summaryrefslogtreecommitdiff
path: root/bfd/elflink.h
diff options
context:
space:
mode:
authorRichard Henderson <rth@redhat.com>1999-05-03 07:29:11 +0000
committerRichard Henderson <rth@redhat.com>1999-05-03 07:29:11 +0000
commit252b5132c753830d5fd56823373aed85f2a0db63 (patch)
tree1af963bfd8d3e55167b81def4207f175eaff3a56 /bfd/elflink.h
downloadbinutils-gdb-252b5132c753830d5fd56823373aed85f2a0db63.tar.gz
19990502 sourceware importbinu_ss_19990502
Diffstat (limited to 'bfd/elflink.h')
-rw-r--r--bfd/elflink.h6150
1 files changed, 6150 insertions, 0 deletions
diff --git a/bfd/elflink.h b/bfd/elflink.h
new file mode 100644
index 00000000000..32bfab0e802
--- /dev/null
+++ b/bfd/elflink.h
@@ -0,0 +1,6150 @@
+/* ELF linker support.
+ Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
+
+This file is part of BFD, the Binary File Descriptor library.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* ELF linker code. */
+
+/* This struct is used to pass information to routines called via
+ elf_link_hash_traverse which must return failure. */
+
+struct elf_info_failed
+{
+ boolean failed;
+ struct bfd_link_info *info;
+};
+
+static boolean elf_link_add_object_symbols
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean elf_link_add_archive_symbols
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean elf_merge_symbol
+ PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
+ asection **, bfd_vma *, struct elf_link_hash_entry **,
+ boolean *, boolean *, boolean *));
+static boolean elf_export_symbol
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_fix_symbol_flags
+ PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
+static boolean elf_adjust_dynamic_symbol
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_find_version_dependencies
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_find_version_dependencies
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_assign_sym_version
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_renumber_dynsyms
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_collect_hash_codes
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+
+/* Given an ELF BFD, add symbols to the global hash table as
+ appropriate. */
+
+boolean
+elf_bfd_link_add_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ switch (bfd_get_format (abfd))
+ {
+ case bfd_object:
+ return elf_link_add_object_symbols (abfd, info);
+ case bfd_archive:
+ return elf_link_add_archive_symbols (abfd, info);
+ default:
+ bfd_set_error (bfd_error_wrong_format);
+ return false;
+ }
+}
+
+
+/* Add symbols from an ELF archive file to the linker hash table. We
+ don't use _bfd_generic_link_add_archive_symbols because of a
+ problem which arises on UnixWare. The UnixWare libc.so is an
+ archive which includes an entry libc.so.1 which defines a bunch of
+ symbols. The libc.so archive also includes a number of other
+ object files, which also define symbols, some of which are the same
+ as those defined in libc.so.1. Correct linking requires that we
+ consider each object file in turn, and include it if it defines any
+ symbols we need. _bfd_generic_link_add_archive_symbols does not do
+ this; it looks through the list of undefined symbols, and includes
+ any object file which defines them. When this algorithm is used on
+ UnixWare, it winds up pulling in libc.so.1 early and defining a
+ bunch of symbols. This means that some of the other objects in the
+ archive are not included in the link, which is incorrect since they
+ precede libc.so.1 in the archive.
+
+ Fortunately, ELF archive handling is simpler than that done by
+ _bfd_generic_link_add_archive_symbols, which has to allow for a.out
+ oddities. In ELF, if we find a symbol in the archive map, and the
+ symbol is currently undefined, we know that we must pull in that
+ object file.
+
+ Unfortunately, we do have to make multiple passes over the symbol
+ table until nothing further is resolved. */
+
+static boolean
+elf_link_add_archive_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ symindex c;
+ boolean *defined = NULL;
+ boolean *included = NULL;
+ carsym *symdefs;
+ boolean loop;
+
+ if (! bfd_has_map (abfd))
+ {
+ /* An empty archive is a special case. */
+ if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
+ return true;
+ bfd_set_error (bfd_error_no_armap);
+ return false;
+ }
+
+ /* Keep track of all symbols we know to be already defined, and all
+ files we know to be already included. This is to speed up the
+ second and subsequent passes. */
+ c = bfd_ardata (abfd)->symdef_count;
+ if (c == 0)
+ return true;
+ defined = (boolean *) bfd_malloc (c * sizeof (boolean));
+ included = (boolean *) bfd_malloc (c * sizeof (boolean));
+ if (defined == (boolean *) NULL || included == (boolean *) NULL)
+ goto error_return;
+ memset (defined, 0, c * sizeof (boolean));
+ memset (included, 0, c * sizeof (boolean));
+
+ symdefs = bfd_ardata (abfd)->symdefs;
+
+ do
+ {
+ file_ptr last;
+ symindex i;
+ carsym *symdef;
+ carsym *symdefend;
+
+ loop = false;
+ last = -1;
+
+ symdef = symdefs;
+ symdefend = symdef + c;
+ for (i = 0; symdef < symdefend; symdef++, i++)
+ {
+ struct elf_link_hash_entry *h;
+ bfd *element;
+ struct bfd_link_hash_entry *undefs_tail;
+ symindex mark;
+
+ if (defined[i] || included[i])
+ continue;
+ if (symdef->file_offset == last)
+ {
+ included[i] = true;
+ continue;
+ }
+
+ h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
+ false, false, false);
+
+ if (h == NULL)
+ {
+ char *p, *copy;
+
+ /* If this is a default version (the name contains @@),
+ look up the symbol again without the version. The
+ effect is that references to the symbol without the
+ version will be matched by the default symbol in the
+ archive. */
+
+ p = strchr (symdef->name, ELF_VER_CHR);
+ if (p == NULL || p[1] != ELF_VER_CHR)
+ continue;
+
+ copy = bfd_alloc (abfd, p - symdef->name + 1);
+ if (copy == NULL)
+ goto error_return;
+ memcpy (copy, symdef->name, p - symdef->name);
+ copy[p - symdef->name] = '\0';
+
+ h = elf_link_hash_lookup (elf_hash_table (info), copy,
+ false, false, false);
+
+ bfd_release (abfd, copy);
+ }
+
+ if (h == NULL)
+ continue;
+
+ if (h->root.type != bfd_link_hash_undefined)
+ {
+ if (h->root.type != bfd_link_hash_undefweak)
+ defined[i] = true;
+ continue;
+ }
+
+ /* We need to include this archive member. */
+
+ element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
+ if (element == (bfd *) NULL)
+ goto error_return;
+
+ if (! bfd_check_format (element, bfd_object))
+ goto error_return;
+
+ /* Doublecheck that we have not included this object
+ already--it should be impossible, but there may be
+ something wrong with the archive. */
+ if (element->archive_pass != 0)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_return;
+ }
+ element->archive_pass = 1;
+
+ undefs_tail = info->hash->undefs_tail;
+
+ if (! (*info->callbacks->add_archive_element) (info, element,
+ symdef->name))
+ goto error_return;
+ if (! elf_link_add_object_symbols (element, info))
+ goto error_return;
+
+ /* If there are any new undefined symbols, we need to make
+ another pass through the archive in order to see whether
+ they can be defined. FIXME: This isn't perfect, because
+ common symbols wind up on undefs_tail and because an
+ undefined symbol which is defined later on in this pass
+ does not require another pass. This isn't a bug, but it
+ does make the code less efficient than it could be. */
+ if (undefs_tail != info->hash->undefs_tail)
+ loop = true;
+
+ /* Look backward to mark all symbols from this object file
+ which we have already seen in this pass. */
+ mark = i;
+ do
+ {
+ included[mark] = true;
+ if (mark == 0)
+ break;
+ --mark;
+ }
+ while (symdefs[mark].file_offset == symdef->file_offset);
+
+ /* We mark subsequent symbols from this object file as we go
+ on through the loop. */
+ last = symdef->file_offset;
+ }
+ }
+ while (loop);
+
+ free (defined);
+ free (included);
+
+ return true;
+
+ error_return:
+ if (defined != (boolean *) NULL)
+ free (defined);
+ if (included != (boolean *) NULL)
+ free (included);
+ return false;
+}
+
+/* This function is called when we want to define a new symbol. It
+ handles the various cases which arise when we find a definition in
+ a dynamic object, or when there is already a definition in a
+ dynamic object. The new symbol is described by NAME, SYM, PSEC,
+ and PVALUE. We set SYM_HASH to the hash table entry. We set
+ OVERRIDE if the old symbol is overriding a new definition. We set
+ TYPE_CHANGE_OK if it is OK for the type to change. We set
+ SIZE_CHANGE_OK if it is OK for the size to change. By OK to
+ change, we mean that we shouldn't warn if the type or size does
+ change. */
+
+static boolean
+elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
+ override, type_change_ok, size_change_ok)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ const char *name;
+ Elf_Internal_Sym *sym;
+ asection **psec;
+ bfd_vma *pvalue;
+ struct elf_link_hash_entry **sym_hash;
+ boolean *override;
+ boolean *type_change_ok;
+ boolean *size_change_ok;
+{
+ asection *sec;
+ struct elf_link_hash_entry *h;
+ int bind;
+ bfd *oldbfd;
+ boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
+
+ *override = false;
+
+ sec = *psec;
+ bind = ELF_ST_BIND (sym->st_info);
+
+ if (! bfd_is_und_section (sec))
+ h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
+ else
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
+ if (h == NULL)
+ return false;
+ *sym_hash = h;
+
+ /* This code is for coping with dynamic objects, and is only useful
+ if we are doing an ELF link. */
+ if (info->hash->creator != abfd->xvec)
+ return true;
+
+ /* For merging, we only care about real symbols. */
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* If we just created the symbol, mark it as being an ELF symbol.
+ Other than that, there is nothing to do--there is no merge issue
+ with a newly defined symbol--so we just return. */
+
+ if (h->root.type == bfd_link_hash_new)
+ {
+ h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
+ return true;
+ }
+
+ /* OLDBFD is a BFD associated with the existing symbol. */
+
+ switch (h->root.type)
+ {
+ default:
+ oldbfd = NULL;
+ break;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ oldbfd = h->root.u.undef.abfd;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ oldbfd = h->root.u.def.section->owner;
+ break;
+
+ case bfd_link_hash_common:
+ oldbfd = h->root.u.c.p->section->owner;
+ break;
+ }
+
+ /* NEWDYN and OLDDYN indicate whether the new or old symbol,
+ respectively, is from a dynamic object. */
+
+ if ((abfd->flags & DYNAMIC) != 0)
+ newdyn = true;
+ else
+ newdyn = false;
+
+ if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
+ olddyn = false;
+ else
+ olddyn = true;
+
+ /* NEWDEF and OLDDEF indicate whether the new or old symbol,
+ respectively, appear to be a definition rather than reference. */
+
+ if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
+ newdef = false;
+ else
+ newdef = true;
+
+ if (h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak
+ || h->root.type == bfd_link_hash_common)
+ olddef = false;
+ else
+ olddef = true;
+
+ /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
+ symbol, respectively, appears to be a common symbol in a dynamic
+ object. If a symbol appears in an uninitialized section, and is
+ not weak, and is not a function, then it may be a common symbol
+ which was resolved when the dynamic object was created. We want
+ to treat such symbols specially, because they raise special
+ considerations when setting the symbol size: if the symbol
+ appears as a common symbol in a regular object, and the size in
+ the regular object is larger, we must make sure that we use the
+ larger size. This problematic case can always be avoided in C,
+ but it must be handled correctly when using Fortran shared
+ libraries.
+
+ Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
+ likewise for OLDDYNCOMMON and OLDDEF.
+
+ Note that this test is just a heuristic, and that it is quite
+ possible to have an uninitialized symbol in a shared object which
+ is really a definition, rather than a common symbol. This could
+ lead to some minor confusion when the symbol really is a common
+ symbol in some regular object. However, I think it will be
+ harmless. */
+
+ if (newdyn
+ && newdef
+ && (sec->flags & SEC_ALLOC) != 0
+ && (sec->flags & SEC_LOAD) == 0
+ && sym->st_size > 0
+ && bind != STB_WEAK
+ && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
+ newdyncommon = true;
+ else
+ newdyncommon = false;
+
+ if (olddyn
+ && olddef
+ && h->root.type == bfd_link_hash_defined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->root.u.def.section->flags & SEC_ALLOC) != 0
+ && (h->root.u.def.section->flags & SEC_LOAD) == 0
+ && h->size > 0
+ && h->type != STT_FUNC)
+ olddyncommon = true;
+ else
+ olddyncommon = false;
+
+ /* It's OK to change the type if either the existing symbol or the
+ new symbol is weak. */
+
+ if (h->root.type == bfd_link_hash_defweak
+ || h->root.type == bfd_link_hash_undefweak
+ || bind == STB_WEAK)
+ *type_change_ok = true;
+
+ /* It's OK to change the size if either the existing symbol or the
+ new symbol is weak, or if the old symbol is undefined. */
+
+ if (*type_change_ok
+ || h->root.type == bfd_link_hash_undefined)
+ *size_change_ok = true;
+
+ /* If both the old and the new symbols look like common symbols in a
+ dynamic object, set the size of the symbol to the larger of the
+ two. */
+
+ if (olddyncommon
+ && newdyncommon
+ && sym->st_size != h->size)
+ {
+ /* Since we think we have two common symbols, issue a multiple
+ common warning if desired. Note that we only warn if the
+ size is different. If the size is the same, we simply let
+ the old symbol override the new one as normally happens with
+ symbols defined in dynamic objects. */
+
+ if (! ((*info->callbacks->multiple_common)
+ (info, h->root.root.string, oldbfd, bfd_link_hash_common,
+ h->size, abfd, bfd_link_hash_common, sym->st_size)))
+ return false;
+
+ if (sym->st_size > h->size)
+ h->size = sym->st_size;
+
+ *size_change_ok = true;
+ }
+
+ /* If we are looking at a dynamic object, and we have found a
+ definition, we need to see if the symbol was already defined by
+ some other object. If so, we want to use the existing
+ definition, and we do not want to report a multiple symbol
+ definition error; we do this by clobbering *PSEC to be
+ bfd_und_section_ptr.
+
+ We treat a common symbol as a definition if the symbol in the
+ shared library is a function, since common symbols always
+ represent variables; this can cause confusion in principle, but
+ any such confusion would seem to indicate an erroneous program or
+ shared library. We also permit a common symbol in a regular
+ object to override a weak symbol in a shared object. */
+
+ if (newdyn
+ && newdef
+ && (olddef
+ || (h->root.type == bfd_link_hash_common
+ && (bind == STB_WEAK
+ || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
+ {
+ *override = true;
+ newdef = false;
+ newdyncommon = false;
+
+ *psec = sec = bfd_und_section_ptr;
+ *size_change_ok = true;
+
+ /* If we get here when the old symbol is a common symbol, then
+ we are explicitly letting it override a weak symbol or
+ function in a dynamic object, and we don't want to warn about
+ a type change. If the old symbol is a defined symbol, a type
+ change warning may still be appropriate. */
+
+ if (h->root.type == bfd_link_hash_common)
+ *type_change_ok = true;
+ }
+
+ /* Handle the special case of an old common symbol merging with a
+ new symbol which looks like a common symbol in a shared object.
+ We change *PSEC and *PVALUE to make the new symbol look like a
+ common symbol, and let _bfd_generic_link_add_one_symbol will do
+ the right thing. */
+
+ if (newdyncommon
+ && h->root.type == bfd_link_hash_common)
+ {
+ *override = true;
+ newdef = false;
+ newdyncommon = false;
+ *pvalue = sym->st_size;
+ *psec = sec = bfd_com_section_ptr;
+ *size_change_ok = true;
+ }
+
+ /* If the old symbol is from a dynamic object, and the new symbol is
+ a definition which is not from a dynamic object, then the new
+ symbol overrides the old symbol. Symbols from regular files
+ always take precedence over symbols from dynamic objects, even if
+ they are defined after the dynamic object in the link.
+
+ As above, we again permit a common symbol in a regular object to
+ override a definition in a shared object if the shared object
+ symbol is a function or is weak. */
+
+ if (! newdyn
+ && (newdef
+ || (bfd_is_com_section (sec)
+ && (h->root.type == bfd_link_hash_defweak
+ || h->type == STT_FUNC)))
+ && olddyn
+ && olddef
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
+ {
+ /* Change the hash table entry to undefined, and let
+ _bfd_generic_link_add_one_symbol do the right thing with the
+ new definition. */
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+ *size_change_ok = true;
+
+ olddef = false;
+ olddyncommon = false;
+
+ /* We again permit a type change when a common symbol may be
+ overriding a function. */
+
+ if (bfd_is_com_section (sec))
+ *type_change_ok = true;
+
+ /* This union may have been set to be non-NULL when this symbol
+ was seen in a dynamic object. We must force the union to be
+ NULL, so that it is correct for a regular symbol. */
+
+ h->verinfo.vertree = NULL;
+
+ /* In this special case, if H is the target of an indirection,
+ we want the caller to frob with H rather than with the
+ indirect symbol. That will permit the caller to redefine the
+ target of the indirection, rather than the indirect symbol
+ itself. FIXME: This will break the -y option if we store a
+ symbol with a different name. */
+ *sym_hash = h;
+ }
+
+ /* Handle the special case of a new common symbol merging with an
+ old symbol that looks like it might be a common symbol defined in
+ a shared object. Note that we have already handled the case in
+ which a new common symbol should simply override the definition
+ in the shared library. */
+
+ if (! newdyn
+ && bfd_is_com_section (sec)
+ && olddyncommon)
+ {
+ /* It would be best if we could set the hash table entry to a
+ common symbol, but we don't know what to use for the section
+ or the alignment. */
+ if (! ((*info->callbacks->multiple_common)
+ (info, h->root.root.string, oldbfd, bfd_link_hash_common,
+ h->size, abfd, bfd_link_hash_common, sym->st_size)))
+ return false;
+
+ /* If the predumed common symbol in the dynamic object is
+ larger, pretend that the new symbol has its size. */
+
+ if (h->size > *pvalue)
+ *pvalue = h->size;
+
+ /* FIXME: We no longer know the alignment required by the symbol
+ in the dynamic object, so we just wind up using the one from
+ the regular object. */
+
+ olddef = false;
+ olddyncommon = false;
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+
+ *size_change_ok = true;
+ *type_change_ok = true;
+
+ h->verinfo.vertree = NULL;
+ }
+
+ return true;
+}
+
+/* Add symbols from an ELF object file to the linker hash table. */
+
+static boolean
+elf_link_add_object_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
+ const Elf_Internal_Sym *,
+ const char **, flagword *,
+ asection **, bfd_vma *));
+ boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
+ asection *, const Elf_Internal_Rela *));
+ boolean collect;
+ Elf_Internal_Shdr *hdr;
+ size_t symcount;
+ size_t extsymcount;
+ size_t extsymoff;
+ Elf_External_Sym *buf = NULL;
+ struct elf_link_hash_entry **sym_hash;
+ boolean dynamic;
+ bfd_byte *dynver = NULL;
+ Elf_External_Versym *extversym = NULL;
+ Elf_External_Versym *ever;
+ Elf_External_Dyn *dynbuf = NULL;
+ struct elf_link_hash_entry *weaks;
+ Elf_External_Sym *esym;
+ Elf_External_Sym *esymend;
+
+ add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
+ collect = get_elf_backend_data (abfd)->collect;
+
+ if ((abfd->flags & DYNAMIC) == 0)
+ dynamic = false;
+ else
+ {
+ dynamic = true;
+
+ /* You can't use -r against a dynamic object. Also, there's no
+ hope of using a dynamic object which does not exactly match
+ the format of the output file. */
+ if (info->relocateable || info->hash->creator != abfd->xvec)
+ {
+ bfd_set_error (bfd_error_invalid_operation);
+ goto error_return;
+ }
+ }
+
+ /* As a GNU extension, any input sections which are named
+ .gnu.warning.SYMBOL are treated as warning symbols for the given
+ symbol. This differs from .gnu.warning sections, which generate
+ warnings when they are included in an output file. */
+ if (! info->shared)
+ {
+ asection *s;
+
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ const char *name;
+
+ name = bfd_get_section_name (abfd, s);
+ if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
+ {
+ char *msg;
+ bfd_size_type sz;
+
+ name += sizeof ".gnu.warning." - 1;
+
+ /* If this is a shared object, then look up the symbol
+ in the hash table. If it is there, and it is already
+ been defined, then we will not be using the entry
+ from this shared object, so we don't need to warn.
