/* * (C) Copyright IBM Corporation 2006 * All Rights Reserved. * Copyright 2012 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * IBM AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file linux_sysfs.c * Access PCI subsystem using Linux's sysfs interface. This interface is * available starting somewhere in the late 2.5.x kernel phase, and is the * preferred method on all 2.6.x kernels. * * \author Ian Romanick */ #define _GNU_SOURCE #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__x86_64__) || defined(__arm__) #include #else #define inb(x) -1 #define inw(x) -1 #define inl(x) -1 #define outb(x,y) do {} while (0) #define outw(x,y) do {} while (0) #define outl(x,y) do {} while (0) #define iopl(x) -1 #endif #ifdef HAVE_MTRR #include #include #endif #include "pciaccess.h" #include "pciaccess_private.h" #include "linux_devmem.h" static const struct pci_system_methods linux_sysfs_methods; #define SYS_BUS_PCI "/sys/bus/pci/devices" static int pci_device_linux_sysfs_read( struct pci_device * dev, void * data, pciaddr_t offset, pciaddr_t size, pciaddr_t * bytes_read ); static int populate_entries(struct pci_system * pci_sys); /** * Attempt to access PCI subsystem using Linux's sysfs interface. */ _pci_hidden int pci_system_linux_sysfs_create( void ) { int err = 0; struct stat st; /* If the directory "/sys/bus/pci/devices" exists, then the PCI subsystem * can be accessed using this interface. */ if ( stat( SYS_BUS_PCI, & st ) == 0 ) { pci_sys = calloc( 1, sizeof( struct pci_system ) ); if ( pci_sys != NULL ) { pci_sys->methods = & linux_sysfs_methods; #ifdef HAVE_MTRR pci_sys->mtrr_fd = open("/proc/mtrr", O_WRONLY | O_CLOEXEC); #endif err = populate_entries(pci_sys); } else { err = ENOMEM; } } else { err = errno; } return err; } /** * Filter out the names "." and ".." from the scanned sysfs entries, and * domains requiring 32-bits. * * \param d Directory entry being processed by \c scandir. * * \return * Zero if the entry name matches either "." or "..", or the domain requires * 32 bits, non-zero otherwise. * * \sa scandir, populate_entries */ static int scan_sys_pci_filter( const struct dirent * d ) { if (d->d_name[0] != '.') { unsigned dom = 0; sscanf(d->d_name, "%x:", &dom); if (dom > USHRT_MAX) return 0; } return !((strcmp( d->d_name, "." ) == 0) || (strcmp( d->d_name, ".." ) == 0)); } int populate_entries( struct pci_system * p ) { struct dirent ** devices = NULL; int n; int i; int err = 0; n = scandir( SYS_BUS_PCI, & devices, scan_sys_pci_filter, alphasort ); if ( n > 0 ) { p->num_devices = n; p->devices = calloc( n, sizeof( struct pci_device_private ) ); if (p->devices != NULL) { for (i = 0 ; i < n ; i++) { uint8_t config[48]; pciaddr_t bytes; unsigned dom, bus, dev, func; struct pci_device_private *device = (struct pci_device_private *) &p->devices[i]; sscanf(devices[i]->d_name, "%04x:%02x:%02x.%1u", & dom, & bus, & dev, & func); device->base.domain = dom; device->base.bus = bus; device->base.dev = dev; device->base.func = func; err = pci_device_linux_sysfs_read(& device->base, config, 0, 48, & bytes); if ((bytes == 48) && !err) { device->base.vendor_id = (uint16_t)config[0] + ((uint16_t)config[1] << 8); device->base.device_id = (uint16_t)config[2] + ((uint16_t)config[3] << 8); device->base.device_class = (uint32_t)config[9] + ((uint32_t)config[10] << 8) + ((uint32_t)config[11] << 16); device->base.revision = config[8]; device->base.subvendor_id = (uint16_t)config[44] + ((uint16_t)config[45] << 8); device->base.subdevice_id = (uint16_t)config[46] + ((uint16_t)config[47] << 8); } if (err) { break; } } } else { err = ENOMEM; } } for (i = 0; i < n; i++) free(devices[i]); free(devices); if (err) { free(p->devices); p->devices = NULL; } return err; } static int pci_device_linux_sysfs_probe( struct pci_device * dev ) { char name[256]; uint8_t config[256]; char resource[512]; int fd; pciaddr_t