_integral_promotions (ax, value);
- ax_simple (ax, aop_bit_not);
- gen_extend (ax, value->type);
-}
-
-
-
-/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
-
-/* Dereference the value on the top of the stack. */
-static void
-gen_deref (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- /* The caller should check the type, because several operators use
- this, and we don't know what error message to generate. */
- if (value->type->code != TYPE_CODE_PTR)
- error ("GDB bug: ax-gdb.c (gen_deref): expected a pointer");
-
- /* We've got an rvalue now, which is a pointer. We want to yield an
- lvalue, whose address is exactly that pointer. So we don't
- actually emit any code; we just change the type from "Pointer to
- T" to "T", and mark the value as an lvalue in memory. Leave it
- to the consumer to actually dereference it. */
- value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
- value->kind = ((value->type->code == TYPE_CODE_FUNC)
- ? axs_rvalue : axs_lvalue_memory);
-}
-
-
-/* Produce the address of the lvalue on the top of the stack. */
-static void
-gen_address_of (ax, value)
- struct agent_expr *ax;
- struct axs_value *value;
-{
- /* Special case for taking the address of a function. The ANSI
- standard describes this as a special case, too, so this
- arrangement is not without motivation. */
- if (value->type->code == TYPE_CODE_FUNC)
- /* The value's already an rvalue on the stack, so we just need to
- change the type. */
- value->type = lookup_pointer_type (value->type);
- else
- switch (value->kind)
- {
- case axs_rvalue:
- error ("Operand of `&' is an rvalue, which has no address.");
-
- case axs_lvalue_register:
- error ("Operand of `&' is in a register, and has no address.");
-
- case axs_lvalue_memory:
- value->kind = axs_rvalue;
- value->type = lookup_pointer_type (value->type);
- break;
- }
-}
-
-
-/* A lot of this stuff will have to change to support C++. But we're
- not going to deal with that at the moment. */
-
-/* Find the field in the structure type TYPE named NAME, and return
- its index in TYPE's field array. */
-static int
-find_field (type, name)
- struct type *type;
- char *name;
-{
- int i;
-
- CHECK_TYPEDEF (type);
-
- /* Make sure this isn't C++. */
- if (TYPE_N_BASECLASSES (type) != 0)
- error ("GDB bug: ax-gdb.c (find_field): derived classes supported");
-
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- char *this_name = TYPE_FIELD_NAME (type, i);
-
- if (this_name && STREQ (name, this_name))
- return i;
-
- if (this_name[0] == '\0')
- error ("GDB bug: ax-gdb.c (find_field): anonymous unions not supported");
- }
-
- error ("Couldn't find member named `%s' in struct/union `%s'",
- name, type->tag_name);
-
- return 0;
-}
-
-
-/* Generate code to push the value of a bitfield of a structure whose
- address is on the top of the stack. START and END give the
- starting and one-past-ending *bit* numbers of the field within the
- structure. */
-static void
-gen_bitfield_ref (ax, value, type, start, end)
- struct agent_expr *ax;
- struct axs_value *value;
- struct type *type;
- int start, end;
-{
- /* Note that ops[i] fetches 8 << i bits. */
- static enum agent_op ops[]
- = { aop_ref8, aop_ref16, aop_ref32, aop_ref64 };
- static int num_ops = (sizeof (ops) / sizeof (ops[0]));
-
- /* We don't want to touch any byte that the bitfield doesn't
- actually occupy; we shouldn't make any accesses we're not
- explicitly permitted to. We rely here on the fact that the
- bytecode `ref' operators work on unaligned addresses.