+ FIXME: If we see the definition in a regular object
+ later on, we will warn, but we shouldn't. The only
+ fix is to keep track of what warnings we are supposed
+ to emit, and then handle them all at the end of the
+ link. */
+ if (dynamic && abfd->xvec == info->hash->creator)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name,
+ false, false, true);
+
+ /* FIXME: What about bfd_link_hash_common? */
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ /* We don't want to issue this warning. Clobber
+ the section size so that the warning does not
+ get copied into the output file. */
+ s->_raw_size = 0;
+ continue;
+ }
+ }
+
+ sz = bfd_section_size (abfd, s);
+ msg = (char *) bfd_alloc (abfd, sz + 1);
+ if (msg == NULL)
+ goto error_return;
+
+ if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
+ goto error_return;
+
+ msg[sz] = '\0';
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
+ false, collect, (struct bfd_link_hash_entry **) NULL)))
+ goto error_return;
+
+ if (! info->relocateable)
+ {
+ /* Clobber the section size so that the warning does
+ not get copied into the output file. */
+ s->_raw_size = 0;
+ }
+ }
+ }
+ }
+
+ /* If this is a dynamic object, we always link against the .dynsym
+ symbol table, not the .symtab symbol table. The dynamic linker
+ will only see the .dynsym symbol table, so there is no reason to
+ look at .symtab for a dynamic object. */
+
+ if (! dynamic || elf_dynsymtab (abfd) == 0)
+ hdr = &elf_tdata (abfd)->symtab_hdr;
+ else
+ hdr = &elf_tdata (abfd)->dynsymtab_hdr;
+
+ if (dynamic)
+ {
+ /* Read in any version definitions. */
+
+ if (! _bfd_elf_slurp_version_tables (abfd))
+ goto error_return;
+
+ /* Read in the symbol versions, but don't bother to convert them
+ to internal format. */
+ if (elf_dynversym (abfd) != 0)
+ {
+ Elf_Internal_Shdr *versymhdr;
+
+ versymhdr = &elf_tdata (abfd)->dynversym_hdr;
+ extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
+ if (extversym == NULL)
+ goto error_return;
+ if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
+ || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
+ != versymhdr->sh_size))
+ goto error_return;
+ }
+ }
+
+ symcount = hdr->sh_size / sizeof (Elf_External_Sym);
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ if (elf_bad_symtab (abfd))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ buf = ((Elf_External_Sym *)
+ bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
+ if (buf == NULL && extsymcount != 0)
+ goto error_return;
+
+ /* We store a pointer to the hash table entry for each external
+ symbol. */
+ sym_hash = ((struct elf_link_hash_entry **)
+ bfd_alloc (abfd,
+ extsymcount * sizeof (struct elf_link_hash_entry *)));
+ if (sym_hash == NULL)
+ goto error_return;
+ elf_sym_hashes (abfd) = sym_hash;
+
+ if (! dynamic)
+ {
+ /* If we are creating a shared library, create all the dynamic
+ sections immediately. We need to attach them to something,
+ so we attach them to this BFD, provided it is the right
+ format. FIXME: If there are no input BFD's of the same
+ format as the output, we can't make a shared library. */
+ if (info->shared
+ && ! elf_hash_table (info)->dynamic_sections_created
+ && abfd->xvec == info->hash->creator)
+ {
+ if (! elf_link_create_dynamic_sections (abfd, info))
+ goto error_return;
+ }
+ }
+ else
+ {
+ asection *s;
+ boolean add_needed;
+ const char *name;
+ bfd_size_type oldsize;
+ bfd_size_type strindex;
+
+ /* Find the name to use in a DT_NEEDED entry that refers to this
+ object. If the object has a DT_SONAME entry, we use it.
+ Otherwise, if the generic linker stuck something in
+ elf_dt_name, we use that. Otherwise, we just use the file
+ name. If the generic linker put a null string into
+ elf_dt_name, we don't make a DT_NEEDED entry at all, even if
+ there is a DT_SONAME entry. */
+ add_needed = true;
+ name = bfd_get_filename (abfd);
+ if (elf_dt_name (abfd) != NULL)
+ {
+ name = elf_dt_name (abfd);
+ if (*name == '\0')
+ add_needed = false;
+ }
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s != NULL)
+ {
+ Elf_External_Dyn *extdyn;
+ Elf_External_Dyn *extdynend;
+ int elfsec;
+ unsigned long link;
+
+ dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
+ if (dynbuf == NULL)
+ goto error_return;
+
+ if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
+ (file_ptr) 0, s->_raw_size))
+ goto error_return;
+
+ elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
+ if (elfsec == -1)
+ goto error_return;
+ link = elf_elfsections (abfd)[elfsec]->sh_link;
+
+ extdyn = dynbuf;
+ extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
+ for (; extdyn < extdynend; extdyn++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (abfd, extdyn, &dyn);
+ if (dyn.d_tag == DT_SONAME)
+ {
+ name = bfd_elf_string_from_elf_section (abfd, link,
+ dyn.d_un.d_val);
+ if (name == NULL)
+ goto error_return;
+ }
+ if (dyn.d_tag == DT_NEEDED)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+
+ n = ((struct bfd_link_needed_list *)
+ bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
+ fnm = bfd_elf_string_from_elf_section (abfd, link,
+ dyn.d_un.d_val);
+ if (n == NULL || fnm == NULL)
+ goto error_return;
+ anm = bfd_alloc (abfd, strlen (fnm) + 1);
+ if (anm == NULL)
+ goto error_return;
+ strcpy (anm, fnm);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = &elf_hash_table (info)->needed;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ }
+
+ free (dynbuf);
+ dynbuf = NULL;
+ }
+
+ /* We do not want to include any of the sections in a dynamic
+ object in the output file. We hack by simply clobbering the
+ list of sections in the BFD. This could be handled more
+ cleanly by, say, a new section flag; the existing
+ SEC_NEVER_LOAD flag is not the one we want, because that one
+ still implies that the section takes up space in the output
+ file. */
+ abfd->sections = NULL;
+ abfd->section_count = 0;
+
+ /* If this is the first dynamic object found in the link, create
+ the special sections required for dynamic linking. */
+ if (! elf_hash_table (info)->dynamic_sections_created)
+ {
+ if (! elf_link_create_dynamic_sections (abfd, info))
+ goto error_return;
+ }
+
+ if (add_needed)
+ {
+ /* Add a DT_NEEDED entry for this dynamic object. */
+ oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
+ strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
+ true, false);
+ if (strindex == (bfd_size_type) -1)
+ goto error_return;
+
+ if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
+ {
+ asection *sdyn;
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ /* The hash table size did not change, which means that
+ the dynamic object name was already entered. If we
+ have already included this dynamic object in the
+ link, just ignore it. There is no reason to include
+ a particular dynamic object more than once. */
+ sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
+ ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ dyncon = (Elf_External_Dyn *) sdyn->contents;
+ dynconend = (Elf_External_Dyn *) (sdyn->contents +
+ sdyn->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
+ &dyn);
+ if (dyn.d_tag == DT_NEEDED
+ && dyn.d_un.d_val == strindex)
+ {
+ if (buf != NULL)
+ free (buf);
+ if (extversym != NULL)
+ free (extversym);
+ return true;
+ }
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
+ goto error_return;
+ }
+
+ /* Save the SONAME, if there is one, because sometimes the
+ linker emulation code will need to know it. */
+ if (*name == '\0')
+ name = bfd_get_filename (abfd);
+ elf_dt_name (abfd) = name;
+ }
+
+ if (bfd_seek (abfd,
+ hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
+ SEEK_SET) != 0
+ || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
+ != extsymcount * sizeof (Elf_External_Sym)))
+ goto error_return;
+
+ weaks = NULL;
+
+ ever = extversym != NULL ? extversym + extsymoff : NULL;
+ esymend = buf + extsymcount;
+ for (esym = buf;
+ esym < esymend;
+ esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
+ {
+ Elf_Internal_Sym sym;
+ int bind;
+ bfd_vma value;
+ asection *sec;
+ flagword flags;
+ const char *name;
+ struct elf_link_hash_entry *h;
+ boolean definition;
+ boolean size_change_ok, type_change_ok;
+ boolean new_weakdef;
+ unsigned int old_alignment;
+
+ elf_swap_symbol_in (abfd, esym, &sym);
+
+ flags = BSF_NO_FLAGS;
+ sec = NULL;
+ value = sym.st_value;
+ *sym_hash = NULL;
+
+ bind = ELF_ST_BIND (sym.st_info);
+ if (bind == STB_LOCAL)
+ {
+ /* This should be impossible, since ELF requires that all
+ global symbols follow all local symbols, and that sh_info
+ point to the first global symbol. Unfortunatealy, Irix 5
+ screws this up. */
+ continue;
+ }
+ else if (bind == STB_GLOBAL)
+ {
+ if (sym.st_shndx != SHN_UNDEF
+ && sym.st_shndx != SHN_COMMON)
+ flags = BSF_GLOBAL;
+ else
+ flags = 0;
+ }
+ else if (bind == STB_WEAK)
+ flags = BSF_WEAK;
+ else
+ {
+ /* Leave it up to the processor backend. */
+ }
+
+ if (sym.st_shndx == SHN_UNDEF)
+ sec = bfd_und_section_ptr;
+ else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
+ {
+ sec = section_from_elf_index (abfd, sym.st_shndx);
+ if (sec == NULL)
+ sec = bfd_abs_section_ptr;
+ else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
+ value -= sec->vma;
+ }
+ else if (sym.st_shndx == SHN_ABS)
+ sec = bfd_abs_section_ptr;
+ else if (sym.st_shndx == SHN_COMMON)
+ {
+ sec = bfd_com_section_ptr;
+ /* What ELF calls the size we call the value. What ELF
+ calls the value we call the alignment. */
+ value = sym.st_size;
+ }
+ else
+ {
+ /* Leave it up to the processor backend. */
+ }
+
+ name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
+ if (name == (const char *) NULL)
+ goto error_return;
+
+ if (add_symbol_hook)
+ {
+ if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
+ &value))
+ goto error_return;
+
+ /* The hook function sets the name to NULL if this symbol
+ should be skipped for some reason. */
+ if (name == (const char *) NULL)
+ continue;
+ }
+
+ /* Sanity check that all possibilities were handled. */
+ if (sec == (asection *) NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_return;
+ }
+
+ if (bfd_is_und_section (sec)
+ || bfd_is_com_section (sec))
+ definition = false;
+ else
+ definition = true;
+
+ size_change_ok = false;
+ type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
+ old_alignment = 0;
+ if (info->hash->creator->flavour == bfd_target_elf_flavour)
+ {
+ Elf_Internal_Versym iver;
+ unsigned int vernum = 0;
+ boolean override;
+
+ if (ever != NULL)
+ {
+ _bfd_elf_swap_versym_in (abfd, ever, &iver);
+ vernum = iver.vs_vers & VERSYM_VERSION;
+
+ /* If this is a hidden symbol, or if it is not version
+ 1, we append the version name to the symbol name.
+ However, we do not modify a non-hidden absolute
+ symbol, because it might be the version symbol
+ itself. FIXME: What if it isn't? */
+ if ((iver.vs_vers & VERSYM_HIDDEN) != 0
+ || (vernum > 1 && ! bfd_is_abs_section (sec)))
+ {
+ const char *verstr;
+ int namelen, newlen;
+ char *newname, *p;
+
+ if (sym.st_shndx != SHN_UNDEF)
+ {
+ if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
+ {
+ (*_bfd_error_handler)
+ (_("%s: %s: invalid version %u (max %d)"),
+ bfd_get_filename (abfd), name, vernum,
+ elf_tdata (abfd)->dynverdef_hdr.sh_info);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_return;
+ }
+ else if (vernum > 1)
+ verstr =
+ elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
+ else
+ verstr = "";
+ }
+ else
+ {
+ /* We cannot simply test for the number of
+ entries in the VERNEED section since the
+ numbers for the needed versions do not start
+ at 0. */
+ Elf_Internal_Verneed *t;
+
+ verstr = NULL;
+ for (t = elf_tdata (abfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ if (a->vna_other == vernum)
+ {
+ verstr = a->vna_nodename;
+ break;
+ }
+ }
+ if (a != NULL)
+ break;
+ }
+ if (verstr == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: %s: invalid needed version %d"),
+ bfd_get_filename (abfd), name, vernum);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_return;
+ }
+ }
+
+ namelen = strlen (name);
+ newlen = namelen + strlen (verstr) + 2;
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
+ ++newlen;
+
+ newname = (char *) bfd_alloc (abfd, newlen);
+ if (newname == NULL)
+ goto error_return;
+ strcpy (newname, name);
+ p = newname + namelen;
+ *p++ = ELF_VER_CHR;
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
+ *p++ = ELF_VER_CHR;
+ strcpy (p, verstr);
+
+ name = newname;
+ }
+ }
+
+ if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
+ sym_hash, &override, &type_change_ok,
+ &size_change_ok))
+ goto error_return;
+
+ if (override)
+ definition = false;
+
+ h = *sym_hash;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Remember the old alignment if this is a common symbol, so
+ that we don't reduce the alignment later on. We can't
+ check later, because _bfd_generic_link_add_one_symbol
+ will set a default for the alignment which we want to
+ override. */
+ if (h->root.type == bfd_link_hash_common)
+ old_alignment = h->root.u.c.p->alignment_power;
+
+ if (elf_tdata (abfd)->verdef != NULL
+ && ! override
+ && vernum > 1
+ && definition)
+ h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
+ }
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, flags, sec, value, (const char *) NULL,
+ false, collect, (struct bfd_link_hash_entry **) sym_hash)))
+ goto error_return;
+
+ h = *sym_hash;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ *sym_hash = h;
+
+ new_weakdef = false;
+ if (dynamic
+ && definition
+ && (flags & BSF_WEAK) != 0
+ && ELF_ST_TYPE (sym.st_info) != STT_FUNC
+ && info->hash->creator->flavour == bfd_target_elf_flavour
+ && h->weakdef == NULL)
+ {
+ /* Keep a list of all weak defined non function symbols from
+ a dynamic object, using the weakdef field. Later in this
+ function we will set the weakdef field to the correct
+ value. We only put non-function symbols from dynamic
+ objects on this list, because that happens to be the only
+ time we need to know the normal symbol corresponding to a
+ weak symbol, and the information is time consuming to
+ figure out. If the weakdef field is not already NULL,
+ then this symbol was already defined by some previous
+ dynamic object, and we will be using that previous
+ definition anyhow. */
+
+ h->weakdef = weaks;
+ weaks = h;
+ new_weakdef = true;
+ }
+
+ /* Set the alignment of a common symbol. */
+ if (sym.st_shndx == SHN_COMMON
+ && h->root.type == bfd_link_hash_common)
+ {
+ unsigned int align;
+
+ align = bfd_log2 (sym.st_value);
+ if (align > old_alignment)
+ h->root.u.c.p->alignment_power = align;
+ }
+
+ if (info->hash->creator->flavour == bfd_target_elf_flavour)
+ {
+ int old_flags;
+ boolean dynsym;
+ int new_flag;
+
+ /* Remember the symbol size and type. */
+ if (sym.st_size != 0
+ && (definition || h->size == 0))
+ {
+ if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
+ name, (unsigned long) h->size, (unsigned long) sym.st_size,
+ bfd_get_filename (abfd));
+
+ h->size = sym.st_size;
+ }
+
+ /* If this is a common symbol, then we always want H->SIZE
+ to be the size of the common symbol. The code just above
+ won't fix the size if a common symbol becomes larger. We
+ don't warn about a size change here, because that is
+ covered by --warn-common. */
+ if (h->root.type == bfd_link_hash_common)
+ h->size = h->root.u.c.size;
+
+ if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
+ && (definition || h->type == STT_NOTYPE))
+ {
+ if (h->type != STT_NOTYPE
+ && h->type != ELF_ST_TYPE (sym.st_info)
+ && ! type_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
+ name, h->type, ELF_ST_TYPE (sym.st_info),
+ bfd_get_filename (abfd));
+
+ h->type = ELF_ST_TYPE (sym.st_info);
+ }
+
+ if (sym.st_other != 0
+ && (definition || h->other == 0))
+ h->other = sym.st_other;
+
+ /* Set a flag in the hash table entry indicating the type of
+ reference or definition we just found. Keep a count of
+ the number of dynamic symbols we find. A dynamic symbol
+ is one which is referenced or defined by both a regular
+ object and a shared object. */
+ old_flags = h->elf_link_hash_flags;
+ dynsym = false;
+ if (! dynamic)
+ {
+ if (! definition)
+ {
+ new_flag = ELF_LINK_HASH_REF_REGULAR;
+ if (bind != STB_WEAK)
+ new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
+ }
+ else
+ new_flag = ELF_LINK_HASH_DEF_REGULAR;
+ if (info->shared
+ || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
+ dynsym = true;
+ }
+ else
+ {
+ if (! definition)
+ new_flag = ELF_LINK_HASH_REF_DYNAMIC;
+ else
+ new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
+ if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR)) != 0
+ || (h->weakdef != NULL
+ && ! new_weakdef
+ && h->weakdef->dynindx != -1))
+ dynsym = true;
+ }
+
+ h->elf_link_hash_flags |= new_flag;
+
+ /* If this symbol has a version, and it is the default
+ version, we create an indirect symbol from the default
+ name to the fully decorated name. This will cause
+ external references which do not specify a version to be
+ bound to this version of the symbol. */
+ if (definition)
+ {
+ char *p;
+
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL && p[1] == ELF_VER_CHR)
+ {
+ char *shortname;
+ struct elf_link_hash_entry *hi;
+ boolean override;
+
+ shortname = bfd_hash_allocate (&info->hash->table,
+ p - name + 1);
+ if (shortname == NULL)
+ goto error_return;
+ strncpy (shortname, name, p - name);
+ shortname[p - name] = '\0';
+
+ /* We are going to create a new symbol. Merge it
+ with any existing symbol with this name. For the
+ purposes of the merge, act as though we were
+ defining the symbol we just defined, although we
+ actually going to define an indirect symbol. */
+ type_change_ok = false;
+ size_change_ok = false;
+ if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
+ &value, &hi, &override,
+ &type_change_ok, &size_change_ok))
+ goto error_return;
+
+ if (! override)
+ {
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT,
+ bfd_ind_section_ptr, (bfd_vma) 0, name, false,
+ collect, (struct bfd_link_hash_entry **) &hi)))
+ goto error_return;
+ }
+ else
+ {
+ /* In this case the symbol named SHORTNAME is
+ overriding the indirect symbol we want to
+ add. We were planning on making SHORTNAME an
+ indirect symbol referring to NAME. SHORTNAME
+ is the name without a version. NAME is the
+ fully versioned name, and it is the default
+ version.
+
+ Overriding means that we already saw a
+ definition for the symbol SHORTNAME in a
+ regular object, and it is overriding the
+ symbol defined in the dynamic object.
+
+ When this happens, we actually want to change
+ NAME, the symbol we just added, to refer to
+ SHORTNAME. This will cause references to
+ NAME in the shared object to become
+ references to SHORTNAME in the regular
+ object. This is what we expect when we
+ override a function in a shared object: that
+ the references in the shared object will be
+ mapped to the definition in the regular
+ object. */
+
+ while (hi->root.type == bfd_link_hash_indirect
+ || hi->root.type == bfd_link_hash_warning)
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ h->root.type = bfd_link_hash_indirect;
+ h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
+ if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
+ {
+ h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
+ hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
+ if (hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR))
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info,
+ hi))
+ goto error_return;
+ }
+ }
+
+ /* Now set HI to H, so that the following code
+ will set the other fields correctly. */
+ hi = h;
+ }
+
+ /* If there is a duplicate definition somewhere,
+ then HI may not point to an indirect symbol. We
+ will have reported an error to the user in that
+ case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ struct elf_link_hash_entry *ht;
+
+ /* If the symbol became indirect, then we assume
+ that we have not seen a definition before. */
+ BFD_ASSERT ((hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_DEF_REGULAR))
+ == 0);
+
+ ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ /* Copy down any references that we may have
+ already seen to the symbol which just became
+ indirect. */
+ ht->elf_link_hash_flags |=
+ (hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_REF_DYNAMIC
+ | ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
+
+ /* Copy over the global and procedure linkage table
+ offset entries. These may have been already set
+ up by a check_relocs routine. */
+ if (ht->got.offset == (bfd_vma) -1)
+ {
+ ht->got.offset = hi->got.offset;
+ hi->got.offset = (bfd_vma) -1;
+ }
+ BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
+
+ if (ht->plt.offset == (bfd_vma) -1)
+ {
+ ht->plt.offset = hi->plt.offset;
+ hi->plt.offset = (bfd_vma) -1;
+ }
+ BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
+
+ if (ht->dynindx == -1)
+ {
+ ht->dynindx = hi->dynindx;
+ ht->dynstr_index = hi->dynstr_index;
+ hi->dynindx = -1;
+ hi->dynstr_index = 0;
+ }
+ BFD_ASSERT (hi->dynindx == -1);
+
+ /* FIXME: There may be other information to copy
+ over for particular targets. */
+
+ /* See if the new flags lead us to realize that
+ the symbol must be dynamic. */
+ if (! dynsym)
+ {
+ if (! dynamic)
+ {
+ if (info->shared
+ || ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_DYNAMIC)
+ != 0))
+ dynsym = true;
+ }
+ else
+ {
+ if ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0)
+ dynsym = true;
+ }
+ }
+ }
+
+ /* We also need to define an indirection from the
+ nondefault version of the symbol. */
+
+ shortname = bfd_hash_allocate (&info->hash->table,
+ strlen (name));
+ if (shortname == NULL)
+ goto error_return;
+ strncpy (shortname, name, p - name);
+ strcpy (shortname + (p - name), p + 1);
+
+ /* Once again, merge with any existing symbol. */
+ type_change_ok = false;
+ size_change_ok = false;
+ if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
+ &value, &hi, &override,
+ &type_change_ok, &size_change_ok))
+ goto error_return;
+
+ if (override)
+ {
+ /* Here SHORTNAME is a versioned name, so we
+ don't expect to see the type of override we
+ do in the case above. */
+ (*_bfd_error_handler)
+ (_("%s: warning: unexpected redefinition of `%s'"),
+ bfd_get_filename (abfd), shortname);
+ }
+ else
+ {
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT,
+ bfd_ind_section_ptr, (bfd_vma) 0, name, false,
+ collect, (struct bfd_link_hash_entry **) &hi)))
+ goto error_return;
+
+ /* If there is a duplicate definition somewhere,
+ then HI may not point to an indirect symbol.