bytes; unsigned i; int err; err = pci_device_linux_sysfs_read( dev, config, 0, 256, & bytes ); if ( bytes >= 64 ) { struct pci_device_private *priv = (struct pci_device_private *) dev; dev->irq = config[60]; priv->header_type = config[14]; /* The PCI config registers can be used to obtain information * about the memory and I/O regions for the device. However, * doing so requires some tricky parsing (to correctly handle * 64-bit memory regions) and requires writing to the config * registers. Since we'd like to avoid having to deal with the * parsing issues and non-root users can write to PCI config * registers, we use a different file in the device's sysfs * directory called "resource". * * The resource file contains all of the needed information in * a format that is consistent across all platforms. Each BAR * and the expansion ROM have a single line of data containing * 3, 64-bit hex values: the first address in the region, * the last address in the region, and the region's flags. */ snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/resource", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_RDONLY | O_CLOEXEC); if ( fd != -1 ) { char * next; pciaddr_t low_addr; pciaddr_t high_addr; pciaddr_t flags; bytes = read( fd, resource, 512 ); resource[511] = '\0'; close( fd ); next = resource; for ( i = 0 ; i < 6 ; i++ ) { dev->regions[i].base_addr = strtoull( next, & next, 16 ); high_addr = strtoull( next, & next, 16 ); flags = strtoull( next, & next, 16 ); if ( dev->regions[i].base_addr != 0 ) { dev->regions[i].size = (high_addr - dev->regions[i].base_addr) + 1; dev->regions[i].is_IO = (flags & 0x01); dev->regions[i].is_64 = (flags & 0x04); dev->regions[i].is_prefetchable = (flags & 0x08); } } low_addr = strtoull( next, & next, 16 ); high_addr = strtoull( next, & next, 16 ); flags = strtoull( next, & next, 16 ); if ( low_addr != 0 ) { priv->rom_base = low_addr; dev->rom_size = (high_addr - low_addr) + 1; } } } return err; } static int pci_device_linux_sysfs_read_rom( struct pci_device * dev, void * buffer ) { char name[256]; int fd; struct stat st; int err = 0; size_t rom_size; size_t total_bytes; snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/rom", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_RDWR | O_CLOEXEC); if ( fd == -1 ) { #ifdef LINUX_ROM /* If reading the ROM using sysfs fails, fall back to the old * /dev/mem based interface. * disable this for newer kernels using configure */ return pci_device_linux_devmem_read_rom(dev, buffer); #else return errno; #endif } if ( fstat( fd, & st ) == -1 ) { close( fd ); return errno; } rom_size = st.st_size; if ( rom_size == 0 ) rom_size = 0x10000; /* This is a quirky thing on Linux. Even though the ROM and the file * for the ROM in sysfs are read-only, the string "1" must be written to * the file to enable the ROM. After the data has been read, "0" must be * written to the file to disable the ROM. */ write( fd, "1", 1 ); lseek( fd, 0, SEEK_SET ); for ( total_bytes = 0 ; total_bytes < rom_size ; /* empty */ ) { const int bytes = read( fd, (char *) buffer + total_bytes, rom_size - total_bytes ); if ( bytes == -1 ) { err = errno; break; } else if ( bytes == 0 ) { break; } total_bytes += bytes; } lseek( fd, 0, SEEK_SET ); write( fd, "0", 1 ); close( fd ); return err; } static int pci_device_linux_sysfs_read( struct pci_device * dev, void * data, pciaddr_t offset, pciaddr_t size, pciaddr_t * bytes_read ) { char name[256]; pciaddr_t temp_size = size; int err = 0; int fd; char *data_bytes = data; if ( bytes_read != NULL ) { *bytes_read = 0; } /* Each device has a directory under sysfs. Within that directory there * is a file named "config". This file used to access the PCI config * space. It is used here to obtain most of the information about the * device. */ snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/config", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_RDONLY | O_CLOEXEC); if ( fd == -1 ) { return errno; } while ( temp_size > 0 ) { const ssize_t bytes = pread64( fd, data_bytes, temp_size, offset ); /* If zero bytes were read, then we assume it's the end of the * config file. */ if (bytes == 0) break; if ( bytes < 0 ) { err = errno; break; } temp_size -= bytes; offset += bytes; data_bytes += bytes; } if ( bytes_read != NULL ) { *bytes_read = size - temp_size; } close( fd ); return err; } static int pci_device_linux_sysfs_write( struct pci_device * dev, const void * data, pciaddr_t offset, pciaddr_t size, pciaddr_t * bytes_written ) { char name[256]; pciaddr_t temp_size = size; int err = 0; int fd; const char *data_bytes = data; if ( bytes_written != NULL ) { *bytes_written = 0; } /* Each device has a directory under sysfs. Within that directory there * is a file named "config". This file used to access the PCI config * space. It is used here to obtain most of the information about the * device. */ snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/config", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_WRONLY | O_CLOEXEC); if ( fd == -1 ) { return errno; } while ( temp_size > 0 ) { const ssize_t bytes = pwrite64( fd, data_bytes, temp_size, offset ); /* If zero bytes were written, then we assume it's the end of the * config file. */ if ( bytes == 0 ) break; if ( bytes < 0 ) { err = errno; break; } temp_size -= bytes; offset += bytes; data_bytes += bytes; } if ( bytes_written != NULL ) { *bytes_written = size - temp_size; } close( fd ); return err; } static int pci_device_linux_sysfs_map_range_wc(struct pci_device *dev, struct pci_device_mapping *map) { char name[256]; int fd; const int prot = ((map->flags & PCI_DEV_MAP_FLAG_WRITABLE) != 0) ? (PROT_READ | PROT_WRITE) : PROT_READ; const int open_flags = ((map->flags & PCI_DEV_MAP_FLAG_WRITABLE) != 0) ? O_RDWR : O_RDONLY; const off_t offset = map->base - dev->regions[map->region].base_addr; snprintf(name, 255, "%s/%04x:%02x:%02x.%1u/resource%u_wc", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func, map->region); fd = open(name, open_flags | O_CLOEXEC); if (fd == -1) return errno; map->memory = mmap(NULL, map->size, prot, MAP_SHARED, fd, offset); if (map->memory == MAP_FAILED) { map->memory = NULL; close(fd); return errno; } close(fd); return 0; } /** * Map a memory region for a device using the Linux sysfs interface. * * \param dev Device whose memory region is to be mapped. * \param map Parameters of the mapping that is to be created. * * \return * Zero on success or an \c errno value on failure. * * \sa pci_device_map_rrange, pci_device_linux_sysfs_unmap_range * * \todo * Some older 2.6.x kernels don't implement the resourceN files. On those * systems /dev/mem must be used. On these systems it is also possible that * \c mmap64 may need to be used. */ static int pci_device_linux_sysfs_map_range(struct pci_device *dev, struct pci_device_mapping *map) { char name[256]; int fd; int err = 0; const int prot = ((map->flags & PCI_DEV_MAP_FLAG_WRITABLE) != 0) ? (PROT_READ | PROT_WRITE) : PROT_READ; const int open_flags = ((map->flags & PCI_DEV_MAP_FLAG_WRITABLE) != 0) ? O_RDWR : O_RDONLY; const off_t offset = map->base - dev->regions[map->region].base_addr; #ifdef HAVE_MTRR struct mtrr_sentry sentry = { .base = map->base, .size = map->size, .type = MTRR_TYPE_UNCACHABLE }; #endif /* For WC mappings, try sysfs resourceN_wc file first */ if ((map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE) && !pci_device_linux_sysfs_map_range_wc(dev, map)) return 0; snprintf(name, 255, "%s/%04x:%02x:%02x.