-
- It takes some fancy footwork to get the stack to work the way
- we'd like. Say we're retrieving a bitfield that requires three
- fetches. Initially, the stack just contains the address:
- addr
- For the first fetch, we duplicate the address
- addr addr
- then add the byte offset, do the fetch, and shift and mask as
- needed, yielding a fragment of the value, properly aligned for
- the final bitwise or:
- addr frag1
- then we swap, and repeat the process:
- frag1 addr --- address on top
- frag1 addr addr --- duplicate it
- frag1 addr frag2 --- get second fragment
- frag1 frag2 addr --- swap again
- frag1 frag2 frag3 --- get third fragment
- Notice that, since the third fragment is the last one, we don't
- bother duplicating the address this time. Now we have all the
- fragments on the stack, and we can simply `or' them together,
- yielding the final value of the bitfield. */
-
- /* The first and one-after-last bits in the field, but rounded down
- and up to byte boundaries. */
- int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
- int bound_end = (((end + TARGET_CHAR_BIT - 1)
- / TARGET_CHAR_BIT)
- * TARGET_CHAR_BIT);
-
- /* current bit offset within the structure */
- int offset;
-
- /* The index in ops of the opcode we're considering. */
- int op;
-
- /* The number of fragments we generated in the process. Probably
- equal to the number of `one' bits in bytesize, but who cares? */
- int fragment_count;
-
- /* Dereference any typedefs. */
- type = check_typedef (type);
-
- /* Can we fetch the number of bits requested at all? */
- if ((end - start) > ((1 << num_ops) * 8))
- error ("GDB bug: ax-gdb.c (gen_bitfield_ref): bitfield too wide");
-
- /* Note that we know here that we only need to try each opcode once.
- That may not be true on machines with weird byte sizes. */
- offset = bound_start;
- fragment_count = 0;
- for (op = num_ops - 1; op >= 0; op--)
- {
- /* number of bits that ops[op] would fetch */
- int op_size = 8 << op;
-
- /* The stack at this point, from bottom to top, contains zero or
- more fragments, then the address. */
-
- /* Does this fetch fit within the bitfield? */
- if (offset + op_size <= bound_end)
- {
- /* Is this the last fragment? */
- int last_frag = (offset + op_size == bound_end);
-
- if (! last_frag)
- ax_simple (ax, aop_dup); /* keep a copy of the address */
-
- /* Add the offset. */
- gen_offset (ax, offset / TARGET_CHAR_BIT);
-
- if (trace_kludge)
- {
- /* Record the area of memory we're about to fetch. */
- ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
- }
-
- /* Perform the fetch. */
- ax_simple (ax, ops[op]);
-
- /* Shift the bits we have to their proper position.
- gen_left_shift will generate right shifts when the operand
- is negative.
-
- A big-endian field diagram to ponder:
- byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
- +------++------++------++------++------++------++------++------+
- xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
- ^ ^ ^ ^
- bit number 16 32 48 53
- These are bit numbers as supplied by GDB. Note that the
- bit numbers run from right to left once you've fetched the
- value!
-
- A little-endian field diagram to ponder:
- byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
- +------++------++------++------++------++------++------++------+
- xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
- ^ ^ ^ ^ ^
- bit number 48 32 16 4 0
-
- In both cases, the most significant end is on the left
- (i.e. normal numeric writing order), which means that you
- don't go crazy thinking about `left' and `right' shifts.
-
- We don't have to worry about masking yet:
- - If they contain garbage off the least significant end, then we
- must be looking at the low end of the field, and the right
- shift will wipe them out.
- - If they contain garbage off the most significant end, then we
- must be looking at the most significant end of the word, and
- the sign/zero extension will wipe them out.