+ We will have reported an error to the user in
+ that case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ /* If the symbol became indirect, then we
+ assume that we have not seen a definition
+ before. */
+ BFD_ASSERT ((hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_DEF_REGULAR))
+ == 0);
+
+ /* Copy down any references that we may have
+ already seen to the symbol which just
+ became indirect. */
+ h->elf_link_hash_flags |=
+ (hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_REF_DYNAMIC
+ | ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
+
+ /* Copy over the global and procedure linkage
+ table offset entries. These may have been
+ already set up by a check_relocs routine. */
+ if (h->got.offset == (bfd_vma) -1)
+ {
+ h->got.offset = hi->got.offset;
+ hi->got.offset = (bfd_vma) -1;
+ }
+ BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
+
+ if (h->plt.offset == (bfd_vma) -1)
+ {
+ h->plt.offset = hi->plt.offset;
+ hi->plt.offset = (bfd_vma) -1;
+ }
+ BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
+
+ if (h->dynindx == -1)
+ {
+ h->dynindx = hi->dynindx;
+ h->dynstr_index = hi->dynstr_index;
+ hi->dynindx = -1;
+ hi->dynstr_index = 0;
+ }
+ BFD_ASSERT (hi->dynindx == -1);
+
+ /* FIXME: There may be other information to
+ copy over for particular targets. */
+
+ /* See if the new flags lead us to realize
+ that the symbol must be dynamic. */
+ if (! dynsym)
+ {
+ if (! dynamic)
+ {
+ if (info->shared
+ || ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_DYNAMIC)
+ != 0))
+ dynsym = true;
+ }
+ else
+ {
+ if ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0)
+ dynsym = true;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (dynsym && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ goto error_return;
+ if (h->weakdef != NULL
+ && ! new_weakdef
+ && h->weakdef->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info,
+ h->weakdef))
+ goto error_return;
+ }
+ }
+ }
+ }
+
+ /* Now set the weakdefs field correctly for all the weak defined
+ symbols we found. The only way to do this is to search all the
+ symbols. Since we only need the information for non functions in
+ dynamic objects, that's the only time we actually put anything on
+ the list WEAKS. We need this information so that if a regular
+ object refers to a symbol defined weakly in a dynamic object, the
+ real symbol in the dynamic object is also put in the dynamic
+ symbols; we also must arrange for both symbols to point to the
+ same memory location. We could handle the general case of symbol
+ aliasing, but a general symbol alias can only be generated in
+ assembler code, handling it correctly would be very time
+ consuming, and other ELF linkers don't handle general aliasing
+ either. */
+ while (weaks != NULL)
+ {
+ struct elf_link_hash_entry *hlook;
+ asection *slook;
+ bfd_vma vlook;
+ struct elf_link_hash_entry **hpp;
+ struct elf_link_hash_entry **hppend;
+
+ hlook = weaks;
+ weaks = hlook->weakdef;
+ hlook->weakdef = NULL;
+
+ BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
+ || hlook->root.type == bfd_link_hash_defweak
+ || hlook->root.type == bfd_link_hash_common
+ || hlook->root.type == bfd_link_hash_indirect);
+ slook = hlook->root.u.def.section;
+ vlook = hlook->root.u.def.value;
+
+ hpp = elf_sym_hashes (abfd);
+ hppend = hpp + extsymcount;
+ for (; hpp < hppend; hpp++)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = *hpp;
+ if (h != NULL && h != hlook
+ && h->root.type == bfd_link_hash_defined
+ && h->root.u.def.section == slook
+ && h->root.u.def.value == vlook)
+ {
+ hlook->weakdef = h;
+
+ /* If the weak definition is in the list of dynamic
+ symbols, make sure the real definition is put there
+ as well. */
+ if (hlook->dynindx != -1
+ && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ goto error_return;
+ }
+
+ /* If the real definition is in the list of dynamic
+ symbols, make sure the weak definition is put there
+ as well. If we don't do this, then the dynamic
+ loader might not merge the entries for the real
+ definition and the weak definition. */
+ if (h->dynindx != -1
+ && hlook->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
+ goto error_return;
+ }
+
+ break;
+ }
+ }
+ }
+
+ if (buf != NULL)
+ {
+ free (buf);
+ buf = NULL;
+ }
+
+ if (extversym != NULL)
+ {
+ free (extversym);
+ extversym = NULL;
+ }
+
+ /* If this object is the same format as the output object, and it is
+ not a shared library, then let the backend look through the
+ relocs.
+
+ This is required to build global offset table entries and to
+ arrange for dynamic relocs. It is not required for the
+ particular common case of linking non PIC code, even when linking
+ against shared libraries, but unfortunately there is no way of
+ knowing whether an object file has been compiled PIC or not.
+ Looking through the relocs is not particularly time consuming.
+ The problem is that we must either (1) keep the relocs in memory,
+ which causes the linker to require additional runtime memory or
+ (2) read the relocs twice from the input file, which wastes time.
+ This would be a good case for using mmap.
+
+ I have no idea how to handle linking PIC code into a file of a
+ different format. It probably can't be done. */
+ check_relocs = get_elf_backend_data (abfd)->check_relocs;
+ if (! dynamic
+ && abfd->xvec == info->hash->creator
+ && check_relocs != NULL)
+ {
+ asection *o;
+
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ boolean ok;
+
+ if ((o->flags & SEC_RELOC) == 0
+ || o->reloc_count == 0
+ || ((info->strip == strip_all || info->strip == strip_debugger)
+ && (o->flags & SEC_DEBUGGING) != 0)
+ || bfd_is_abs_section (o->output_section))
+ continue;
+
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (abfd, o, (PTR) NULL,
+ (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (internal_relocs == NULL)
+ goto error_return;
+
+ ok = (*check_relocs) (abfd, info, o, internal_relocs);
+
+ if (! info->keep_memory)
+ free (internal_relocs);
+
+ if (! ok)
+ goto error_return;
+ }
+ }
+
+ /* If this is a non-traditional, non-relocateable link, try to
+ optimize the handling of the .stab/.stabstr sections. */
+ if (! dynamic
+ && ! info->relocateable
+ && ! info->traditional_format
+ && info->hash->creator->flavour == bfd_target_elf_flavour
+ && (info->strip != strip_all && info->strip != strip_debugger))
+ {
+ asection *stab, *stabstr;
+
+ stab = bfd_get_section_by_name (abfd, ".stab");
+ if (stab != NULL)
+ {
+ stabstr = bfd_get_section_by_name (abfd, ".stabstr");
+
+ if (stabstr != NULL)
+ {
+ struct bfd_elf_section_data *secdata;
+
+ secdata = elf_section_data (stab);
+ if (! _bfd_link_section_stabs (abfd,
+ &elf_hash_table (info)->stab_info,
+ stab, stabstr,
+ &secdata->stab_info))
+ goto error_return;
+ }
+ }
+ }
+
+ return true;
+
+ error_return:
+ if (buf != NULL)
+ free (buf);
+ if (dynbuf != NULL)
+ free (dynbuf);
+ if (dynver != NULL)
+ free (dynver);
+ if (extversym != NULL)
+ free (extversym);
+ return false;
+}
+
+/* Create some sections which will be filled in with dynamic linking
+ information. ABFD is an input file which requires dynamic sections
+ to be created. The dynamic sections take up virtual memory space
+ when the final executable is run, so we need to create them before
+ addresses are assigned to the output sections. We work out the
+ actual contents and size of these sections later. */
+
+boolean
+elf_link_create_dynamic_sections (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ flagword flags;
+ register asection *s;
+ struct elf_link_hash_entry *h;
+ struct elf_backend_data *bed;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ return true;
+
+ /* Make sure that all dynamic sections use the same input BFD. */
+ if (elf_hash_table (info)->dynobj == NULL)
+ elf_hash_table (info)->dynobj = abfd;
+ else
+ abfd = elf_hash_table (info)->dynobj;
+
+ /* Note that we set the SEC_IN_MEMORY flag for all of these
+ sections. */
+ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
+ | SEC_IN_MEMORY | SEC_LINKER_CREATED);
+
+ /* A dynamically linked executable has a .interp section, but a
+ shared library does not. */
+ if (! info->shared)
+ {
+ s = bfd_make_section (abfd, ".interp");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
+ return false;
+ }
+
+ /* Create sections to hold version informations. These are removed
+ if they are not needed. */
+ s = bfd_make_section (abfd, ".gnu.version_d");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".gnu.version");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, 1))
+ return false;
+
+ s = bfd_make_section (abfd, ".gnu.version_r");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".dynsym");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".dynstr");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
+ return false;
+
+ /* Create a strtab to hold the dynamic symbol names. */
+ if (elf_hash_table (info)->dynstr == NULL)
+ {
+ elf_hash_table (info)->dynstr = elf_stringtab_init ();
+ if (elf_hash_table (info)->dynstr == NULL)
+ return false;
+ }
+
+ s = bfd_make_section (abfd, ".dynamic");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ /* The special symbol _DYNAMIC is always set to the start of the
+ .dynamic section. This call occurs before we have processed the
+ symbols for any dynamic object, so we don't have to worry about
+ overriding a dynamic definition. We could set _DYNAMIC in a
+ linker script, but we only want to define it if we are, in fact,
+ creating a .dynamic section. We don't want to define it if there
+ is no .dynamic section, since on some ELF platforms the start up
+ code examines it to decide how to initialize the process. */
+ h = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
+ (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (info->shared
+ && ! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ s = bfd_make_section (abfd, ".hash");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ /* Let the backend create the rest of the sections. This lets the
+ backend set the right flags. The backend will normally create
+ the .got and .plt sections. */
+ bed = get_elf_backend_data (abfd);
+ if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
+ return false;
+
+ elf_hash_table (info)->dynamic_sections_created = true;
+
+ return true;
+}
+
+/* Add an entry to the .dynamic table. */
+
+boolean
+elf_add_dynamic_entry (info, tag, val)
+ struct bfd_link_info *info;
+ bfd_vma tag;
+ bfd_vma val;
+{
+ Elf_Internal_Dyn dyn;
+ bfd *dynobj;
+ asection *s;
+ size_t newsize;
+ bfd_byte *newcontents;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ s = bfd_get_section_by_name (dynobj, ".dynamic");
+ BFD_ASSERT (s != NULL);
+
+ newsize = s->_raw_size + sizeof (Elf_External_Dyn);
+ newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
+ if (newcontents == NULL)
+ return false;
+
+ dyn.d_tag = tag;
+ dyn.d_un.d_val = val;
+ elf_swap_dyn_out (dynobj, &dyn,
+ (Elf_External_Dyn *) (newcontents + s->_raw_size));
+
+ s->_raw_size = newsize;
+ s->contents = newcontents;
+
+ return true;
+}
+
+
+/* Read and swap the relocs for a section. They may have been cached.
+ If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
+ they are used as buffers to read into. They are known to be large
+ enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
+ value is allocated using either malloc or bfd_alloc, according to
+ the KEEP_MEMORY argument. */
+
+Elf_Internal_Rela *
+NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
+ keep_memory)
+ bfd *abfd;
+ asection *o;
+ PTR external_relocs;
+ Elf_Internal_Rela *internal_relocs;
+ boolean keep_memory;
+{
+ Elf_Internal_Shdr *rel_hdr;
+ PTR alloc1 = NULL;
+ Elf_Internal_Rela *alloc2 = NULL;
+
+ if (elf_section_data (o)->relocs != NULL)
+ return elf_section_data (o)->relocs;
+
+ if (o->reloc_count == 0)
+ return NULL;
+
+ rel_hdr = &elf_section_data (o)->rel_hdr;
+
+ if (internal_relocs == NULL)
+ {
+ size_t size;
+
+ size = o->reloc_count * sizeof (Elf_Internal_Rela);
+ if (keep_memory)
+ internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
+ else
+ internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
+ if (internal_relocs == NULL)
+ goto error_return;
+ }
+
+ if (external_relocs == NULL)
+ {
+ alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
+ if (alloc1 == NULL)
+ goto error_return;
+ external_relocs = alloc1;
+ }
+
+ if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
+ || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
+ != rel_hdr->sh_size))
+ goto error_return;
+
+ /* Swap in the relocs. For convenience, we always produce an
+ Elf_Internal_Rela array; if the relocs are Rel, we set the addend
+ to 0. */
+ if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+ Elf_External_Rel *erelend;
+ Elf_Internal_Rela *irela;
+
+ erel = (Elf_External_Rel *) external_relocs;
+ erelend = erel + o->reloc_count;
+ irela = internal_relocs;
+ for (; erel < erelend; erel++, irela++)
+ {
+ Elf_Internal_Rel irel;
+
+ elf_swap_reloc_in (abfd, erel, &irel);
+ irela->r_offset = irel.r_offset;
+ irela->r_info = irel.r_info;
+ irela->r_addend = 0;
+ }
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+ Elf_External_Rela *erelaend;
+ Elf_Internal_Rela *irela;
+
+ BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
+
+ erela = (Elf_External_Rela *) external_relocs;
+ erelaend = erela + o->reloc_count;
+ irela = internal_relocs;
+ for (; erela < erelaend; erela++, irela++)
+ elf_swap_reloca_in (abfd, erela, irela);
+ }
+
+ /* Cache the results for next time, if we can. */
+ if (keep_memory)
+ elf_section_data (o)->relocs = internal_relocs;
+
+ if (alloc1 != NULL)
+ free (alloc1);
+
+ /* Don't free alloc2, since if it was allocated we are passing it
+ back (under the name of internal_relocs). */
+
+ return internal_relocs;
+
+ error_return:
+ if (alloc1 != NULL)
+ free (alloc1);
+ if (alloc2 != NULL)
+ free (alloc2);
+ return NULL;
+}
+
+
+/* Record an assignment to a symbol made by a linker script. We need
+ this in case some dynamic object refers to this symbol. */
+
+/*ARGSUSED*/
+boolean
+NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ const char *name;
+ boolean provide;
+{
+ struct elf_link_hash_entry *h;
+
+ if (info->hash->creator->flavour != bfd_target_elf_flavour)
+ return true;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
+ if (h == NULL)
+ return false;
+
+ if (h->root.type == bfd_link_hash_new)
+ h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
+
+ /* If this symbol is being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular
+ object, then mark it as undefined so that the generic linker will
+ force the correct value. */
+ if (provide
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ h->root.type = bfd_link_hash_undefined;
+
+ /* If this symbol is not being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular object,
+ then clear out any version information because the symbol will not be
+ associated with the dynamic object any more. */
+ if (!provide
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ h->verinfo.verdef = NULL;
+
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_REF_DYNAMIC)) != 0
+ || info->shared)
+ && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ /* If this is a weak defined symbol, and we know a corresponding
+ real symbol from the same dynamic object, make sure the real
+ symbol is also made into a dynamic symbol. */
+ if (h->weakdef != NULL
+ && h->weakdef->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* This structure is used to pass information to
+ elf_link_assign_sym_version. */
+
+struct elf_assign_sym_version_info
+{
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* Version tree. */
+ struct bfd_elf_version_tree *verdefs;
+ /* Whether we are exporting all dynamic symbols. */
+ boolean export_dynamic;
+ /* Whether we removed any symbols from the dynamic symbol table. */
+ boolean removed_dynamic;
+ /* Whether we had a failure. */
+ boolean failed;
+};
+
+/* This structure is used to pass information to
+ elf_link_find_version_dependencies. */
+
+struct elf_find_verdep_info
+{
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* The number of dependencies. */
+ unsigned int vers;
+ /* Whether we had a failure. */
+ boolean failed;
+};
+
+/* Array used to determine the number of hash table buckets to use
+ based on the number of symbols there are. If there are fewer than
+ 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
+ fewer than 37 we use 17 buckets, and so forth. We never use more
+ than 32771 buckets. */
+
+static const size_t elf_buckets[] =
+{
+ 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
+ 16411, 32771, 0
+};
+
+/* Compute bucket count for hashing table. We do not use a static set
+ of possible tables sizes anymore. Instead we determine for all
+ possible reasonable sizes of the table the outcome (i.e., the
+ number of collisions etc) and choose the best solution. The
+ weighting functions are not too simple to allow the table to grow
+ without bounds. Instead one of the weighting factors is the size.
+ Therefore the result is always a good payoff between few collisions
+ (= short chain lengths) and table size. */
+static size_t
+compute_bucket_count (info)
+ struct bfd_link_info *info;
+{
+ size_t dynsymcount = elf_hash_table (info)->dynsymcount;
+ size_t best_size;
+ unsigned long int *hashcodes;
+ unsigned long int *hashcodesp;
+ unsigned long int i;
+
+ /* Compute the hash values for all exported symbols. At the same
+ time store the values in an array so that we could use them for
+ optimizations. */
+ hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
+ * sizeof (unsigned long int));
+ if (hashcodes == NULL)
+ return 0;
+ hashcodesp = hashcodes;
+
+ /* Put all hash values in HASHCODES. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_collect_hash_codes, &hashcodesp);
+
+/* We have a problem here. The following code to optimize the table
+ size requires an integer type with more the 32 bits. If
+ BFD_HOST_U_64_BIT is set we know about such a type. */
+#ifdef BFD_HOST_U_64_BIT
+ if (info->optimize == true)
+ {
+ unsigned long int nsyms = hashcodesp - hashcodes;
+ size_t minsize;
+ size_t maxsize;
+ BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
+ unsigned long int *counts ;
+
+ /* Possible optimization parameters: if we have NSYMS symbols we say
+ that the hashing table must at least have NSYMS/4 and at most
+ 2*NSYMS buckets. */
+ minsize = nsyms / 4;
+ if (minsize == 0)
+ minsize = 1;
+ best_size = maxsize = nsyms * 2;
+
+ /* Create array where we count the collisions in. We must use bfd_malloc
+ since the size could be large. */
+ counts = (unsigned long int *) bfd_malloc (maxsize
+ * sizeof (unsigned long int));
+ if (counts == NULL)
+ {
+ free (hashcodes);
+ return 0;
+ }
+
+ /* Compute the "optimal" size for the hash table. The criteria is a
+ minimal chain length. The minor criteria is (of course) the size
+ of the table. */
+ for (i = minsize; i < maxsize; ++i)
+ {
+ /* Walk through the array of hashcodes and count the collisions. */
+ BFD_HOST_U_64_BIT max;
+ unsigned long int j;
+ unsigned long int fact;
+
+ memset (counts, '\0', i * sizeof (unsigned long int));
+
+ /* Determine how often each hash bucket is used. */
+ for (j = 0; j < nsyms; ++j)
+ ++counts[hashcodes[j] % i];
+
+ /* For the weight function we need some information about the
+ pagesize on the target. This is information need not be 100%
+ accurate. Since this information is not available (so far) we
+ define it here to a reasonable default value. If it is crucial
+ to have a better value some day simply define this value. */
+# ifndef BFD_TARGET_PAGESIZE
+# define BFD_TARGET_PAGESIZE (4096)
+# endif
+
+ /* We in any case need 2 + NSYMS entries for the size values and
+ the chains. */
+ max = (2 + nsyms) * (ARCH_SIZE / 8);
+
+# if 1
+ /* Variant 1: optimize for short chains. We add the squares
+ of all the chain lengths (which favous many small chain
+ over a few long chains). */
+ for (j = 0; j < i; ++j)
+ max += counts[j] * counts[j];
+
+ /* This adds penalties for the overall size of the table. */
+ fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
+ max *= fact * fact;
+# else
+ /* Variant 2: Optimize a lot more for small table. Here we
+ also add squares of the size but we also add penalties for
+ empty slots (the +1 term). */
+ for (j = 0; j < i; ++j)
+ max += (1 + counts[j]) * (1 + counts[j]);
+
+ /* The overall size of the table is considered, but not as
+ strong as in variant 1, where it is squared. */
+ fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
+ max *= fact;
+# endif
+
+ /* Compare with current best results. */
+ if (max < best_chlen)
+ {
+ best_chlen = max;
+ best_size = i;
+ }
+ }
+
+ free (counts);
+ }
+ else
+#endif /* defined (BFD_HOST_U_64_BIT) */
+ {
+ /* This is the fallback solution if no 64bit type is available or if we
+ are not supposed to spend much time on optimizations. We select the
+ bucket count using a fixed set of numbers. */
+ for (i = 0; elf_buckets[i] != 0; i++)
+ {
+ best_size = elf_buckets[i];
+ if (dynsymcount < elf_buckets[i + 1])
+ break;
+ }
+ }
+
+ /* Free the arrays we needed. */
+ free (hashcodes);
+
+ return best_size;
+}
+
+/* Set up the sizes and contents of the ELF dynamic sections. This is
+ called by the ELF linker emulation before_allocation routine. We
+ must set the sizes of the sections before the linker sets the
+ addresses of the various sections. */
+
+boolean
+NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
+ export_dynamic, filter_shlib,
+ auxiliary_filters, info, sinterpptr,
+ verdefs)
+ bfd *output_bfd;
+ const char *soname;
+ const char *rpath;
+ boolean export_dynamic;
+ const char *filter_shlib;
+ const char * const *auxiliary_filters;
+ struct bfd_link_info *info;
+ asection **sinterpptr;
+ struct bfd_elf_version_tree *verdefs;
+{
+ bfd_size_type soname_indx;
+ bfd *dynobj;
+ struct elf_backend_data *bed;
+ bfd_size_type old_dynsymcount;
+ struct elf_assign_sym_version_info asvinfo;
+
+ *sinterpptr = NULL;
+
+ soname_indx = (bfd_size_type) -1;
+
+ if (info->hash->creator->flavour != bfd_target_elf_flavour)
+ return true;
+
+ /* The backend may have to create some sections regardless of whether
+ we're dynamic or not. */
+ bed = get_elf_backend_data (output_bfd);
+ if (bed->elf_backend_always_size_sections
+ && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
+ return false;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ /* If there were no dynamic objects in the link, there is nothing to
+ do here. */
+ if (dynobj == NULL)
+ return true;
+
+ /* If we are supposed to export all symbols into the dynamic symbol
+ table (this is not the normal case), then do so. */
+ if (export_dynamic)
+ {
+ struct elf_info_failed eif;
+
+ eif.failed = false;
+ eif.info = info;
+ elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
+ (PTR) &eif);
+ if (eif.failed)
+ return false;
+ }
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ struct elf_info_failed eif;
+ struct elf_link_hash_entry *h;
+ bfd_size_type strsize;
+
+ *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
+ BFD_ASSERT (*sinterpptr != NULL || info->shared);
+
+ if (soname != NULL)
+ {
+ soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ soname, true, true);
+ if (soname_indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
+ return false;
+ }
+
+ if (info->symbolic)
+ {
+ if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
+ return false;
+ }
+
+ if (rpath != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
+ true, true);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
+ return false;
+ }
+
+ if (filter_shlib != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ filter_shlib, true, true);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
+ return false;
+ }
+
+ if (auxiliary_filters != NULL)
+ {
+ const char * const *p;
+
+ for (p = auxiliary_filters; *p != NULL; p++)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ *p, true, true);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
+ return false;
+ }
+ }
+
+ /* Attach all the symbols to their version information. */
+ asvinfo.output_bfd = output_bfd;
+ asvinfo.info = info;
+ asvinfo.verdefs = verdefs;
+ asvinfo.export_dynamic = export_dynamic;
+ asvinfo.removed_dynamic = false;
+ asvinfo.failed = false;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_assign_sym_version,
+ (PTR) &asvinfo);
+ if (asvinfo.failed)
+ return false;
+
+ /* Find all symbols which were defined in a dynamic object and make
+ the backend pick a reasonable value for them. */
+ eif.failed = false;
+ eif.info = info;
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_adjust_dynamic_symbol,
+ (PTR) &eif);
+ if (eif.failed)
+ return false;
+
+ /* Add some entries to the .dynamic section. We fill in some of the
+ values later, in elf_bfd_final_link, but we must add the entries
+ now so that we know the final size of the .dynamic section. */
+ h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
+ false, false);
+ if (h != NULL
+ && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR)) != 0)
+ {
+ if (! elf_add_dynamic_entry (info, DT_INIT, 0))
+ return false;
+ }
+ h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
+ false, false);
+ if (h != NULL
+ && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR)) != 0)
+ {
+ if (! elf_add_dynamic_entry (info, DT_FINI, 0))
+ return false;
+ }
+ strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
+ if (! elf_add_dynamic_entry (info, DT_HASH, 0)
+ || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
+ || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
+ || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
+ || ! elf_add_dynamic_entry (info, DT_SYMENT,
+ sizeof (Elf_External_Sym)))
+ return false;
+ }
+
+ /* The backend must work out the sizes of all the other dynamic
+ sections. */
+ old_dynsymcount = elf_hash_table (info)->dynsymcount;
+ if (bed->elf_backend_size_dynamic_sections
+ && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
+ return false;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ size_t dynsymcount;
+ asection *s;
+ size_t bucketcount = 0;
+ Elf_Internal_Sym isym;
+
+ /* Set up the version definition section. */
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
+ BFD_ASSERT (s != NULL);
+
+ /* We may have created additional version definitions if we are
+ just linking a regular application. */
+ verdefs = asvinfo.verdefs;
+
+ if (verdefs == NULL)
+ {
+ asection **spp;
+
+ /* Don't include this section in the output file. */
+ for (spp = &output_bfd->sections;
+ *spp != s->output_section;
+ spp = &(*spp)->next)
+ ;
+ *spp = s->output_section->next;
+ --output_bfd->section_count;
+ }
+ else
+ {
+ unsigned int cdefs;
+ bfd_size_type size;
+ struct bfd_elf_version_tree *t;
+ bfd_byte *p;
+ Elf_Internal_Verdef def;
+ Elf_Internal_Verdaux defaux;
+
+ if (asvinfo.removed_dynamic)
+ {
+ /* Some dynamic symbols were changed to be local
+ symbols. In this case, we renumber all of the
+ dynamic symbols, so that we don't have a hole. If
+ the backend changed dynsymcount, then assume that the
+ new symbols are at the start. This is the case on
+ the MIPS. FIXME: The names of the removed symbols
+ will still be in the dynamic string table, wasting
+ space. */
+ elf_hash_table (info)->dynsymcount =
+ 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_renumber_dynsyms,
+ (PTR) info);
+ }
+
+ cdefs = 0;
+ size = 0;
+
+ /* Make space for the base version. */
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ struct bfd_elf_version_deps *n;
+
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ for (n = t->deps; n != NULL; n = n->next)
+ size += sizeof (Elf_External_Verdaux);
+ }
+
+ s->_raw_size = size;
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL && s->_raw_size != 0)
+ return false;
+
+ /* Fill in the version definition section. */
+
+ p = s->contents;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = VER_FLG_BASE;
+ def.vd_ndx = 1;
+ def.vd_cnt = 1;
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + sizeof (Elf_External_Verdaux));
+
+ if (soname_indx != (bfd_size_type) -1)
+ {
+ def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
+ defaux.vda_name = soname_indx;
+ }
+ else
+ {
+ const char *name;
+ bfd_size_type indx;
+
+ name = output_bfd->filename;
+ def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ name, true, false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ defaux.vda_name = indx;
+ }
+ defaux.vda_next = 0;
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *)p);
+ p += sizeof (Elf_External_Verdef);
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ unsigned int cdeps;
+ struct bfd_elf_version_deps *n;
+ struct elf_link_hash_entry *h;
+
+ cdeps = 0;
+ for (n = t->deps; n != NULL; n = n->next)
+ ++cdeps;
+
+ /* Add a symbol representing this version. */
+ h = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (dynobj)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+ h->verinfo.vertree = t;
+
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = 0;
+ if (t->globals == NULL && t->locals == NULL && ! t->used)
+ def.vd_flags |= VER_FLG_WEAK;
+ def.vd_ndx = t->vernum + 1;
+ def.vd_cnt = cdeps + 1;
+ def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ if (t->next != NULL)
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + (cdeps + 1) * sizeof (Elf_External_Verdaux));
+ else
+ def.vd_next = 0;
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+
+ defaux.vda_name = h->dynstr_index;
+ if (t->deps == NULL)
+ defaux.vda_next = 0;
+ else
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+ t->name_indx = defaux.vda_name;
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (n = t->deps; n != NULL; n = n->next)
+ {
+ if (n->version_needed == NULL)
+ {
+ /* This can happen if there was an error in the
+ version script. */
+ defaux.vda_name = 0;
+ }
+ else
+ defaux.vda_name = n->version_needed->name_indx;
+ if (n->next == NULL)
+ defaux.vda_next = 0;
+ else
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
+ || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
+ return false;
+
+ elf_tdata (output_bfd)->cverdefs = cdefs;
+ }
+
+ /* Work out the size of the version reference section. */
+
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
+ BFD_ASSERT (s != NULL);
+ {
+ struct elf_find_verdep_info sinfo;
+
+ sinfo.output_bfd = output_bfd;
+ sinfo.info = info;
+ sinfo.vers = elf_tdata (output_bfd)->cverdefs;
+ if (sinfo.vers == 0)
+ sinfo.vers = 1;
+ sinfo.failed = false;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_find_version_dependencies,
+ (PTR) &sinfo);
+
+ if (elf_tdata (output_bfd)->verref == NULL)
+ {
+ asection **spp;
+
+ /* We don't have any version definitions, so we can just
+ remove the section. */
+
+ for (spp = &output_bfd->sections;
+ *spp != s->output_section;
+ spp = &(*spp)->next)
+ ;
+ *spp = s->output_section->next;
+ --output_bfd->section_count;
+ }
+ else
+ {
+ Elf_Internal_Verneed *t;
+ unsigned int size;
+ unsigned int crefs;
+ bfd_byte *p;
+
+ /* Build the version definition section. */
+ size = 0;
+ crefs = 0;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ size += sizeof (Elf_External_Verneed);
+ ++crefs;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ size += sizeof (Elf_External_Vernaux);
+ }
+
+ s->_raw_size = size;
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
+ if (s->contents == NULL)
+ return false;
+
+ p = s->contents;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ unsigned int caux;
+ Elf_Internal_Vernaux *a;
+ bfd_size_type indx;
+
+ caux = 0;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ ++caux;
+
+ t->vn_version = VER_NEED_CURRENT;
+ t->vn_cnt = caux;
+ if (elf_dt_name (t->vn_bfd) != NULL)
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ elf_dt_name (t->vn_bfd),
+ true, false);
+ else
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ t->vn_bfd->filename, true, false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ t->vn_file = indx;
+ t->vn_aux = sizeof (Elf_External_Verneed);
+ if (t->vn_nextref == NULL)
+ t->vn_next = 0;
+ else
+ t->vn_next = (sizeof (Elf_External_Verneed)
+ + caux * sizeof (Elf_External_Vernaux));
+
+ _bfd_elf_swap_verneed_out (output_bfd, t,
+ (Elf_External_Verneed *) p);
+ p += sizeof (Elf_External_Verneed);
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ a->vna_hash = bfd_elf_hash ((const unsigned char *)
+ a->vna_nodename);
+ indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
+ a->vna_nodename, true, false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ a->vna_name = indx;
+ if (a->vna_nextptr == NULL)
+ a->vna_next = 0;
+ else
+ a->vna_next = sizeof (Elf_External_Vernaux);
+
+ _bfd_elf_swap_vernaux_out (output_bfd, a,
+ (Elf_External_Vernaux *) p);
+ p += sizeof (Elf_External_Vernaux);
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
+ || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
+ return false;
+
+ elf_tdata (output_bfd)->cverrefs = crefs;
+ }
+ }
+
+ dynsymcount = elf_hash_table (info)->dynsymcount;
+
+ /* Work out the size of the symbol version section. */
+ s = bfd_get_section_by_name (dynobj, ".gnu.version");
+ BFD_ASSERT (s != NULL);
+ if (dynsymcount == 0
+ || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
+ {
+ asection **spp;
+
+ /* We don't need any symbol versions; just discard the
+ section. */
+ for (spp = &output_bfd->sections;
+ *spp != s->output_section;
+ spp = &(*spp)->next)
+ ;
+ *spp = s->output_section->next;
+ --output_bfd->section_count;
+ }
+ else
+ {
+ s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
+ s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL)
+ return false;
+
+ if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
+ return false;
+ }
+
+ /* Set the size of the .dynsym and .hash sections. We counted
+ the number of dynamic symbols in elf_link_add_object_symbols.
+ We will build the contents of .dynsym and .hash when we build
+ the final symbol table, because until then we do not know the
+ correct value to give the symbols. We built the .dynstr
+ section as we went along in elf_link_add_object_symbols. */
+ s = bfd_get_section_by_name (dynobj, ".dynsym");
+ BFD_ASSERT (s != NULL);
+ s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL && s->_raw_size != 0)
+ return false;
+
+ /* The first entry in .dynsym is a dummy symbol. */
+ isym.st_value = 0;
+ isym.st_size = 0;
+ isym.st_name = 0;
+ isym.st_info = 0;
+ isym.st_other = 0;
+ isym.st_shndx = 0;
+ elf_swap_symbol_out (output_bfd, &isym,
+ (PTR) (Elf_External_Sym *) s->contents);
+
+ /* Compute the size of the hashing table. As a side effect this
+ computes the hash values for all the names we export. */
+ bucketcount = compute_bucket_count (info);
+
+ s = bfd_get_section_by_name (dynobj, ".hash");
+ BFD_ASSERT (s != NULL);
+ s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL)
+ return false;
+ memset (s->contents, 0, (size_t) s->_raw_size);
+
+ put_word (output_bfd, bucketcount, s->contents);
+ put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
+
+ elf_hash_table (info)->bucketcount = bucketcount;
+
+ s = bfd_get_section_by_name (dynobj, ".dynstr");
+ BFD_ASSERT (s != NULL);
+ s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
+
+ if (! elf_add_dynamic_entry (info, DT_NULL, 0))
+ return false;
+ }
+
+ return true;
+}
+
+/* Fix up the flags for a symbol. This handles various cases which
+ can only be fixed after all the input files are seen. This is
+ currently called by both adjust_dynamic_symbol and
+ assign_sym_version, which is unnecessary but perhaps more robust in
+ the face of future changes. */
+
+static boolean
+elf_fix_symbol_flags (h, eif)
+ struct elf_link_hash_entry *h;
+ struct elf_info_failed *eif;
+{
+ /* If this symbol was mentioned in a non-ELF file, try to set
+ DEF_REGULAR and REF_REGULAR correctly. This is the only way to
+ permit a non-ELF file to correctly refer to a symbol defined in
+ an ELF dynamic object. */
+ if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
+ {
+ if (h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak)
+ h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
+ else
+ {
+ if (h->root.u.def.section->owner != NULL
+ && (bfd_get_flavour (h->root.u.def.section->owner)
+ == bfd_target_elf_flavour))
+ h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
+ else
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ }
+
+ if (h->dynindx == -1
+ && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+ }
+ }
+ else
+ {
+ /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
+ was first seen in a non-ELF file. Fortunately, if the symbol
+ was first seen in an ELF file, we're probably OK unless the
+ symbol was defined in a non-ELF file. Catch that case here.
+ FIXME: We're still in trouble if the symbol was first seen in
+ a dynamic object, and then later in a non-ELF regular object. */
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->root.u.def.section->owner != NULL
+ ? (bfd_get_flavour (h->root.u.def.section->owner)
+ != bfd_target_elf_flavour)
+ : (bfd_is_abs_section (h->root.u.def.section)
+ && (h->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ }
+
+ /* If this is a final link, and the symbol was defined as a common
+ symbol in a regular object file, and there was no definition in
+ any dynamic object, then the linker will have allocated space for
+ the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
+ flag will not have been set. */
+ if (h->root.type == bfd_link_hash_defined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+
+ /* If -Bsymbolic was used (which means to bind references to global
+ symbols to the definition within the shared object), and this
+ symbol was defined in a regular object, then it actually doesn't
+ need a PLT entry. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
+ && eif->info->shared
+ && eif->info->symbolic
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
+ {
+ h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
+ h->plt.offset = (bfd_vma) -1;
+ }
+
+ return true;
+}
+
+/* Make the backend pick a good value for a dynamic symbol. This is
+ called via elf_link_hash_traverse, and also calls itself
+ recursively. */
+
+static boolean
+elf_adjust_dynamic_symbol (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+ bfd *dynobj;
+ struct elf_backend_data *bed;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return true;
+
+ /* Fix the symbol flags. */
+ if (! elf_fix_symbol_flags (h, eif))
+ return false;
+
+ /* If this symbol does not require a PLT entry, and it is not
+ defined by a dynamic object, or is not referenced by a regular
+ object, ignore it. We do have to handle a weak defined symbol,
+ even if no regular object refers to it, if we decided to add it
+ to the dynamic symbol table. FIXME: Do we normally need to worry
+ about symbols which are defined by one dynamic object and
+ referenced by another one? */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
+ && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
+ && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
+ {
+ h->plt.offset = (bfd_vma) -1;
+ return true;
+ }
+
+ /* If we've already adjusted this symbol, don't do it again. This
+ can happen via a recursive call. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
+ return true;
+
+ /* Don't look at this symbol again. Note that we must set this
+ after checking the above conditions, because we may look at a
+ symbol once, decide not to do anything, and then get called
+ recursively later after REF_REGULAR is set below. */
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
+
+ /* If this is a weak definition, and we know a real definition, and
+ the real symbol is not itself defined by a regular object file,
+ then get a good value for the real definition. We handle the
+ real symbol first, for the convenience of the backend routine.
+
+ Note that there is a confusing case here. If the real definition
+ is defined by a regular object file, we don't get the real symbol
+ from the dynamic object, but we do get the weak symbol. If the
+ processor backend uses a COPY reloc, then if some routine in the
+ dynamic object changes the real symbol, we will not see that
+ change in the corresponding weak symbol. This is the way other
+ ELF linkers work as well, and seems to be a result of the shared
+ library model.
+
+ I will clarify this issue. Most SVR4 shared libraries define the
+ variable _timezone and define timezone as a weak synonym. The
+ tzset call changes _timezone. If you write
+ extern int timezone;
+ int _timezone = 5;
+ int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
+ you might expect that, since timezone is a synonym for _timezone,
+ the same number will print both times. However, if the processor
+ backend uses a COPY reloc, then actually timezone will be copied
+ into your process image, and, since you define _timezone
+ yourself, _timezone will not. Thus timezone and _timezone will
+ wind up at different memory locations. The tzset call will set
+ _timezone, leaving timezone unchanged. */
+
+ if (h->weakdef != NULL)
+ {
+ struct elf_link_hash_entry *weakdef;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+ weakdef = h->weakdef;
+ BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
+ || weakdef->root.type == bfd_link_hash_defweak);
+ BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
+ if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
+ {
+ /* This symbol is defined by a regular object file, so we
+ will not do anything special. Clear weakdef for the
+ convenience of the processor backend. */
+ h->weakdef = NULL;
+ }
+ else
+ {
+ /* There is an implicit reference by a regular object file
+ via the weak symbol. */
+ weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
+ if (h->weakdef->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
+ weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
+ if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
+ return false;
+ }
+ }
+
+ /* If a symbol has no type and no size and does not require a PLT
+ entry, then we are probably about to do the wrong thing here: we
+ are probably going to create a COPY reloc for an empty object.