- - If we're in the interior of the word, then there is no garbage
- on either end, because the ref operators zero-extend. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- gen_left_shift (ax, end - (offset + op_size));
- else
- gen_left_shift (ax, offset - start);
-
- if (! last_frag)
- /* Bring the copy of the address up to the top. */
- ax_simple (ax, aop_swap);
-
- offset += op_size;
- fragment_count++;
- }
- }
-
- /* Generate enough bitwise `or' operations to combine all the
- fragments we left on the stack. */
- while (fragment_count-- > 1)
- ax_simple (ax, aop_bit_or);
-
- /* Sign- or zero-extend the value as appropriate. */
- ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
-
- /* This is *not* an lvalue. Ugh. */
- value->kind = axs_rvalue;
- value->type = type;
-}
-
-
-/* Generate code to reference the member named FIELD of a structure or
- union. The top of the stack, as described by VALUE, should have
- type (pointer to a)* struct/union. OPERATOR_NAME is the name of
- the operator being compiled, and OPERAND_NAME is the kind of thing
- it operates on; we use them in error messages. */
-static void
-gen_struct_ref (ax, value, field, operator_name, operand_name)
- struct agent_expr *ax;
- struct axs_value *value;
- char *field;
- char *operator_name;
- char *operand_name;
-{
- struct type *type;
- int i;
-
- /* Follow pointers until we reach a non-pointer. These aren't the C
- semantics, but they're what the normal GDB evaluator does, so we
- should at least be consistent. */
- while (value->type->code == TYPE_CODE_PTR)
- {
- gen_usual_unary (ax, value);
- gen_deref (ax, value);
- }
- type = value->type;
-
- /* This must yield a structure or a union. */
- if (TYPE_CODE (type) != TYPE_CODE_STRUCT
- && TYPE_CODE (type) != TYPE_CODE_UNION)
- error ("The left operand of `%s' is not a %s.",
- operator_name, operand_name);
-
- /* And it must be in memory; we don't deal with structure rvalues,
- or structures living in registers. */
- if (value->kind != axs_lvalue_memory)
- error ("Structure does not live in memory.");
-
- i = find_field (type, field);
-
- /* Is this a bitfield? */
- if (TYPE_FIELD_PACKED (type, i))
- gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
- TYPE_FIELD_BITPOS (type, i),
- (TYPE_FIELD_BITPOS (type, i)
- + TYPE_FIELD_BITSIZE (type, i)));
- else
- {
- gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
- value->kind = axs_lvalue_memory;
- value->type = TYPE_FIELD_TYPE (type, i);
- }
-}
-
-
-/* Generate code for GDB's magical `repeat' operator.
- LVALUE @ INT creates an array INT elements long, and whose elements
- have the same type as LVALUE, located in memory so that LVALUE is
- its first element. For example, argv[0]@argc gives you the array
- of command-line arguments.
-
- Unfortunately, because we have to know the types before we actually
- have a value for the expression, we can't implement this perfectly
- without changing the type system, having values that occupy two
- stack slots, doing weird things with sizeof, etc. So we require
- the right operand to be a constant expression. */
-static void
-gen_repeat (pc, ax, value)
- union exp_element **pc;
- struct agent_expr *ax;
- struct axs_value *value;
-{
- struct axs_value value1;
- /* We don't want to turn this into an rvalue, so no conversions
- here. */
- gen_expr (pc, ax, &value1);
- if (value1.kind != axs_lvalue_memory)
- error ("Left operand of `@' must be an object in memory.");
-
- /* Evaluate the length; it had better be a constant. */
- {
- struct value *v = const_expr (pc);
- int length;
-
- if (! v)
- error ("Right operand of `@' must be a constant, in agent expressions.");
- if (v->type->code != TYPE_CODE_INT)
- error ("Right operand of `@' must be an integer.");
- length = value_as_long (v);
- if (length <= 0)
- error ("Right operand of `@' must be positive.");
-
- /* The top of the stack is already the address of the object, so
- all we need to do is frob the type of the lvalue. */
- {
- /* FIXME-type-allocation: need a way to free this type when we are
- done with it. */
- struct type *range
- = create_range_type (0, builtin_type_int, 0, length - 1);
- struct type *array = create_array_type (0, value1.type, range);
-
- value->kind = axs_lvalue_memory;
- value->type = array;
- }
- }
-}
-
-
-/* Emit code for the `sizeof' operator.
- *PC should point at the start of the operand expression; we advance it
- to the first instruction after the operand. */
-static void
-gen_sizeof (pc, ax, value)
- union exp_element **pc;
- struct agent_expr *ax;
- struct axs_value *value;
-{
- /* We don't care about the value of the operand expression; we only
- care about its type. However, in the current arrangement, the
- only way to find an expression's type is to generate code for it.