+ This case can arise when a shared object is built with assembly
+ code, and the assembly code fails to set the symbol type. */
+ if (h->size == 0
+ && h->type == STT_NOTYPE
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
+ (*_bfd_error_handler)
+ (_("warning: type and size of dynamic symbol `%s' are not defined"),
+ h->root.root.string);
+
+ dynobj = elf_hash_table (eif->info)->dynobj;
+ bed = get_elf_backend_data (dynobj);
+ if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+
+ return true;
+}
+
+/* This routine is used to export all defined symbols into the dynamic
+ symbol table. It is called via elf_link_hash_traverse. */
+
+static boolean
+elf_export_symbol (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return true;
+
+ if (h->dynindx == -1
+ && (h->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Look through the symbols which are defined in other shared
+ libraries and referenced here. Update the list of version
+ dependencies. This will be put into the .gnu.version_r section.
+ This function is called via elf_link_hash_traverse. */
+
+static boolean
+elf_link_find_version_dependencies (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
+ Elf_Internal_Verneed *t;
+ Elf_Internal_Vernaux *a;
+
+ /* We only care about symbols defined in shared objects with version
+ information. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
+ || h->dynindx == -1
+ || h->verinfo.verdef == NULL)
+ return true;
+
+ /* See if we already know about this version. */
+ for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
+ {
+ if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
+ continue;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
+ return true;
+
+ break;
+ }
+
+ /* This is a new version. Add it to tree we are building. */
+
+ if (t == NULL)
+ {
+ t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
+ if (t == NULL)
+ {
+ rinfo->failed = true;
+ return false;
+ }
+
+ t->vn_bfd = h->verinfo.verdef->vd_bfd;
+ t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
+ elf_tdata (rinfo->output_bfd)->verref = t;
+ }
+
+ a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
+
+ /* Note that we are copying a string pointer here, and testing it
+ above. If bfd_elf_string_from_elf_section is ever changed to
+ discard the string data when low in memory, this will have to be
+ fixed. */
+ a->vna_nodename = h->verinfo.verdef->vd_nodename;
+
+ a->vna_flags = h->verinfo.verdef->vd_flags;
+ a->vna_nextptr = t->vn_auxptr;
+
+ h->verinfo.verdef->vd_exp_refno = rinfo->vers;
+ ++rinfo->vers;
+
+ a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
+
+ t->vn_auxptr = a;
+
+ return true;
+}
+
+/* Figure out appropriate versions for all the symbols. We may not
+ have the version number script until we have read all of the input
+ files, so until that point we don't know which symbols should be
+ local. This function is called via elf_link_hash_traverse. */
+
+static boolean
+elf_link_assign_sym_version (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_assign_sym_version_info *sinfo =
+ (struct elf_assign_sym_version_info *) data;
+ struct bfd_link_info *info = sinfo->info;
+ struct elf_info_failed eif;
+ char *p;
+
+ /* Fix the symbol flags. */
+ eif.failed = false;
+ eif.info = info;
+ if (! elf_fix_symbol_flags (h, &eif))
+ {
+ if (eif.failed)
+ sinfo->failed = true;
+ return false;
+ }
+
+ /* We only need version numbers for symbols defined in regular
+ objects. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ return true;
+
+ p = strchr (h->root.root.string, ELF_VER_CHR);
+ if (p != NULL && h->verinfo.vertree == NULL)
+ {
+ struct bfd_elf_version_tree *t;
+ boolean hidden;
+
+ hidden = true;
+
+ /* There are two consecutive ELF_VER_CHR characters if this is
+ not a hidden symbol. */
+ ++p;
+ if (*p == ELF_VER_CHR)
+ {
+ hidden = false;
+ ++p;
+ }
+
+ /* If there is no version string, we can just return out. */
+ if (*p == '\0')
+ {
+ if (hidden)
+ h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
+ return true;
+ }
+
+ /* Look for the version. If we find it, it is no longer weak. */
+ for (t = sinfo->verdefs; t != NULL; t = t->next)
+ {
+ if (strcmp (t->name, p) == 0)
+ {
+ int len;
+ char *alc;
+ struct bfd_elf_version_expr *d;
+
+ len = p - h->root.root.string;
+ alc = bfd_alloc (sinfo->output_bfd, len);
+ if (alc == NULL)
+ return false;
+ strncpy (alc, h->root.root.string, len - 1);
+ alc[len - 1] = '\0';
+ if (alc[len - 2] == ELF_VER_CHR)
+ alc[len - 2] = '\0';
+
+ h->verinfo.vertree = t;
+ t->used = true;
+ d = NULL;
+
+ if (t->globals != NULL)
+ {
+ for (d = t->globals; d != NULL; d = d->next)
+ if ((*d->match) (d, alc))
+ break;
+ }
+
+ /* See if there is anything to force this symbol to
+ local scope. */
+ if (d == NULL && t->locals != NULL)
+ {
+ for (d = t->locals; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, alc))
+ {
+ if (h->dynindx != -1
+ && info->shared
+ && ! sinfo->export_dynamic)
+ {
+ sinfo->removed_dynamic = true;
+ h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
+ h->elf_link_hash_flags &=~
+ ELF_LINK_HASH_NEEDS_PLT;
+ h->dynindx = -1;
+ h->plt.offset = (bfd_vma) -1;
+ /* FIXME: The name of the symbol has
+ already been recorded in the dynamic
+ string table section. */
+ }
+
+ break;
+ }
+ }
+ }
+
+ bfd_release (sinfo->output_bfd, alc);
+ break;
+ }
+ }
+
+ /* If we are building an application, we need to create a
+ version node for this version. */
+ if (t == NULL && ! info->shared)
+ {
+ struct bfd_elf_version_tree **pp;
+ int version_index;
+
+ /* If we aren't going to export this symbol, we don't need
+ to worry about it. */
+ if (h->dynindx == -1)
+ return true;
+
+ t = ((struct bfd_elf_version_tree *)
+ bfd_alloc (sinfo->output_bfd, sizeof *t));
+ if (t == NULL)
+ {
+ sinfo->failed = true;
+ return false;
+ }
+
+ t->next = NULL;
+ t->name = p;
+ t->globals = NULL;
+ t->locals = NULL;
+ t->deps = NULL;
+ t->name_indx = (unsigned int) -1;
+ t->used = true;
+
+ version_index = 1;
+ for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
+ ++version_index;
+ t->vernum = version_index;
+
+ *pp = t;
+
+ h->verinfo.vertree = t;
+ }
+ else if (t == NULL)
+ {
+ /* We could not find the version for a symbol when
+ generating a shared archive. Return an error. */
+ (*_bfd_error_handler)
+ (_("%s: undefined versioned symbol name %s"),
+ bfd_get_filename (sinfo->output_bfd), h->root.root.string);
+ bfd_set_error (bfd_error_bad_value);
+ sinfo->failed = true;
+ return false;
+ }
+
+ if (hidden)
+ h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
+ }
+
+ /* If we don't have a version for this symbol, see if we can find
+ something. */
+ if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
+ {
+ struct bfd_elf_version_tree *t;
+ struct bfd_elf_version_tree *deflt;
+ struct bfd_elf_version_expr *d;
+
+ /* See if can find what version this symbol is in. If the
+ symbol is supposed to be local, then don't actually register
+ it. */
+ deflt = NULL;
+ for (t = sinfo->verdefs; t != NULL; t = t->next)
+ {
+ if (t->globals != NULL)
+ {
+ for (d = t->globals; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, h->root.root.string))
+ {
+ h->verinfo.vertree = t;
+ break;
+ }
+ }
+
+ if (d != NULL)
+ break;
+ }
+
+ if (t->locals != NULL)
+ {
+ for (d = t->locals; d != NULL; d = d->next)
+ {
+ if (d->pattern[0] == '*' && d->pattern[1] == '\0')
+ deflt = t;
+ else if ((*d->match) (d, h->root.root.string))
+ {
+ h->verinfo.vertree = t;
+ if (h->dynindx != -1
+ && info->shared
+ && ! sinfo->export_dynamic)
+ {
+ sinfo->removed_dynamic = true;
+ h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
+ h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
+ h->dynindx = -1;
+ h->plt.offset = (bfd_vma) -1;
+ /* FIXME: The name of the symbol has already
+ been recorded in the dynamic string table
+ section. */
+ }
+ break;
+ }
+ }
+
+ if (d != NULL)
+ break;
+ }
+ }
+
+ if (deflt != NULL && h->verinfo.vertree == NULL)
+ {
+ h->verinfo.vertree = deflt;
+ if (h->dynindx != -1
+ && info->shared
+ && ! sinfo->export_dynamic)
+ {
+ sinfo->removed_dynamic = true;
+ h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
+ h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
+ h->dynindx = -1;
+ h->plt.offset = (bfd_vma) -1;
+ /* FIXME: The name of the symbol has already been
+ recorded in the dynamic string table section. */
+ }
+ }
+ }
+
+ return true;
+}
+
+/* This function is used to renumber the dynamic symbols, if some of
+ them are removed because they are marked as local. This is called
+ via elf_link_hash_traverse. */
+
+static boolean
+elf_link_renumber_dynsyms (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct bfd_link_info *info = (struct bfd_link_info *) data;
+
+ if (h->dynindx != -1)
+ {
+ h->dynindx = elf_hash_table (info)->dynsymcount;
+ ++elf_hash_table (info)->dynsymcount;
+ }
+
+ return true;
+}
+
+/* Final phase of ELF linker. */
+
+/* A structure we use to avoid passing large numbers of arguments. */
+
+struct elf_final_link_info
+{
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* Symbol string table. */
+ struct bfd_strtab_hash *symstrtab;
+ /* .dynsym section. */
+ asection *dynsym_sec;
+ /* .hash section. */
+ asection *hash_sec;
+ /* symbol version section (.gnu.version). */
+ asection *symver_sec;
+ /* Buffer large enough to hold contents of any section. */
+ bfd_byte *contents;
+ /* Buffer large enough to hold external relocs of any section. */
+ PTR external_relocs;
+ /* Buffer large enough to hold internal relocs of any section. */
+ Elf_Internal_Rela *internal_relocs;
+ /* Buffer large enough to hold external local symbols of any input
+ BFD. */
+ Elf_External_Sym *external_syms;
+ /* Buffer large enough to hold internal local symbols of any input
+ BFD. */
+ Elf_Internal_Sym *internal_syms;
+ /* Array large enough to hold a symbol index for each local symbol
+ of any input BFD. */
+ long *indices;
+ /* Array large enough to hold a section pointer for each local
+ symbol of any input BFD. */
+ asection **sections;
+ /* Buffer to hold swapped out symbols. */
+ Elf_External_Sym *symbuf;
+ /* Number of swapped out symbols in buffer. */
+ size_t symbuf_count;
+ /* Number of symbols which fit in symbuf. */
+ size_t symbuf_size;
+};
+
+static boolean elf_link_output_sym
+ PARAMS ((struct elf_final_link_info *, const char *,
+ Elf_Internal_Sym *, asection *));
+static boolean elf_link_flush_output_syms
+ PARAMS ((struct elf_final_link_info *));
+static boolean elf_link_output_extsym
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_input_bfd
+ PARAMS ((struct elf_final_link_info *, bfd *));
+static boolean elf_reloc_link_order
+ PARAMS ((bfd *, struct bfd_link_info *, asection *,
+ struct bfd_link_order *));
+
+/* This struct is used to pass information to elf_link_output_extsym. */
+
+struct elf_outext_info
+{
+ boolean failed;
+ boolean localsyms;
+ struct elf_final_link_info *finfo;
+};
+
+/* Do the final step of an ELF link. */
+
+boolean
+elf_bfd_final_link (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean dynamic;
+ bfd *dynobj;
+ struct elf_final_link_info finfo;
+ register asection *o;
+ register struct bfd_link_order *p;
+ register bfd *sub;
+ size_t max_contents_size;
+ size_t max_external_reloc_size;
+ size_t max_internal_reloc_count;
+ size_t max_sym_count;
+ file_ptr off;
+ Elf_Internal_Sym elfsym;
+ unsigned int i;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Shdr *symstrtab_hdr;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_outext_info eoinfo;
+
+ if (info->shared)
+ abfd->flags |= DYNAMIC;
+
+ dynamic = elf_hash_table (info)->dynamic_sections_created;
+ dynobj = elf_hash_table (info)->dynobj;
+
+ finfo.info = info;
+ finfo.output_bfd = abfd;
+ finfo.symstrtab = elf_stringtab_init ();
+ if (finfo.symstrtab == NULL)
+ return false;
+
+ if (! dynamic)
+ {
+ finfo.dynsym_sec = NULL;
+ finfo.hash_sec = NULL;
+ finfo.symver_sec = NULL;
+ }
+ else
+ {
+ finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
+ finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
+ BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
+ finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
+ /* Note that it is OK if symver_sec is NULL. */
+ }
+
+ finfo.contents = NULL;
+ finfo.external_relocs = NULL;
+ finfo.internal_relocs = NULL;
+ finfo.external_syms = NULL;
+ finfo.internal_syms = NULL;
+ finfo.indices = NULL;
+ finfo.sections = NULL;
+ finfo.symbuf = NULL;
+ finfo.symbuf_count = 0;
+
+ /* Count up the number of relocations we will output for each output
+ section, so that we know the sizes of the reloc sections. We
+ also figure out some maximum sizes. */
+ max_contents_size = 0;
+ max_external_reloc_size = 0;
+ max_internal_reloc_count = 0;
+ max_sym_count = 0;
+ for (o = abfd->sections; o != (asection *) NULL; o = o->next)
+ {
+ o->reloc_count = 0;
+
+ for (p = o->link_order_head; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ ++o->reloc_count;
+ else if (p->type == bfd_indirect_link_order)
+ {
+ asection *sec;
+
+ sec = p->u.indirect.section;
+
+ /* Mark all sections which are to be included in the
+ link. This will normally be every section. We need
+ to do this so that we can identify any sections which
+ the linker has decided to not include. */
+ sec->linker_mark = true;
+
+ if (info->relocateable)
+ o->reloc_count += sec->reloc_count;
+
+ if (sec->_raw_size > max_contents_size)
+ max_contents_size = sec->_raw_size;
+ if (sec->_cooked_size > max_contents_size)
+ max_contents_size = sec->_cooked_size;
+
+ /* We are interested in just local symbols, not all
+ symbols. */
+ if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
+ && (sec->owner->flags & DYNAMIC) == 0)
+ {
+ size_t sym_count;
+
+ if (elf_bad_symtab (sec->owner))
+ sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
+ / sizeof (Elf_External_Sym));
+ else
+ sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
+
+ if (sym_count > max_sym_count)
+ max_sym_count = sym_count;
+
+ if ((sec->flags & SEC_RELOC) != 0)
+ {
+ size_t ext_size;
+
+ ext_size = elf_section_data (sec)->rel_hdr.sh_size;
+ if (ext_size > max_external_reloc_size)
+ max_external_reloc_size = ext_size;
+ if (sec->reloc_count > max_internal_reloc_count)
+ max_internal_reloc_count = sec->reloc_count;
+ }
+ }
+ }
+ }
+
+ if (o->reloc_count > 0)
+ o->flags |= SEC_RELOC;
+ else
+ {
+ /* Explicitly clear the SEC_RELOC flag. The linker tends to
+ set it (this is probably a bug) and if it is set
+ assign_section_numbers will create a reloc section. */
+ o->flags &=~ SEC_RELOC;
+ }
+
+ /* If the SEC_ALLOC flag is not set, force the section VMA to
+ zero. This is done in elf_fake_sections as well, but forcing
+ the VMA to 0 here will ensure that relocs against these
+ sections are handled correctly. */
+ if ((o->flags & SEC_ALLOC) == 0
+ && ! o->user_set_vma)
+ o->vma = 0;
+ }
+
+ /* Figure out the file positions for everything but the symbol table
+ and the relocs. We set symcount to force assign_section_numbers
+ to create a symbol table. */
+ bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
+ BFD_ASSERT (! abfd->output_has_begun);
+ if (! _bfd_elf_compute_section_file_positions (abfd, info))
+ goto error_return;
+
+ /* That created the reloc sections. Set their sizes, and assign
+ them file positions, and allocate some buffers. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ Elf_Internal_Shdr *rel_hdr;
+ register struct elf_link_hash_entry **p, **pend;
+
+ rel_hdr = &elf_section_data (o)->rel_hdr;
+
+ rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
+
+ /* The contents field must last into write_object_contents,
+ so we allocate it with bfd_alloc rather than malloc. */
+ rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
+ if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
+ goto error_return;
+
+ p = ((struct elf_link_hash_entry **)
+ bfd_malloc (o->reloc_count
+ * sizeof (struct elf_link_hash_entry *)));
+ if (p == NULL && o->reloc_count != 0)
+ goto error_return;
+ elf_section_data (o)->rel_hashes = p;
+ pend = p + o->reloc_count;
+ for (; p < pend; p++)
+ *p = NULL;
+
+ /* Use the reloc_count field as an index when outputting the
+ relocs. */
+ o->reloc_count = 0;
+ }
+ }
+
+ _bfd_elf_assign_file_positions_for_relocs (abfd);
+
+ /* We have now assigned file positions for all the sections except
+ .symtab and .strtab. We start the .symtab section at the current
+ file position, and write directly to it. We build the .strtab
+ section in memory. */
+ bfd_get_symcount (abfd) = 0;
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ /* sh_name is set in prep_headers. */
+ symtab_hdr->sh_type = SHT_SYMTAB;
+ symtab_hdr->sh_flags = 0;
+ symtab_hdr->sh_addr = 0;
+ symtab_hdr->sh_size = 0;
+ symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
+ /* sh_link is set in assign_section_numbers. */
+ /* sh_info is set below. */
+ /* sh_offset is set just below. */
+ symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
+
+ off = elf_tdata (abfd)->next_file_pos;
+ off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
+
+ /* Note that at this point elf_tdata (abfd)->next_file_pos is
+ incorrect. We do not yet know the size of the .symtab section.
+ We correct next_file_pos below, after we do know the size. */
+
+ /* Allocate a buffer to hold swapped out symbols. This is to avoid
+ continuously seeking to the right position in the file. */
+ if (! info->keep_memory || max_sym_count < 20)
+ finfo.symbuf_size = 20;
+ else
+ finfo.symbuf_size = max_sym_count;
+ finfo.symbuf = ((Elf_External_Sym *)
+ bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
+ if (finfo.symbuf == NULL)
+ goto error_return;
+
+ /* Start writing out the symbol table. The first symbol is always a
+ dummy symbol. */
+ if (info->strip != strip_all || info->relocateable)
+ {
+ elfsym.st_value = 0;
+ elfsym.st_size = 0;
+ elfsym.st_info = 0;
+ elfsym.st_other = 0;
+ elfsym.st_shndx = SHN_UNDEF;
+ if (! elf_link_output_sym (&finfo, (const char *) NULL,
+ &elfsym, bfd_und_section_ptr))
+ goto error_return;
+ }
+
+#if 0
+ /* Some standard ELF linkers do this, but we don't because it causes
+ bootstrap comparison failures. */
+ /* Output a file symbol for the output file as the second symbol.
+ We output this even if we are discarding local symbols, although
+ I'm not sure if this is correct. */
+ elfsym.st_value = 0;
+ elfsym.st_size = 0;
+ elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
+ elfsym.st_other = 0;
+ elfsym.st_shndx = SHN_ABS;
+ if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
+ &elfsym, bfd_abs_section_ptr))
+ goto error_return;
+#endif
+
+ /* Output a symbol for each section. We output these even if we are
+ discarding local symbols, since they are used for relocs. These
+ symbols have no names. We store the index of each one in the
+ index field of the section, so that we can find it again when
+ outputting relocs. */
+ if (info->strip != strip_all || info->relocateable)
+ {
+ elfsym.st_size = 0;
+ elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ elfsym.st_other = 0;
+ for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
+ {
+ o = section_from_elf_index (abfd, i);
+ if (o != NULL)
+ o->target_index = bfd_get_symcount (abfd);
+ elfsym.st_shndx = i;
+ if (info->relocateable || o == NULL)
+ elfsym.st_value = 0;
+ else
+ elfsym.st_value = o->vma;
+ if (! elf_link_output_sym (&finfo, (const char *) NULL,
+ &elfsym, o))
+ goto error_return;
+ }
+ }
+
+ /* Allocate some memory to hold information read in from the input
+ files. */
+ finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
+ finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
+ finfo.internal_relocs = ((Elf_Internal_Rela *)
+ bfd_malloc (max_internal_reloc_count
+ * sizeof (Elf_Internal_Rela)));
+ finfo.external_syms = ((Elf_External_Sym *)
+ bfd_malloc (max_sym_count
+ * sizeof (Elf_External_Sym)));
+ finfo.internal_syms = ((Elf_Internal_Sym *)
+ bfd_malloc (max_sym_count
+ * sizeof (Elf_Internal_Sym)));
+ finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
+ finfo.sections = ((asection **)
+ bfd_malloc (max_sym_count * sizeof (asection *)));
+ if ((finfo.contents == NULL && max_contents_size != 0)
+ || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
+ || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
+ || (finfo.external_syms == NULL && max_sym_count != 0)
+ || (finfo.internal_syms == NULL && max_sym_count != 0)
+ || (finfo.indices == NULL && max_sym_count != 0)
+ || (finfo.sections == NULL && max_sym_count != 0))
+ goto error_return;
+
+ /* Since ELF permits relocations to be against local symbols, we
+ must have the local symbols available when we do the relocations.
+ Since we would rather only read the local symbols once, and we
+ would rather not keep them in memory, we handle all the
+ relocations for a single input file at the same time.
+
+ Unfortunately, there is no way to know the total number of local
+ symbols until we have seen all of them, and the local symbol
+ indices precede the global symbol indices. This means that when
+ we are generating relocateable output, and we see a reloc against
+ a global symbol, we can not know the symbol index until we have
+ finished examining all the local symbols to see which ones we are
+ going to output. To deal with this, we keep the relocations in
+ memory, and don't output them until the end of the link. This is
+ an unfortunate waste of memory, but I don't see a good way around
+ it. Fortunately, it only happens when performing a relocateable
+ link, which is not the common case. FIXME: If keep_memory is set
+ we could write the relocs out and then read them again; I don't
+ know how bad the memory loss will be. */
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ sub->output_has_begun = false;
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ for (p = o->link_order_head; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_indirect_link_order
+ && (bfd_get_flavour (p->u.indirect.section->owner)
+ == bfd_target_elf_flavour))
+ {
+ sub = p->u.indirect.section->owner;
+ if (! sub->output_has_begun)
+ {
+ if (! elf_link_input_bfd (&finfo, sub))
+ goto error_return;
+ sub->output_has_begun = true;
+ }
+ }
+ else if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ {
+ if (! elf_reloc_link_order (abfd, info, o, p))
+ goto error_return;
+ }
+ else
+ {
+ if (! _bfd_default_link_order (abfd, info, o, p))
+ goto error_return;
+ }
+ }
+ }
+
+ /* That wrote out all the local symbols. Finish up the symbol table
+ with the global symbols. */
+
+ if (info->strip != strip_all && info->shared)
+ {
+ /* Output any global symbols that got converted to local in a
+ version script. We do this in a separate step since ELF
+ requires all local symbols to appear prior to any global
+ symbols. FIXME: We should only do this if some global
+ symbols were, in fact, converted to become local. FIXME:
+ Will this work correctly with the Irix 5 linker? */
+ eoinfo.failed = false;
+ eoinfo.finfo = &finfo;
+ eoinfo.localsyms = true;
+ elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
+ (PTR) &eoinfo);
+ if (eoinfo.failed)
+ return false;
+ }
+
+ /* The sh_info field records the index of the first non local
+ symbol. */
+ symtab_hdr->sh_info = bfd_get_symcount (abfd);
+ if (dynamic)
+ elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
+
+ /* We get the global symbols from the hash table. */
+ eoinfo.failed = false;
+ eoinfo.localsyms = false;
+ eoinfo.finfo = &finfo;
+ elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
+ (PTR) &eoinfo);
+ if (eoinfo.failed)
+ return false;
+
+ /* Flush all symbols to the file. */
+ if (! elf_link_flush_output_syms (&finfo))
+ return false;
+
+ /* Now we know the size of the symtab section. */
+ off += symtab_hdr->sh_size;
+
+ /* Finish up and write out the symbol string table (.strtab)
+ section. */
+ symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
+ /* sh_name was set in prep_headers. */
+ symstrtab_hdr->sh_type = SHT_STRTAB;
+ symstrtab_hdr->sh_flags = 0;
+ symstrtab_hdr->sh_addr = 0;
+ symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
+ symstrtab_hdr->sh_entsize = 0;
+ symstrtab_hdr->sh_link = 0;
+ symstrtab_hdr->sh_info = 0;
+ /* sh_offset is set just below. */
+ symstrtab_hdr->sh_addralign = 1;
+
+ off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
+ elf_tdata (abfd)->next_file_pos = off;
+
+ if (bfd_get_symcount (abfd) > 0)
+ {
+ if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
+ || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
+ return false;
+ }
+
+ /* Adjust the relocs to have the correct symbol indices. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ struct elf_link_hash_entry **rel_hash;
+ Elf_Internal_Shdr *rel_hdr;
+
+ if ((o->flags & SEC_RELOC) == 0)
+ continue;
+
+ rel_hash = elf_section_data (o)->rel_hashes;
+ rel_hdr = &elf_section_data (o)->rel_hdr;
+ for (i = 0; i < o->reloc_count; i++, rel_hash++)
+ {
+ if (*rel_hash == NULL)
+ continue;
+
+ BFD_ASSERT ((*rel_hash)->indx >= 0);
+
+ if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+ Elf_Internal_Rel irel;
+
+ erel = (Elf_External_Rel *) rel_hdr->contents + i;
+ elf_swap_reloc_in (abfd, erel, &irel);
+ irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
+ ELF_R_TYPE (irel.r_info));
+ elf_swap_reloc_out (abfd, &irel, erel);
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+ Elf_Internal_Rela irela;
+
+ BFD_ASSERT (rel_hdr->sh_entsize
+ == sizeof (Elf_External_Rela));
+
+ erela = (Elf_External_Rela *) rel_hdr->contents + i;
+ elf_swap_reloca_in (abfd, erela, &irela);
+ irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
+ ELF_R_TYPE (irela.r_info));
+ elf_swap_reloca_out (abfd, &irela, erela);
+ }
+ }
+
+ /* Set the reloc_count field to 0 to prevent write_relocs from
+ trying to swap the relocs out itself. */
+ o->reloc_count = 0;
+ }
+
+ /* If we are linking against a dynamic object, or generating a
+ shared library, finish up the dynamic linking information. */
+ if (dynamic)
+ {
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ /* Fix up .dynamic entries. */
+ o = bfd_get_section_by_name (dynobj, ".dynamic");
+ BFD_ASSERT (o != NULL);
+
+ dyncon = (Elf_External_Dyn *) o->contents;
+ dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+ const char *name;
+ unsigned int type;
+
+ elf_swap_dyn_in (dynobj, dyncon, &dyn);
+
+ switch (dyn.d_tag)
+ {
+ default:
+ break;
+
+ /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
+ magic _init and _fini symbols. This is pretty ugly,
+ but we are compatible. */
+ case DT_INIT:
+ name = "_init";
+ goto get_sym;
+ case DT_FINI:
+ name = "_fini";
+ get_sym:
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name,
+ false, false, true);
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ dyn.d_un.d_val = h->root.u.def.value;
+ o = h->root.u.def.section;
+ if (o->output_section != NULL)
+ dyn.d_un.d_val += (o->output_section->vma
+ + o->output_offset);
+ else
+ {
+ /* The symbol is imported from another shared
+ library and does not apply to this one. */
+ dyn.d_un.d_val = 0;
+ }
+
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ }
+ }
+ break;
+
+ case DT_HASH:
+ name = ".hash";
+ goto get_vma;
+ case DT_STRTAB:
+ name = ".dynstr";
+ goto get_vma;
+ case DT_SYMTAB:
+ name = ".dynsym";
+ goto get_vma;
+ case DT_VERDEF:
+ name = ".gnu.version_d";
+ goto get_vma;
+ case DT_VERNEED:
+ name = ".gnu.version_r";
+ goto get_vma;
+ case DT_VERSYM:
+ name = ".gnu.version";
+ get_vma:
+ o = bfd_get_section_by_name (abfd, name);
+ BFD_ASSERT (o != NULL);
+ dyn.d_un.d_ptr = o->vma;
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ break;
+
+ case DT_REL:
+ case DT_RELA:
+ case DT_RELSZ:
+ case DT_RELASZ:
+ if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
+ type = SHT_REL;
+ else
+ type = SHT_RELA;
+ dyn.d_un.d_val = 0;
+ for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
+ {
+ Elf_Internal_Shdr *hdr;
+
+ hdr = elf_elfsections (abfd)[i];
+ if (hdr->sh_type == type
+ && (hdr->sh_flags & SHF_ALLOC) != 0)
+ {
+ if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
+ dyn.d_un.d_val += hdr->sh_size;
+ else
+ {
+ if (dyn.d_un.d_val == 0
+ || hdr->sh_addr < dyn.d_un.d_val)
+ dyn.d_un.d_val = hdr->sh_addr;
+ }
+ }
+ }
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ break;
+ }
+ }
+ }
+
+ /* If we have created any dynamic sections, then output them. */
+ if (dynobj != NULL)
+ {
+ if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
+ goto error_return;
+
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || o->_raw_size == 0)
+ continue;
+ if ((o->flags & SEC_LINKER_CREATED) == 0)
+ {
+ /* At this point, we are only interested in sections
+ created by elf_link_create_dynamic_sections. */
+ continue;
+ }
+ if ((elf_section_data (o->output_section)->this_hdr.sh_type
+ != SHT_STRTAB)
+ || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
+ {
+ if (! bfd_set_section_contents (abfd, o->output_section,
+ o->contents, o->output_offset,
+ o->_raw_size))
+ goto error_return;
+ }
+ else
+ {
+ file_ptr off;
+
+ /* The contents of the .dynstr section are actually in a
+ stringtab. */
+ off = elf_section_data (o->output_section)->this_hdr.sh_offset;
+ if (bfd_seek (abfd, off, SEEK_SET) != 0
+ || ! _bfd_stringtab_emit (abfd,
+ elf_hash_table (info)->dynstr))
+ goto error_return;
+ }
+ }
+ }
+
+ /* If we have optimized stabs strings, output them. */
+ if (elf_hash_table (info)->stab_info != NULL)
+ {
+ if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
+ goto error_return;
+ }
+
+ if (finfo.symstrtab != NULL)
+ _bfd_stringtab_free (finfo.symstrtab);
+ if (finfo.contents != NULL)
+ free (finfo.contents);
+ if (finfo.external_relocs != NULL)
+ free (finfo.external_relocs);
+ if (finfo.internal_relocs != NULL)
+ free (finfo.internal_relocs);
+ if (finfo.external_syms != NULL)
+ free (finfo.external_syms);
+ if (finfo.internal_syms != NULL)
+ free (finfo.internal_syms);
+ if (finfo.indices != NULL)
+ free (finfo.indices);
+ if (finfo.sections != NULL)
+ free (finfo.sections);
+ if (finfo.symbuf != NULL)
+ free (finfo.symbuf);
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0
+ && elf_section_data (o)->rel_hashes != NULL)
+ free (elf_section_data (o)->rel_hashes);
+ }
+
+ elf_tdata (abfd)->linker = true;
+
+ return true;
+
+ error_return:
+ if (finfo.symstrtab != NULL)
+ _bfd_stringtab_free (finfo.symstrtab);
+ if (finfo.contents != NULL)
+ free (finfo.contents);
+ if (finfo.external_relocs != NULL)
+ free (finfo.external_relocs);
+ if (finfo.internal_relocs != NULL)
+ free (finfo.internal_relocs);
+ if (finfo.external_syms != NULL)
+ free (finfo.external_syms);
+ if (finfo.internal_syms != NULL)
+ free (finfo.internal_syms);
+ if (finfo.indices != NULL)
+ free (finfo.indices);
+ if (finfo.sections != NULL)
+ free (finfo.sections);
+ if (finfo.symbuf != NULL)
+ free (finfo.symbuf);
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0
+ && elf_section_data (o)->rel_hashes != NULL)
+ free (elf_section_data (o)->rel_hashes);
+ }
+
+ return false;
+}
+
+/* Add a symbol to the output symbol table. */
+
+static boolean
+elf_link_output_sym (finfo, name, elfsym, input_sec)
+ struct elf_final_link_info *finfo;
+ const char *name;
+ Elf_Internal_Sym *elfsym;
+ asection *input_sec;
+{
+ boolean (*output_symbol_hook) PARAMS ((bfd *,
+ struct bfd_link_info *info,
+ const char *,
+ Elf_Internal_Sym *,
+ asection *));
+
+ output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
+ elf_backend_link_output_symbol_hook;
+ if (output_symbol_hook != NULL)
+ {
+ if (! ((*output_symbol_hook)
+ (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
+ return false;
+ }
+
+ if (name == (const char *) NULL || *name == '\0')
+ elfsym->st_name = 0;
+ else if (input_sec->flags & SEC_EXCLUDE)
+ elfsym->st_name = 0;
+ else
+ {
+ elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
+ name, true,
+ false);
+ if (elfsym->st_name == (unsigned long) -1)
+ return false;
+ }
+
+ if (finfo->symbuf_count >= finfo->symbuf_size)
+ {
+ if (! elf_link_flush_output_syms (finfo))
+ return false;
+ }
+
+ elf_swap_symbol_out (finfo->output_bfd, elfsym,
+ (PTR) (finfo->symbuf + finfo->symbuf_count));
+ ++finfo->symbuf_count;
+
+ ++ bfd_get_symcount (finfo->output_bfd);
+
+ return true;
+}
+
+/* Flush the output symbols to the file. */
+
+static boolean
+elf_link_flush_output_syms (finfo)
+ struct elf_final_link_info *finfo;
+{
+ if (finfo->symbuf_count > 0)
+ {
+ Elf_Internal_Shdr *symtab;
+
+ symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
+
+ if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
+ SEEK_SET) != 0
+ || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
+ sizeof (Elf_External_Sym), finfo->output_bfd)
+ != finfo->symbuf_count * sizeof (Elf_External_Sym)))
+ return false;
+
+ symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
+
+ finfo->symbuf_count = 0;
+ }
+
+ return true;
+}
+
+/* Add an external symbol to the symbol table. This is called from
+ the hash table traversal routine. When generating a shared object,
+ we go through the symbol table twice. The first time we output
+ anything that might have been forced to local scope in a version
+ script. The second time we output the symbols that are still
+ global symbols. */
+
+static boolean
+elf_link_output_extsym (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
+ struct elf_final_link_info *finfo = eoinfo->finfo;
+ boolean strip;
+ Elf_Internal_Sym sym;
+ asection *input_sec;
+
+ /* Decide whether to output this symbol in this pass. */
+ if (eoinfo->localsyms)
+ {
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
+ return true;
+ }
+ else
+ {
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ return true;
+ }
+
+ /* If we are not creating a shared library, and this symbol is
+ referenced by a shared library but is not defined anywhere, then
+ warn that it is undefined. If we do not do this, the runtime
+ linker will complain that the symbol is undefined when the
+ program is run. We don't have to worry about symbols that are
+ referenced by regular files, because we will already have issued
+ warnings for them. */
+ if (! finfo->info->relocateable
+ && ! (finfo->info->shared
+ && !finfo->info->symbolic
+ && !finfo->info->no_undefined)
+ && h->root.type == bfd_link_hash_undefined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
+ {
+ if (! ((*finfo->info->callbacks->undefined_symbol)
+ (finfo->info, h->root.root.string, h->root.u.undef.abfd,
+ (asection *) NULL, 0)))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+ }
+
+ /* We don't want to output symbols that have never been mentioned by
+ a regular file, or that we have been told to strip. However, if
+ h->indx is set to -2, the symbol is used by a reloc and we must
+ output it. */
+ if (h->indx == -2)
+ strip = false;
+ else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
+ strip = true;
+ else if (finfo->info->strip == strip_all
+ || (finfo->info->strip == strip_some
+ && bfd_hash_lookup (finfo->info->keep_hash,
+ h->root.root.string,
+ false, false) == NULL))
+ strip = true;
+ else
+ strip = false;
+
+ /* If we're stripping it, and it's not a dynamic symbol, there's
+ nothing else to do. */
+ if (strip && h->dynindx == -1)
+ return true;
+
+ sym.st_value = 0;
+ sym.st_size = h->size;
+ sym.st_other = h->other;
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
+ else if (h->root.type == bfd_link_hash_undefweak
+ || h->root.type == bfd_link_hash_defweak)
+ sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
+ else
+ sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
+
+ switch (h->root.type)
+ {
+ default:
+ case bfd_link_hash_new:
+ abort ();
+ return false;
+
+ case bfd_link_hash_undefined:
+ input_sec = bfd_und_section_ptr;
+ sym.st_shndx = SHN_UNDEF;
+ break;
+
+ case bfd_link_hash_undefweak:
+ input_sec = bfd_und_section_ptr;
+ sym.st_shndx = SHN_UNDEF;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ {
+ input_sec = h->root.u.def.section;
+ if (input_sec->output_section != NULL)
+ {
+ sym.st_shndx =
+ _bfd_elf_section_from_bfd_section (finfo->output_bfd,
+ input_sec->output_section);
+ if (sym.st_shndx == (unsigned short) -1)
+ {
+ (*_bfd_error_handler)
+ (_("%s: could not find output section %s for input section %s"),
+ bfd_get_filename (finfo->output_bfd),
+ input_sec->output_section->name,
+ input_sec->name);
+ eoinfo->failed = true;
+ return false;
+ }
+
+ /* ELF symbols in relocateable files are section relative,
+ but in nonrelocateable files they are virtual
+ addresses. */
+ sym.st_value = h->root.u.def.value + input_sec->output_offset;
+ if (! finfo->info->relocateable)
+ sym.st_value += input_sec->output_section->vma;
+ }
+ else
+ {
+ BFD_ASSERT (input_sec->owner == NULL
+ || (input_sec->owner->flags & DYNAMIC) != 0);
+ sym.st_shndx = SHN_UNDEF;
+ input_sec = bfd_und_section_ptr;
+ }
+ }
+ break;
+
+ case bfd_link_hash_common:
+ input_sec = h->root.u.c.p->section;
+ sym.st_shndx = SHN_COMMON;
+ sym.st_value = 1 << h->root.u.c.p->alignment_power;
+ break;
+
+ case bfd_link_hash_indirect:
+ /* These symbols are created by symbol versioning. They point
+ to the decorated version of the name. For example, if the
+ symbol foo@@GNU_1.2 is the default, which should be used when
+ foo is used with no version, then we add an indirect symbol
+ foo which points to foo@@GNU_1.2. We ignore these symbols,
+ since the indirected symbol is already in the hash table. If
+ the indirect symbol is non-ELF, fall through and output it. */
+ if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
+ return true;
+
+ /* Fall through. */
+ case bfd_link_hash_warning:
+ /* We can't represent these symbols in ELF, although a warning
+ symbol may have come from a .gnu.warning.SYMBOL section. We
+ just put the target symbol in the hash table. If the target
+ symbol does not really exist, don't do anything. */
+ if (h->root.u.i.link->type == bfd_link_hash_new)
+ return true;
+ return (elf_link_output_extsym
+ ((struct elf_link_hash_entry *) h->root.u.i.link, data));
+ }
+
+ /* Give the processor backend a chance to tweak the symbol value,
+ and also to finish up anything that needs to be done for this
+ symbol. */
+ if ((h->dynindx != -1
+ || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ && elf_hash_table (finfo->info)->dynamic_sections_created)
+ {
+ struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (finfo->output_bfd);
+ if (! ((*bed->elf_backend_finish_dynamic_symbol)
+ (finfo->output_bfd, finfo->info, h, &sym)))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+ }
+
+ /* If we are marking the symbol as undefined, and there are no
+ non-weak references to this symbol from a regular object, then
+ mark the symbol as weak undefined. We can't do this earlier,
+ because it might not be marked as undefined until the
+ finish_dynamic_symbol routine gets through with it. */
+ if (sym.st_shndx == SHN_UNDEF
+ && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
+ sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
+
+ /* If this symbol should be put in the .dynsym section, then put it
+ there now. We have already know the symbol index. We also fill
+ in the entry in the .hash section. */
+ if (h->dynindx != -1
+ && elf_hash_table (finfo->info)->dynamic_sections_created)
+ {
+ size_t bucketcount;
+ size_t bucket;
+ bfd_byte *bucketpos;
+ bfd_vma chain;
+
+ sym.st_name = h->dynstr_index;
+
+ elf_swap_symbol_out (finfo->output_bfd, &sym,
+ (PTR) (((Elf_External_Sym *)
+ finfo->dynsym_sec->contents)
+ + h->dynindx));
+
+ bucketcount = elf_hash_table (finfo->info)->bucketcount;
+ bucket = h->elf_hash_value % bucketcount;
+ bucketpos = ((bfd_byte *) finfo->hash_sec->contents
+ + (bucket + 2) * (ARCH_SIZE / 8));
+ chain = get_word (finfo->output_bfd, bucketpos);
+ put_word (finfo->output_bfd, h->dynindx, bucketpos);
+ put_word (finfo->output_bfd, chain,
+ ((bfd_byte *) finfo->hash_sec->contents
+ + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
+
+ if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
+ {
+ Elf_Internal_Versym iversym;
+
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ {
+ if (h->verinfo.verdef == NULL)
+ iversym.vs_vers = 0;
+ else
+ iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
+ }
+ else
+ {
+ if (h->verinfo.vertree == NULL)
+ iversym.vs_vers = 1;
+ else
+ iversym.vs_vers = h->verinfo.vertree->vernum + 1;
+ }
+
+ if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
+ iversym.vs_vers |= VERSYM_HIDDEN;
+
+ _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
+ (((Elf_External_Versym *)
+ finfo->symver_sec->contents)
+ + h->dynindx));
+ }
+ }
+
+ /* If we're stripping it, then it was just a dynamic symbol, and
+ there's nothing else to do. */
+ if (strip)
+ return true;
+
+ h->indx = bfd_get_symcount (finfo->output_bfd);
+
+ if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+
+ return true;
+}
+
+/* Link an input file into the linker output file. This function
+ handles all the sections and relocations of the input file at once.