- So we generate code for the operand, and then throw it away,
- replacing it with code that simply pushes its size. */
- int start = ax->len;
- gen_expr (pc, ax, value);
-
- /* Throw away the code we just generated. */
- ax->len = start;
-
- ax_const_l (ax, TYPE_LENGTH (value->type));
- value->kind = axs_rvalue;
- value->type = builtin_type_int;
-}
-
-
-/* Generating bytecode from GDB expressions: general recursive thingy */
-
-/* A gen_expr function written by a Gen-X'er guy.
- Append code for the subexpression of EXPR starting at *POS_P to AX. */
-static void
-gen_expr (pc, ax, value)
- union exp_element **pc;
- struct agent_expr *ax;
- struct axs_value *value;
-{
- /* Used to hold the descriptions of operand expressions. */
- struct axs_value value1, value2;
- enum exp_opcode op = (*pc)[0].opcode;
-
- /* If we're looking at a constant expression, just push its value. */
- {
- struct value *v = maybe_const_expr (pc);
-
- if (v)
- {
- ax_const_l (ax, value_as_long (v));
- value->kind = axs_rvalue;
- value->type = check_typedef (VALUE_TYPE (v));
- return;
- }
- }
-
- /* Otherwise, go ahead and generate code for it. */
- switch (op)
- {
- /* Binary arithmetic operators. */
- case BINOP_ADD:
- case BINOP_SUB:
- case BINOP_MUL:
- case BINOP_DIV:
- case BINOP_REM:
- case BINOP_SUBSCRIPT:
- case BINOP_BITWISE_AND:
- case BINOP_BITWISE_IOR:
- case BINOP_BITWISE_XOR:
- (*pc)++;
- gen_expr (pc, ax, &value1);
- gen_usual_unary (ax, &value1);
- gen_expr (pc, ax, &value2);
- gen_usual_unary (ax, &value2);
- gen_usual_arithmetic (ax, &value1, &value2);
- switch (op)
- {
- case BINOP_ADD:
- gen_add (ax, value, &value1, &value2, "addition");
- break;
- case BINOP_SUB:
- gen_sub (ax, value, &value1, &value2);
- break;
- case BINOP_MUL:
- gen_binop (ax, value, &value1, &value2,
- aop_mul, aop_mul, 1, "multiplication");
- break;
- case BINOP_DIV:
- gen_binop (ax, value, &value1, &value2,
- aop_div_signed, aop_div_unsigned, 1, "division");
- break;
- case BINOP_REM:
- gen_binop (ax, value, &value1, &value2,
- aop_rem_signed, aop_rem_unsigned, 1, "remainder");
- break;
- case BINOP_SUBSCRIPT:
- gen_add (ax, value, &value1, &value2, "array subscripting");
- if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
- error ("Illegal combination of types in array subscripting.");
- gen_deref (ax, value);
- break;
- case BINOP_BITWISE_AND:
- gen_binop (ax, value, &value1, &value2,
- aop_bit_and, aop_bit_and, 0, "bitwise and");
- break;
-
- case BINOP_BITWISE_IOR:
- gen_binop (ax, value, &value1, &value2,
- aop_bit_or, aop_bit_or, 0, "bitwise or");
- break;
-
- case BINOP_BITWISE_XOR:
- gen_binop (ax, value, &value1, &value2,
- aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
- break;
-
- default:
- /* We should only list operators in the outer case statement
- that we actually handle in the inner case statement. */
- error ("GDB bug: ax-gdb.c (gen_expr): op case sets don't match");
- }
- break;
-
- /* Note that we need to be a little subtle about generating code
- for comma. In C, we can do some optimizations here because
- we know the left operand is only being evaluated for effect.