+ This is so that we only have to read the local symbols once, and
+ don't have to keep them in memory. */
+
+static boolean
+elf_link_input_bfd (finfo, input_bfd)
+ struct elf_final_link_info *finfo;
+ bfd *input_bfd;
+{
+ boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
+ bfd *, asection *, bfd_byte *,
+ Elf_Internal_Rela *,
+ Elf_Internal_Sym *, asection **));
+ bfd *output_bfd;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t locsymcount;
+ size_t extsymoff;
+ Elf_External_Sym *external_syms;
+ Elf_External_Sym *esym;
+ Elf_External_Sym *esymend;
+ Elf_Internal_Sym *isym;
+ long *pindex;
+ asection **ppsection;
+ asection *o;
+
+ output_bfd = finfo->output_bfd;
+ relocate_section =
+ get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
+
+ /* If this is a dynamic object, we don't want to do anything here:
+ we don't want the local symbols, and we don't want the section
+ contents. */
+ if ((input_bfd->flags & DYNAMIC) != 0)
+ return true;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ if (elf_bad_symtab (input_bfd))
+ {
+ locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ extsymoff = 0;
+ }
+ else
+ {
+ locsymcount = symtab_hdr->sh_info;
+ extsymoff = symtab_hdr->sh_info;
+ }
+
+ /* Read the local symbols. */
+ if (symtab_hdr->contents != NULL)
+ external_syms = (Elf_External_Sym *) symtab_hdr->contents;
+ else if (locsymcount == 0)
+ external_syms = NULL;
+ else
+ {
+ external_syms = finfo->external_syms;
+ if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
+ || (bfd_read (external_syms, sizeof (Elf_External_Sym),
+ locsymcount, input_bfd)
+ != locsymcount * sizeof (Elf_External_Sym)))
+ return false;
+ }
+
+ /* Swap in the local symbols and write out the ones which we know
+ are going into the output file. */
+ esym = external_syms;
+ esymend = esym + locsymcount;
+ isym = finfo->internal_syms;
+ pindex = finfo->indices;
+ ppsection = finfo->sections;
+ for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
+ {
+ asection *isec;
+ const char *name;
+ Elf_Internal_Sym osym;
+
+ elf_swap_symbol_in (input_bfd, esym, isym);
+ *pindex = -1;
+
+ if (elf_bad_symtab (input_bfd))
+ {
+ if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
+ {
+ *ppsection = NULL;
+ continue;
+ }
+ }
+
+ if (isym->st_shndx == SHN_UNDEF)
+ isec = bfd_und_section_ptr;
+ else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
+ isec = section_from_elf_index (input_bfd, isym->st_shndx);
+ else if (isym->st_shndx == SHN_ABS)
+ isec = bfd_abs_section_ptr;
+ else if (isym->st_shndx == SHN_COMMON)
+ isec = bfd_com_section_ptr;
+ else
+ {
+ /* Who knows? */
+ isec = NULL;
+ }
+
+ *ppsection = isec;
+
+ /* Don't output the first, undefined, symbol. */
+ if (esym == external_syms)
+ continue;
+
+ /* If we are stripping all symbols, we don't want to output this
+ one. */
+ if (finfo->info->strip == strip_all)
+ continue;
+
+ /* We never output section symbols. Instead, we use the section
+ symbol of the corresponding section in the output file. */
+ if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
+ continue;
+
+ /* If we are discarding all local symbols, we don't want to
+ output this one. If we are generating a relocateable output
+ file, then some of the local symbols may be required by
+ relocs; we output them below as we discover that they are
+ needed. */
+ if (finfo->info->discard == discard_all)
+ continue;
+
+ /* If this symbol is defined in a section which we are
+ discarding, we don't need to keep it, but note that
+ linker_mark is only reliable for sections that have contents.
+ For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
+ as well as linker_mark. */
+ if (isym->st_shndx > 0
+ && isym->st_shndx < SHN_LORESERVE
+ && isec != NULL
+ && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
+ || (! finfo->info->relocateable
+ && (isec->flags & SEC_EXCLUDE) != 0)))
+ continue;
+
+ /* Get the name of the symbol. */
+ name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
+ isym->st_name);
+ if (name == NULL)
+ return false;
+
+ /* See if we are discarding symbols with this name. */
+ if ((finfo->info->strip == strip_some
+ && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
+ == NULL))
+ || (finfo->info->discard == discard_l
+ && bfd_is_local_label_name (input_bfd, name)))
+ continue;
+
+ /* If we get here, we are going to output this symbol. */
+
+ osym = *isym;
+
+ /* Adjust the section index for the output file. */
+ osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
+ isec->output_section);
+ if (osym.st_shndx == (unsigned short) -1)
+ return false;
+
+ *pindex = bfd_get_symcount (output_bfd);
+
+ /* ELF symbols in relocateable files are section relative, but
+ in executable files they are virtual addresses. Note that
+ this code assumes that all ELF sections have an associated
+ BFD section with a reasonable value for output_offset; below
+ we assume that they also have a reasonable value for
+ output_section. Any special sections must be set up to meet
+ these requirements. */
+ osym.st_value += isec->output_offset;
+ if (! finfo->info->relocateable)
+ osym.st_value += isec->output_section->vma;
+
+ if (! elf_link_output_sym (finfo, name, &osym, isec))
+ return false;
+ }
+
+ /* Relocate the contents of each section. */
+ for (o = input_bfd->sections; o != NULL; o = o->next)
+ {
+ bfd_byte *contents;
+
+ if (! o->linker_mark)
+ {
+ /* This section was omitted from the link. */
+ continue;
+ }
+
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
+ continue;
+
+ if ((o->flags & SEC_LINKER_CREATED) != 0)
+ {
+ /* Section was created by elf_link_create_dynamic_sections
+ or somesuch. */
+ continue;
+ }
+
+ /* Get the contents of the section. They have been cached by a
+ relaxation routine. Note that o is a section in an input
+ file, so the contents field will not have been set by any of
+ the routines which work on output files. */
+ if (elf_section_data (o)->this_hdr.contents != NULL)
+ contents = elf_section_data (o)->this_hdr.contents;
+ else
+ {
+ contents = finfo->contents;
+ if (! bfd_get_section_contents (input_bfd, o, contents,
+ (file_ptr) 0, o->_raw_size))
+ return false;
+ }
+
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ Elf_Internal_Rela *internal_relocs;
+
+ /* Get the swapped relocs. */
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (input_bfd, o, finfo->external_relocs,
+ finfo->internal_relocs, false));
+ if (internal_relocs == NULL
+ && o->reloc_count > 0)
+ return false;
+
+ /* Relocate the section by invoking a back end routine.
+
+ The back end routine is responsible for adjusting the
+ section contents as necessary, and (if using Rela relocs
+ and generating a relocateable output file) adjusting the
+ reloc addend as necessary.
+
+ The back end routine does not have to worry about setting
+ the reloc address or the reloc symbol index.
+
+ The back end routine is given a pointer to the swapped in
+ internal symbols, and can access the hash table entries
+ for the external symbols via elf_sym_hashes (input_bfd).
+
+ When generating relocateable output, the back end routine
+ must handle STB_LOCAL/STT_SECTION symbols specially. The
+ output symbol is going to be a section symbol
+ corresponding to the output section, which will require
+ the addend to be adjusted. */
+
+ if (! (*relocate_section) (output_bfd, finfo->info,
+ input_bfd, o, contents,
+ internal_relocs,
+ finfo->internal_syms,
+ finfo->sections))
+ return false;
+
+ if (finfo->info->relocateable)
+ {
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rela *irelaend;
+ struct elf_link_hash_entry **rel_hash;
+ Elf_Internal_Shdr *input_rel_hdr;
+ Elf_Internal_Shdr *output_rel_hdr;
+
+ /* Adjust the reloc addresses and symbol indices. */
+
+ irela = internal_relocs;
+ irelaend = irela + o->reloc_count;
+ rel_hash = (elf_section_data (o->output_section)->rel_hashes
+ + o->output_section->reloc_count);
+ for (; irela < irelaend; irela++, rel_hash++)
+ {
+ unsigned long r_symndx;
+ Elf_Internal_Sym *isym;
+ asection *sec;
+
+ irela->r_offset += o->output_offset;
+
+ r_symndx = ELF_R_SYM (irela->r_info);
+
+ if (r_symndx == 0)
+ continue;
+
+ if (r_symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && finfo->sections[r_symndx] == NULL))
+ {
+ struct elf_link_hash_entry *rh;
+ long indx;
+
+ /* This is a reloc against a global symbol. We
+ have not yet output all the local symbols, so
+ we do not know the symbol index of any global
+ symbol. We set the rel_hash entry for this
+ reloc to point to the global hash table entry
+ for this symbol. The symbol index is then
+ set at the end of elf_bfd_final_link. */
+ indx = r_symndx - extsymoff;
+ rh = elf_sym_hashes (input_bfd)[indx];
+ while (rh->root.type == bfd_link_hash_indirect
+ || rh->root.type == bfd_link_hash_warning)
+ rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
+
+ /* Setting the index to -2 tells
+ elf_link_output_extsym that this symbol is
+ used by a reloc. */
+ BFD_ASSERT (rh->indx < 0);
+ rh->indx = -2;
+
+ *rel_hash = rh;
+
+ continue;
+ }
+
+ /* This is a reloc against a local symbol. */
+
+ *rel_hash = NULL;
+ isym = finfo->internal_syms + r_symndx;
+ sec = finfo->sections[r_symndx];
+ if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
+ {
+ /* I suppose the backend ought to fill in the
+ section of any STT_SECTION symbol against a
+ processor specific section. If we have
+ discarded a section, the output_section will
+ be the absolute section. */
+ if (sec != NULL
+ && (bfd_is_abs_section (sec)
+ || (sec->output_section != NULL
+ && bfd_is_abs_section (sec->output_section))))
+ r_symndx = 0;
+ else if (sec == NULL || sec->owner == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ else
+ {
+ r_symndx = sec->output_section->target_index;
+ BFD_ASSERT (r_symndx != 0);
+ }
+ }
+ else
+ {
+ if (finfo->indices[r_symndx] == -1)
+ {
+ unsigned long link;
+ const char *name;
+ asection *osec;
+
+ if (finfo->info->strip == strip_all)
+ {
+ /* You can't do ld -r -s. */
+ bfd_set_error (bfd_error_invalid_operation);
+ return false;
+ }
+
+ /* This symbol was skipped earlier, but
+ since it is needed by a reloc, we
+ must output it now. */
+ link = symtab_hdr->sh_link;
+ name = bfd_elf_string_from_elf_section (input_bfd,
+ link,
+ isym->st_name);
+ if (name == NULL)
+ return false;
+
+ osec = sec->output_section;
+ isym->st_shndx =
+ _bfd_elf_section_from_bfd_section (output_bfd,
+ osec);
+ if (isym->st_shndx == (unsigned short) -1)
+ return false;
+
+ isym->st_value += sec->output_offset;
+ if (! finfo->info->relocateable)
+ isym->st_value += osec->vma;
+
+ finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
+
+ if (! elf_link_output_sym (finfo, name, isym, sec))
+ return false;
+ }
+
+ r_symndx = finfo->indices[r_symndx];
+ }
+
+ irela->r_info = ELF_R_INFO (r_symndx,
+ ELF_R_TYPE (irela->r_info));
+ }
+
+ /* Swap out the relocs. */
+ input_rel_hdr = &elf_section_data (o)->rel_hdr;
+ output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
+ BFD_ASSERT (output_rel_hdr->sh_entsize
+ == input_rel_hdr->sh_entsize);
+ irela = internal_relocs;
+ irelaend = irela + o->reloc_count;
+ if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+
+ erel = ((Elf_External_Rel *) output_rel_hdr->contents
+ + o->output_section->reloc_count);
+ for (; irela < irelaend; irela++, erel++)
+ {
+ Elf_Internal_Rel irel;
+
+ irel.r_offset = irela->r_offset;
+ irel.r_info = irela->r_info;
+ BFD_ASSERT (irela->r_addend == 0);
+ elf_swap_reloc_out (output_bfd, &irel, erel);
+ }
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+
+ BFD_ASSERT (input_rel_hdr->sh_entsize
+ == sizeof (Elf_External_Rela));
+ erela = ((Elf_External_Rela *) output_rel_hdr->contents
+ + o->output_section->reloc_count);
+ for (; irela < irelaend; irela++, erela++)
+ elf_swap_reloca_out (output_bfd, irela, erela);
+ }
+
+ o->output_section->reloc_count += o->reloc_count;
+ }
+ }
+
+ /* Write out the modified section contents. */
+ if (elf_section_data (o)->stab_info == NULL)
+ {
+ if (! (o->flags & SEC_EXCLUDE) &&
+ ! bfd_set_section_contents (output_bfd, o->output_section,
+ contents, o->output_offset,
+ (o->_cooked_size != 0
+ ? o->_cooked_size
+ : o->_raw_size)))
+ return false;
+ }
+ else
+ {
+ if (! (_bfd_write_section_stabs
+ (output_bfd, &elf_hash_table (finfo->info)->stab_info,
+ o, &elf_section_data (o)->stab_info, contents)))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Generate a reloc when linking an ELF file. This is a reloc
+ requested by the linker, and does come from any input file. This
+ is used to build constructor and destructor tables when linking
+ with -Ur. */
+
+static boolean
+elf_reloc_link_order (output_bfd, info, output_section, link_order)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ asection *output_section;
+ struct bfd_link_order *link_order;
+{
+ reloc_howto_type *howto;
+ long indx;
+ bfd_vma offset;
+ bfd_vma addend;
+ struct elf_link_hash_entry **rel_hash_ptr;
+ Elf_Internal_Shdr *rel_hdr;
+
+ howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
+ if (howto == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+
+ addend = link_order->u.reloc.p->addend;
+
+ /* Figure out the symbol index. */
+ rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
+ + output_section->reloc_count);
+ if (link_order->type == bfd_section_reloc_link_order)
+ {
+ indx = link_order->u.reloc.p->u.section->target_index;
+ BFD_ASSERT (indx != 0);
+ *rel_hash_ptr = NULL;
+ }
+ else
+ {
+ struct elf_link_hash_entry *h;
+
+ /* Treat a reloc against a defined symbol as though it were
+ actually against the section. */
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (output_bfd, info,
+ link_order->u.reloc.p->u.name,
+ false, false, true));
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ asection *section;
+
+ section = h->root.u.def.section;
+ indx = section->output_section->target_index;
+ *rel_hash_ptr = NULL;
+ /* It seems that we ought to add the symbol value to the
+ addend here, but in practice it has already been added
+ because it was passed to constructor_callback. */
+ addend += section->output_section->vma + section->output_offset;
+ }
+ else if (h != NULL)
+ {
+ /* Setting the index to -2 tells elf_link_output_extsym that
+ this symbol is used by a reloc. */
+ h->indx = -2;
+ *rel_hash_ptr = h;
+ indx = 0;
+ }
+ else
+ {
+ if (! ((*info->callbacks->unattached_reloc)
+ (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
+ (asection *) NULL, (bfd_vma) 0)))
+ return false;
+ indx = 0;
+ }
+ }
+
+ /* If this is an inplace reloc, we must write the addend into the
+ object file. */
+ if (howto->partial_inplace && addend != 0)
+ {
+ bfd_size_type size;
+ bfd_reloc_status_type rstat;
+ bfd_byte *buf;
+ boolean ok;
+
+ size = bfd_get_reloc_size (howto);
+ buf = (bfd_byte *) bfd_zmalloc (size);
+ if (buf == (bfd_byte *) NULL)
+ return false;
+ rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
+ switch (rstat)
+ {
+ case bfd_reloc_ok:
+ break;
+ default:
+ case bfd_reloc_outofrange:
+ abort ();
+ case bfd_reloc_overflow:
+ if (! ((*info->callbacks->reloc_overflow)
+ (info,
+ (link_order->type == bfd_section_reloc_link_order
+ ? bfd_section_name (output_bfd,
+ link_order->u.reloc.p->u.section)
+ : link_order->u.reloc.p->u.name),
+ howto->name, addend, (bfd *) NULL, (asection *) NULL,
+ (bfd_vma) 0)))
+ {
+ free (buf);
+ return false;
+ }
+ break;
+ }
+ ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
+ (file_ptr) link_order->offset, size);
+ free (buf);
+ if (! ok)
+ return false;
+ }
+
+ /* The address of a reloc is relative to the section in a
+ relocateable file, and is a virtual address in an executable
+ file. */
+ offset = link_order->offset;
+ if (! info->relocateable)
+ offset += output_section->vma;
+
+ rel_hdr = &elf_section_data (output_section)->rel_hdr;
+
+ if (rel_hdr->sh_type == SHT_REL)
+ {
+ Elf_Internal_Rel irel;
+ Elf_External_Rel *erel;
+
+ irel.r_offset = offset;
+ irel.r_info = ELF_R_INFO (indx, howto->type);
+ erel = ((Elf_External_Rel *) rel_hdr->contents
+ + output_section->reloc_count);
+ elf_swap_reloc_out (output_bfd, &irel, erel);
+ }
+ else
+ {
+ Elf_Internal_Rela irela;
+ Elf_External_Rela *erela;
+
+ irela.r_offset = offset;
+ irela.r_info = ELF_R_INFO (indx, howto->type);
+ irela.r_addend = addend;
+ erela = ((Elf_External_Rela *) rel_hdr->contents
+ + output_section->reloc_count);
+ elf_swap_reloca_out (output_bfd, &irela, erela);
+ }
+
+ ++output_section->reloc_count;
+
+ return true;
+}
+
+
+/* Allocate a pointer to live in a linker created section. */
+
+boolean
+elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ elf_linker_section_t *lsect;
+ struct elf_link_hash_entry *h;
+ const Elf_Internal_Rela *rel;
+{
+ elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
+ elf_linker_section_pointers_t *linker_section_ptr;
+ unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
+
+ BFD_ASSERT (lsect != NULL);
+
+ /* Is this a global symbol? */
+ if (h != NULL)
+ {
+ /* Has this symbol already been allocated, if so, our work is done */
+ if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
+ rel->r_addend,
+ lsect->which))
+ return true;
+
+ ptr_linker_section_ptr = &h->linker_section_pointer;
+ /* Make sure this symbol is output as a dynamic symbol. */
+ if (h->dynindx == -1)
+ {
+ if (! elf_link_record_dynamic_symbol (info, h))
+ return false;
+ }
+
+ if (lsect->rel_section)
+ lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
+ }
+
+ else /* Allocation of a pointer to a local symbol */
+ {
+ elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
+
+ /* Allocate a table to hold the local symbols if first time */
+ if (!ptr)
+ {
+ unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
+ register unsigned int i;
+
+ ptr = (elf_linker_section_pointers_t **)
+ bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
+
+ if (!ptr)
+ return false;
+
+ elf_local_ptr_offsets (abfd) = ptr;
+ for (i = 0; i < num_symbols; i++)
+ ptr[i] = (elf_linker_section_pointers_t *)0;
+ }
+
+ /* Has this symbol already been allocated, if so, our work is done */
+ if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
+ rel->r_addend,
+ lsect->which))
+ return true;
+
+ ptr_linker_section_ptr = &ptr[r_symndx];
+
+ if (info->shared)
+ {
+ /* If we are generating a shared object, we need to
+ output a R_<xxx>_RELATIVE reloc so that the
+ dynamic linker can adjust this GOT entry. */
+ BFD_ASSERT (lsect->rel_section != NULL);
+ lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
+ }
+ }
+
+ /* Allocate space for a pointer in the linker section, and allocate a new pointer record
+ from internal memory. */
+ BFD_ASSERT (ptr_linker_section_ptr != NULL);
+ linker_section_ptr = (elf_linker_section_pointers_t *)
+ bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
+
+ if (!linker_section_ptr)
+ return false;
+
+ linker_section_ptr->next = *ptr_linker_section_ptr;
+ linker_section_ptr->addend = rel->r_addend;
+ linker_section_ptr->which = lsect->which;
+ linker_section_ptr->written_address_p = false;
+ *ptr_linker_section_ptr = linker_section_ptr;
+
+#if 0
+ if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
+ {
+ linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
+ lsect->hole_offset += ARCH_SIZE / 8;
+ lsect->sym_offset += ARCH_SIZE / 8;
+ if (lsect->sym_hash) /* Bump up symbol value if needed */
+ {
+ lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
+#ifdef DEBUG
+ fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
+ lsect->sym_hash->root.root.string,
+ (long)ARCH_SIZE / 8,
+ (long)lsect->sym_hash->root.u.def.value);
+#endif
+ }
+ }
+ else
+#endif
+ linker_section_ptr->offset = lsect->section->_raw_size;
+
+ lsect->section->_raw_size += ARCH_SIZE / 8;
+
+#ifdef DEBUG
+ fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
+ lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
+#endif
+
+ return true;
+}
+
+
+#if ARCH_SIZE==64
+#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
+#endif
+#if ARCH_SIZE==32
+#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
+#endif
+
+/* Fill in the address for a pointer generated in alinker section. */
+
+bfd_vma
+elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
+ bfd *output_bfd;
+ bfd *input_bfd;
+ struct bfd_link_info *info;
+ elf_linker_section_t *lsect;
+ struct elf_link_hash_entry *h;
+ bfd_vma relocation;
+ const Elf_Internal_Rela *rel;
+ int relative_reloc;
+{
+ elf_linker_section_pointers_t *linker_section_ptr;
+
+ BFD_ASSERT (lsect != NULL);
+
+ if (h != NULL) /* global symbol */
+ {
+ linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
+ rel->r_addend,
+ lsect->which);
+
+ BFD_ASSERT (linker_section_ptr != NULL);
+
+ if (! elf_hash_table (info)->dynamic_sections_created
+ || (info->shared
+ && info->symbolic
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
+ {
+ /* This is actually a static link, or it is a
+ -Bsymbolic link and the symbol is defined
+ locally. We must initialize this entry in the
+ global section.