- However, if the tracing kludge is in effect, then we always
- need to evaluate the left hand side fully, so that all the
- variables it mentions get traced. */
- case BINOP_COMMA:
- (*pc)++;
- gen_expr (pc, ax, &value1);
- /* Don't just dispose of the left operand. We might be tracing,
- in which case we want to emit code to trace it if it's an
- lvalue. */
- gen_traced_pop (ax, &value1);
- gen_expr (pc, ax, value);
- /* It's the consumer's responsibility to trace the right operand. */
- break;
-
- case OP_LONG: /* some integer constant */
- {
- struct type *type = (*pc)[1].type;
- LONGEST k = (*pc)[2].longconst;
- (*pc) += 4;
- gen_int_literal (ax, value, k, type);
- }
- break;
-
- case OP_VAR_VALUE:
- gen_var_ref (ax, value, (*pc)[2].symbol);
- (*pc) += 4;
- break;
-
- case OP_REGISTER:
- {
- int reg = (int) (*pc)[1].longconst;
- (*pc) += 3;
- value->kind = axs_lvalue_register;
- value->u.reg = reg;
- value->type = REGISTER_VIRTUAL_TYPE (reg);
- }
- break;
-
- case OP_INTERNALVAR:
- error ("GDB agent expressions cannot use convenience variables.");
-
- /* Weirdo operator: see comments for gen_repeat for details. */
- case BINOP_REPEAT:
- /* Note that gen_repeat handles its own argument evaluation. */
- (*pc)++;
- gen_repeat (pc, ax, value);
- break;
-
- case UNOP_CAST:
- {
- struct type *type = (*pc)[1].type;
- (*pc) += 3;
- gen_expr (pc, ax, value);
- gen_cast (ax, value, type);
- }
- break;
-
- case UNOP_MEMVAL:
- {
- struct type *type = check_typedef ((*pc)[1].type);
- (*pc) += 3;
- gen_expr (pc, ax, value);
- /* I'm not sure I understand UNOP_MEMVAL entirely. I think
- it's just a hack for dealing with minsyms; you take some
- integer constant, pretend it's the address of an lvalue of
- the given type, and dereference it. */
- if (value->kind != axs_rvalue)
- /* This would be weird. */
- error ("GDB bug: ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
- value->type = type;
- value->kind = axs_lvalue_memory;
- }
- break;
-
- case UNOP_NEG:
- (*pc)++;
- /* -FOO is equivalent to 0 - FOO. */
- gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
- gen_usual_unary (ax, &value1); /* shouldn't do much */
- gen_expr (pc, ax, &value2);
- gen_usual_unary (ax, &value2);
- gen_usual_arithmetic (ax, &value1, &value2);
- gen_sub (ax, value, &value1, &value2);
- break;
-
- case UNOP_LOGICAL_NOT:
- (*pc)++;
- gen_expr (pc, ax, value);
- gen_logical_not (ax, value);
- break;
-
- case UNOP_COMPLEMENT:
- (*pc)++;
- gen_expr (pc, ax, value);
- gen_complement (ax, value);
- break;
-
- case UNOP_IND:
- (*pc)++;
- gen_expr (pc, ax, value);
- gen_usual_unary (ax, value);
- if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
- error ("Argument of unary `*' is not a pointer.");
- gen_deref (ax, value);
- break;
-
- case UNOP_ADDR:
- (*pc)++;
- gen_expr (pc, ax, value);
- gen_address_of (ax, value);
- break;
-
- case UNOP_SIZEOF:
- (*pc)++;
- /* Notice that gen_sizeof handles its own operand, unlike most
- of the other unary operator functions. This is because we
- have to throw away the code we generate. */
- gen_sizeof (pc, ax, value);
- break;
-
- case STRUCTOP_STRUCT:
- case STRUCTOP_PTR:
- {
- int length = (*pc)[1].longconst;
- char *name = &(*pc)[2].string;
-
- (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
- gen_expr (pc, ax, value);
- if (op == STRUCTOP_STRUCT)
- gen_struct_ref (ax, value, name, ".", "structure or union");
- else if (op == STRUCTOP_PTR)
- gen_struct_ref (ax, value, name, "->",
- "pointer to a structure or union");
- else
- /* If this `if' chain doesn't handle it, then the case list
- shouldn't mention it, and we shouldn't be here. */
- error ("GDB bug: ax-gdb.c (gen_expr): unhandled struct case");
- }
- break;
-
- case OP_TYPE:
- error ("Attempt to use a type name as an expression.");
-
- default:
- error ("Unsupported operator in expression.");
- }
-}
-
-
-
-#if 0 /* not used */
-/* Generating bytecode from GDB expressions: driver */
-
-/* Given a GDB expression EXPR, produce a string of agent bytecode
- which computes its value. Return the agent expression, and set
- *VALUE to describe its type, and whether it's an lvalue or rvalue. */
-struct agent_expr *
-expr_to_agent (expr, value)
- struct expression *expr;
- struct axs_value *value;
-{
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr ();
- union exp_element *pc;
-
- old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
-
- pc = expr->elts;
- trace_kludge = 0;
- gen_expr (&pc, ax, value);
-
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
-}
-
-
-/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
- string of agent bytecode which will leave its address and size on
- the top of stack. Return the agent expression.