+
+ When doing a dynamic link, we create a .rela.<xxx>
+ relocation entry to initialize the value. This
+ is done in the finish_dynamic_symbol routine. */
+ if (!linker_section_ptr->written_address_p)
+ {
+ linker_section_ptr->written_address_p = true;
+ bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
+ lsect->section->contents + linker_section_ptr->offset);
+ }
+ }
+ }
+ else /* local symbol */
+ {
+ unsigned long r_symndx = ELF_R_SYM (rel->r_info);
+ BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
+ BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
+ linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
+ rel->r_addend,
+ lsect->which);
+
+ BFD_ASSERT (linker_section_ptr != NULL);
+
+ /* Write out pointer if it hasn't been rewritten out before */
+ if (!linker_section_ptr->written_address_p)
+ {
+ linker_section_ptr->written_address_p = true;
+ bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
+ lsect->section->contents + linker_section_ptr->offset);
+
+ if (info->shared)
+ {
+ asection *srel = lsect->rel_section;
+ Elf_Internal_Rela outrel;
+
+ /* We need to generate a relative reloc for the dynamic linker. */
+ if (!srel)
+ lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
+ lsect->rel_name);
+
+ BFD_ASSERT (srel != NULL);
+
+ outrel.r_offset = (lsect->section->output_section->vma
+ + lsect->section->output_offset
+ + linker_section_ptr->offset);
+ outrel.r_info = ELF_R_INFO (0, relative_reloc);
+ outrel.r_addend = 0;
+ elf_swap_reloca_out (output_bfd, &outrel,
+ (((Elf_External_Rela *)
+ lsect->section->contents)
+ + lsect->section->reloc_count));
+ ++lsect->section->reloc_count;
+ }
+ }
+ }
+
+ relocation = (lsect->section->output_offset
+ + linker_section_ptr->offset
+ - lsect->hole_offset
+ - lsect->sym_offset);
+
+#ifdef DEBUG
+ fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
+ lsect->name, (long)relocation, (long)relocation);
+#endif
+
+ /* Subtract out the addend, because it will get added back in by the normal
+ processing. */
+ return relocation - linker_section_ptr->addend;
+}
+
+/* Garbage collect unused sections. */
+
+static boolean elf_gc_mark
+ PARAMS ((struct bfd_link_info *info, asection *sec,
+ asection * (*gc_mark_hook)
+ PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
+ struct elf_link_hash_entry *, Elf_Internal_Sym *))));
+
+static boolean elf_gc_sweep
+ PARAMS ((struct bfd_link_info *info,
+ boolean (*gc_sweep_hook)
+ PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
+ const Elf_Internal_Rela *relocs))));
+
+static boolean elf_gc_sweep_symbol
+ PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
+
+static boolean elf_gc_allocate_got_offsets
+ PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
+
+static boolean elf_gc_propagate_vtable_entries_used
+ PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
+
+static boolean elf_gc_smash_unused_vtentry_relocs
+ PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
+
+/* The mark phase of garbage collection. For a given section, mark
+ it, and all the sections which define symbols to which it refers. */
+
+static boolean
+elf_gc_mark (info, sec, gc_mark_hook)
+ struct bfd_link_info *info;
+ asection *sec;
+ asection * (*gc_mark_hook)
+ PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
+ struct elf_link_hash_entry *, Elf_Internal_Sym *));
+{
+ boolean ret = true;
+
+ sec->gc_mark = 1;
+
+ /* Look through the section relocs. */
+
+ if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
+ {
+ Elf_Internal_Rela *relstart, *rel, *relend;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ size_t nlocsyms;
+ size_t extsymoff;
+ Elf_External_Sym *locsyms, *freesyms = NULL;
+ bfd *input_bfd = sec->owner;
+
+ /* GCFIXME: how to arrange so that relocs and symbols are not
+ reread continually? */
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (input_bfd);
+
+ /* Read the local symbols. */
+ if (elf_bad_symtab (input_bfd))
+ {
+ nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ extsymoff = 0;
+ }
+ else
+ extsymoff = nlocsyms = symtab_hdr->sh_info;
+ if (symtab_hdr->contents)
+ locsyms = (Elf_External_Sym *) symtab_hdr->contents;
+ else if (nlocsyms == 0)
+ locsyms = NULL;
+ else
+ {
+ locsyms = freesyms =
+ bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
+ if (freesyms == NULL
+ || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
+ || (bfd_read (locsyms, sizeof (Elf_External_Sym),
+ nlocsyms, input_bfd)
+ != nlocsyms * sizeof (Elf_External_Sym)))
+ {
+ ret = false;
+ goto out1;
+ }
+ }
+
+ /* Read the relocations. */
+ relstart = (NAME(_bfd_elf,link_read_relocs)
+ (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (relstart == NULL)
+ {
+ ret = false;
+ goto out1;
+ }
+ relend = relstart + sec->reloc_count;
+
+ for (rel = relstart; rel < relend; rel++)
+ {
+ unsigned long r_symndx;
+ asection *rsec;
+ struct elf_link_hash_entry *h;
+ Elf_Internal_Sym s;
+
+ r_symndx = ELF_R_SYM (rel->r_info);
+ if (r_symndx == 0)
+ continue;
+
+ if (elf_bad_symtab (sec->owner))
+ {
+ elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
+ if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
+ rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
+ else
+ {
+ h = sym_hashes[r_symndx - extsymoff];
+ rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
+ }
+ }
+ else if (r_symndx >= nlocsyms)
+ {
+ h = sym_hashes[r_symndx - extsymoff];
+ rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
+ }
+ else
+ {
+ elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
+ rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
+ }
+
+ if (rsec && !rsec->gc_mark)
+ if (!elf_gc_mark (info, rsec, gc_mark_hook))
+ {
+ ret = false;
+ goto out2;
+ }
+ }
+
+ out2:
+ if (!info->keep_memory)
+ free (relstart);
+ out1:
+ if (freesyms)
+ free (freesyms);
+ }
+
+ return ret;
+}
+
+/* The sweep phase of garbage collection. Remove all garbage sections. */
+
+static boolean
+elf_gc_sweep (info, gc_sweep_hook)
+ struct bfd_link_info *info;
+ boolean (*gc_sweep_hook)
+ PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
+ const Elf_Internal_Rela *relocs));
+{
+ bfd *sub;
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ {
+ asection *o;
+
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ /* Keep special sections. Keep .debug sections. */
+ if ((o->flags & SEC_LINKER_CREATED)
+ || (o->flags & SEC_DEBUGGING))
+ o->gc_mark = 1;
+
+ if (o->gc_mark)
+ continue;
+
+ /* Skip sweeping sections already excluded. */
+ if (o->flags & SEC_EXCLUDE)
+ continue;
+
+ /* Since this is early in the link process, it is simple
+ to remove a section from the output. */
+ o->flags |= SEC_EXCLUDE;
+
+ /* But we also have to update some of the relocation
+ info we collected before. */
+ if (gc_sweep_hook
+ && (o->flags & SEC_RELOC) && o->reloc_count > 0)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ boolean r;
+
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (o->owner, o, NULL, NULL, info->keep_memory));
+ if (internal_relocs == NULL)
+ return false;
+
+ r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
+
+ if (!info->keep_memory)
+ free (internal_relocs);
+
+ if (!r)
+ return false;
+ }
+ }
+ }
+
+ /* Remove the symbols that were in the swept sections from the dynamic
+ symbol table. GCFIXME: Anyone know how to get them out of the
+ static symbol table as well? */
+ {
+ int i = 0;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_sweep_symbol,
+ (PTR) &i);
+
+ elf_hash_table (info)->dynsymcount = i;
+ }
+
+ return true;
+}
+
+/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
+
+static boolean
+elf_gc_sweep_symbol (h, idxptr)
+ struct elf_link_hash_entry *h;
+ PTR idxptr;
+{
+ int *idx = (int *) idxptr;
+
+ if (h->dynindx != -1
+ && ((h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak)
+ || h->root.u.def.section->gc_mark))
+ h->dynindx = (*idx)++;
+
+ return true;
+}
+
+/* Propogate collected vtable information. This is called through
+ elf_link_hash_traverse. */
+
+static boolean
+elf_gc_propagate_vtable_entries_used (h, okp)
+ struct elf_link_hash_entry *h;
+ PTR okp;
+{
+ /* Those that are not vtables. */
+ if (h->vtable_parent == NULL)
+ return true;
+
+ /* Those vtables that do not have parents, we cannot merge. */
+ if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
+ return true;
+
+ /* If we've already been done, exit. */
+ if (h->vtable_entries_used && h->vtable_entries_used[-1])
+ return true;
+
+ /* Make sure the parent's table is up to date. */
+ elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
+
+ if (h->vtable_entries_used == NULL)
+ {
+ /* None of this table's entries were referenced. Re-use the
+ parent's table. */
+ h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
+ h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
+ }
+ else
+ {
+ size_t n;
+ boolean *cu, *pu;
+
+ /* Or the parent's entries into ours. */
+ cu = h->vtable_entries_used;
+ cu[-1] = true;
+ pu = h->vtable_parent->vtable_entries_used;
+ if (pu != NULL)
+ {
+ n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
+ while (--n != 0)
+ {
+ if (*pu) *cu = true;
+ pu++, cu++;
+ }
+ }
+ }
+
+ return true;
+}
+
+static boolean
+elf_gc_smash_unused_vtentry_relocs (h, okp)
+ struct elf_link_hash_entry *h;
+ PTR okp;
+{
+ asection *sec;
+ bfd_vma hstart, hend;
+ Elf_Internal_Rela *relstart, *relend, *rel;
+
+ /* Take care of both those symbols that do not describe vtables as
+ well as those that are not loaded. */
+ if (h->vtable_parent == NULL)
+ return true;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+
+ sec = h->root.u.def.section;
+ hstart = h->root.u.def.value;
+ hend = hstart + h->size;
+
+ relstart = (NAME(_bfd_elf,link_read_relocs)
+ (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
+ if (!relstart)
+ return *(boolean *)okp = false;
+ relend = relstart + sec->reloc_count;
+
+ for (rel = relstart; rel < relend; ++rel)
+ if (rel->r_offset >= hstart && rel->r_offset < hend)
+ {
+ /* If the entry is in use, do nothing. */
+ if (h->vtable_entries_used
+ && (rel->r_offset - hstart) < h->vtable_entries_size)
+ {
+ bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
+ if (h->vtable_entries_used[entry])
+ continue;
+ }
+ /* Otherwise, kill it. */
+ rel->r_offset = rel->r_info = rel->r_addend = 0;
+ }
+
+ return true;
+}
+
+/* Do mark and sweep of unused sections. */
+
+boolean
+elf_gc_sections (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean ok = true;
+ bfd *sub;
+ asection * (*gc_mark_hook)
+ PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
+ struct elf_link_hash_entry *h, Elf_Internal_Sym *));
+
+ if (!get_elf_backend_data (abfd)->can_gc_sections
+ || info->relocateable
+ || elf_hash_table (info)->dynamic_sections_created)
+ return true;
+
+ /* Apply transitive closure to the vtable entry usage info. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_propagate_vtable_entries_used,
+ (PTR) &ok);
+ if (!ok)
+ return false;
+
+ /* Kill the vtable relocations that were not used. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_smash_unused_vtentry_relocs,
+ (PTR) &ok);
+ if (!ok)
+ return false;
+
+ /* Grovel through relocs to find out who stays ... */
+
+ gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ {
+ asection *o;
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ if (o->flags & SEC_KEEP)
+ if (!elf_gc_mark (info, o, gc_mark_hook))
+ return false;
+ }
+ }
+
+ /* ... and mark SEC_EXCLUDE for those that go. */
+ if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
+ return false;
+
+ return true;
+}
+
+/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
+
+boolean
+elf_gc_record_vtinherit (abfd, sec, h, offset)
+ bfd *abfd;
+ asection *sec;
+ struct elf_link_hash_entry *h;
+ bfd_vma offset;
+{
+ struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
+ struct elf_link_hash_entry **search, *child;
+ bfd_size_type extsymcount;
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
+ if (!elf_bad_symtab (abfd))
+ extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
+
+ sym_hashes = elf_sym_hashes (abfd);
+ sym_hashes_end = sym_hashes + extsymcount;
+
+ /* Hunt down the child symbol, which is in this section at the same
+ offset as the relocation. */
+ for (search = sym_hashes; search != sym_hashes_end; ++search)
+ {
+ if ((child = *search) != NULL
+ && (child->root.type == bfd_link_hash_defined
+ || child->root.type == bfd_link_hash_defweak)
+ && child->root.u.def.section == sec
+ && child->root.u.def.value == offset)
+ goto win;
+ }
+
+ (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
+ bfd_get_filename (abfd), sec->name,
+ (unsigned long)offset);
+ bfd_set_error (bfd_error_invalid_operation);
+ return false;
+
+win:
+ if (!h)
+ {
+ /* This *should* only be the absolute section. It could potentially
+ be that someone has defined a non-global vtable though, which
+ would be bad. It isn't worth paging in the local symbols to be
+ sure though; that case should simply be handled by the assembler. */
+
+ child->vtable_parent = (struct elf_link_hash_entry *) -1;
+ }
+ else
+ child->vtable_parent = h;
+
+ return true;
+}
+
+/* Called from check_relocs to record the existance of a VTENTRY reloc. */
+
+boolean
+elf_gc_record_vtentry (abfd, sec, h, addend)
+ bfd *abfd;
+ asection *sec;
+ struct elf_link_hash_entry *h;
+ bfd_vma addend;
+{
+ if (addend >= h->vtable_entries_size)
+ {
+ size_t size, bytes;
+ boolean *ptr = h->vtable_entries_used;
+
+ /* While the symbol is undefined, we have to be prepared to handle
+ a zero size. */
+ if (h->root.type == bfd_link_hash_undefined)
+ size = addend;
+ else
+ {
+ size = h->size;
+ if (size < addend)
+ {
+ /* Oops! We've got a reference past the defined end of
+ the table. This is probably a bug -- shall we warn? */
+ size = addend;
+ }
+ }
+
+ /* Allocate one extra entry for use as a "done" flag for the
+ consolidation pass. */
+ bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
+
+ if (ptr)
+ {
+ size_t oldbytes;
+
+ ptr = realloc (ptr-1, bytes);
+ if (ptr == NULL)
+ return false;
+
+ oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
+ memset (ptr + oldbytes, 0, bytes - oldbytes);
+ }
+ else
+ {
+ ptr = calloc (1, bytes);
+ if (ptr == NULL)
+ return false;
+ }
+
+ /* And arrange for that done flag to be at index -1. */
+ h->vtable_entries_used = ptr+1;
+ h->vtable_entries_size = size;
+ }
+ h->vtable_entries_used[addend / FILE_ALIGN] = true;
+
+ return true;
+}
+
+/* And an accompanying bit to work out final got entry offsets once
+ we're done. Should be called from final_link. */
+
+boolean
+elf_gc_common_finalize_got_offsets (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ bfd *i;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_vma gotoff;
+
+ /* The GOT offset is relative to the .got section, but the GOT header is
+ put into the .got.plt section, if the backend uses it. */
+ if (bed->want_got_plt)
+ gotoff = 0;
+ else
+ gotoff = bed->got_header_size;
+
+ /* Do the local .got entries first. */
+ for (i = info->input_bfds; i; i = i->link_next)
+ {
+ bfd_signed_vma *local_got = elf_local_got_refcounts (i);
+ bfd_size_type j, locsymcount;
+ Elf_Internal_Shdr *symtab_hdr;
+
+ if (!local_got)
+ continue;
+
+ symtab_hdr = &elf_tdata (i)->symtab_hdr;
+ if (elf_bad_symtab (i))
+ locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ else
+ locsymcount = symtab_hdr->sh_info;
+
+ for (j = 0; j < locsymcount; ++j)
+ {
+ if (local_got[j] > 0)
+ {
+ local_got[j] = gotoff;
+ gotoff += ARCH_SIZE / 8;
+ }
+ else
+ local_got[j] = (bfd_vma) -1;
+ }
+ }
+
+ /* Then the global .got and .plt entries. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_allocate_got_offsets,
+ (PTR) &gotoff);
+ return true;
+}
+
+/* We need a special top-level link routine to convert got reference counts
+ to real got offsets. */
+
+static boolean
+elf_gc_allocate_got_offsets (h, offarg)
+ struct elf_link_hash_entry *h;
+ PTR offarg;
+{
+ bfd_vma *off = (bfd_vma *) offarg;
+
+ if (h->got.refcount > 0)
+ {
+ h->got.offset = off[0];
+ off[0] += ARCH_SIZE / 8;
+ }
+ else
+ h->got.offset = (bfd_vma) -1;
+
+ return true;
+}
+
+/* Many folk need no more in the way of final link than this, once
+ got entry reference counting is enabled. */
+
+boolean
+elf_gc_common_final_link (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ if (!elf_gc_common_finalize_got_offsets (abfd, info))
+ return false;
+
+ /* Invoke the regular ELF backend linker to do all the work. */
+ return elf_bfd_final_link (abfd, info);
+}
+
+/* This function will be called though elf_link_hash_traverse to store
+ all hash value of the exported symbols in an array. */
+
+static boolean
+elf_collect_hash_codes (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ unsigned long **valuep = (unsigned long **) data;
+ const char *name;
+ char *p;
+ unsigned long ha;
+ char *alc = NULL;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->dynindx == -1)
+ return true;
+
+ name = h->root.root.string;
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL)
+ {
+ alc = bfd_malloc (p - name + 1);
+ memcpy (alc, name, p - name);
+ alc[p - name] = '\0';
+ name = alc;
+ }
+
+ /* Compute the hash value. */
+ ha = bfd_elf_hash (name);
+
+ /* Store the found hash value in the array given as the argument. */
+ *(*valuep)++ = ha;
+
+ /* And store it in the struct so that we can put it in the hash table
+ later. */
+ h->elf_hash_value = ha;
+
+ if (alc != NULL)
+ free (alc);
+
+ return true;
+}