-
- Not sure this function is useful at all. */
-struct agent_expr *
-expr_to_address_and_size (expr)
- struct expression *expr;
-{
- struct axs_value value;
- struct agent_expr *ax = expr_to_agent (expr, &value);
-
- /* Complain if the result is not a memory lvalue. */
- if (value.kind != axs_lvalue_memory)
- {
- free_agent_expr (ax);
- error ("Expression does not denote an object in memory.");
- }
-
- /* Push the object's size on the stack. */
- ax_const_l (ax, TYPE_LENGTH (value.type));
-
- return ax;
-}
-#endif /* 0 */
-
-/* Given a GDB expression EXPR, return bytecode to trace its value.
- The result will use the `trace' and `trace_quick' bytecodes to
- record the value of all memory touched by the expression. The
- caller can then use the ax_reqs function to discover which
- registers it relies upon. */
-struct agent_expr *
-gen_trace_for_expr (scope, expr)
- CORE_ADDR scope;
- struct expression *expr;
-{
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (scope);
- union exp_element *pc;
- struct axs_value value;
-
- old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
-
- pc = expr->elts;
- trace_kludge = 1;
- gen_expr (&pc, ax, &value);
-
- /* Make sure we record the final object, and get rid of it. */
- gen_traced_pop (ax, &value);
-
- /* Oh, and terminate. */
- ax_simple (ax, aop_end);
-
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
-}
-
-
-
-/* The "agent" command, for testing: compile and disassemble an expression. */
-
-static void
-print_axs_value (f, value)
- GDB_FILE *f;
- struct axs_value *value;
-{
- switch (value->kind)
- {
- case axs_rvalue:
- fputs_filtered ("rvalue", f);
- break;
-
- case axs_lvalue_memory:
- fputs_filtered ("memory lvalue", f);
- break;
-
- case axs_lvalue_register:
- fprintf_filtered (f, "register %d lvalue", value->u.reg);
- break;
- }
-
- fputs_filtered (" : ", f);
- type_print (value->type, "", f, -1);
-}
-
-
-static void
-agent_command (exp, from_tty)
- char *exp;
- int from_tty;
-{
- struct cleanup *old_chain = 0;
- struct expression *expr;
- struct agent_expr *agent;
- struct agent_reqs reqs;
- struct frame_info *fi = get_current_frame (); /* need current scope */
-
- /* We don't deal with overlay debugging at the moment. We need to
- think more carefully about this. If you copy this code into
- another command, change the error message; the user shouldn't
- have to know anything about agent expressions. */
- if (overlay_debugging)
- error ("GDB can't do agent expression translation with overlays.");
-
- if (exp == 0)
- error_no_arg ("expression to translate");
-
- expr = parse_expression (exp);
- old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
- agent = gen_trace_for_expr (fi->pc, expr);
- make_cleanup ((make_cleanup_func) free_agent_expr, agent);
- ax_print (gdb_stdout, agent);
- ax_reqs (agent, &reqs);
-
- do_cleanups (old_chain);
- dont_repeat ();
-}
-
-
-/* Initialization code. */
-
-_initialize_ax_gdb ()
-{
- struct cmd_list_element *c;
-
- add_cmd ("agent", class_maintenance, agent_command,
- "Translate an expression into remote agent bytecode.",
- &maintenancelist);
-}