%1u/resource%u", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func, map->region); fd = open(name, open_flags | O_CLOEXEC); if (fd == -1) { return errno; } map->memory = mmap(NULL, map->size, prot, MAP_SHARED, fd, offset); if (map->memory == MAP_FAILED) { map->memory = NULL; close(fd); return errno; } #ifdef HAVE_MTRR if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) != 0) { sentry.type = MTRR_TYPE_WRBACK; } else if ((map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE) != 0) { sentry.type = MTRR_TYPE_WRCOMB; } if (pci_sys->mtrr_fd != -1 && sentry.type != MTRR_TYPE_UNCACHABLE) { if (ioctl(pci_sys->mtrr_fd, MTRRIOC_ADD_ENTRY, &sentry) < 0) { /* FIXME: Should we report an error in this case? */ fprintf(stderr, "error setting MTRR " "(base = 0x%016" PRIx64 ", size = 0x%08x, type = %u) %s (%d)\n", (pciaddr_t)sentry.base, sentry.size, sentry.type, strerror(errno), errno); /* err = errno;*/ } /* KLUDGE ALERT -- rewrite the PTEs to turn off the CD and WT bits */ mprotect (map->memory, map->size, PROT_NONE); err = mprotect (map->memory, map->size, PROT_READ|PROT_WRITE); if (err != 0) { fprintf(stderr, "mprotect(PROT_READ | PROT_WRITE) failed: %s\n", strerror(errno)); fprintf(stderr, "remapping without mprotect performance kludge.\n"); munmap(map->memory, map->size); map->memory = mmap(NULL, map->size, prot, MAP_SHARED, fd, offset); if (map->memory == MAP_FAILED) { map->memory = NULL; close(fd); return errno; } } } #endif close(fd); return 0; } /** * Unmap a memory region for a device using the Linux sysfs interface. * * \param dev Device whose memory region is to be unmapped. * \param map Parameters of the mapping that is to be destroyed. * * \return * Zero on success or an \c errno value on failure. * * \sa pci_device_map_rrange, pci_device_linux_sysfs_map_range * * \todo * Some older 2.6.x kernels don't implement the resourceN files. On those * systems /dev/mem must be used. On these systems it is also possible that * \c mmap64 may need to be used. */ static int pci_device_linux_sysfs_unmap_range(struct pci_device *dev, struct pci_device_mapping *map) { int err = 0; #ifdef HAVE_MTRR struct mtrr_sentry sentry = { .base = map->base, .size = map->size, .type = MTRR_TYPE_UNCACHABLE }; #endif err = pci_device_generic_unmap_range (dev, map); if (err) return err; #ifdef HAVE_MTRR if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) != 0) { sentry.type = MTRR_TYPE_WRBACK; } else if ((map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE) != 0) { sentry.type = MTRR_TYPE_WRCOMB; } if (pci_sys->mtrr_fd != -1 && sentry.type != MTRR_TYPE_UNCACHABLE) { if (ioctl(pci_sys->mtrr_fd, MTRRIOC_DEL_ENTRY, &sentry) < 0) { /* FIXME: Should we report an error in this case? */ fprintf(stderr, "error setting MTRR " "(base = 0x%016" PRIx64 ", size = 0x%08x, type = %u) %s (%d)\n", (pciaddr_t)sentry.base, sentry.size, sentry.type, strerror(errno), errno); /* err = errno;*/ } } #endif return err; } static void pci_device_linux_sysfs_enable(struct pci_device *dev) { char name[256]; int fd; snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/enable", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_RDWR | O_CLOEXEC); if (fd == -1) return; write( fd, "1", 1 ); close(fd); } static int pci_device_linux_sysfs_boot_vga(struct pci_device *dev) { char name[256]; char reply[3]; int fd, bytes_read; int ret = 0; snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/boot_vga", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); fd = open( name, O_RDONLY | O_CLOEXEC); if (fd == -1) return 0; bytes_read = read(fd, reply, 1); if (bytes_read != 1) goto out; if (reply[0] == '1') ret = 1; out: close(fd); return ret; } static int pci_device_linux_sysfs_has_kernel_driver(struct pci_device *dev) { char name[256]; struct stat dummy; int ret; snprintf( name, 255, "%s/%04x:%02x:%02x.%1u/driver", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func ); ret = stat(name, &dummy); if (ret < 0) return 0; return 1; } static struct pci_io_handle * pci_device_linux_sysfs_open_device_io(struct pci_io_handle *ret, struct pci_device *dev, int bar, pciaddr_t base, pciaddr_t size) { char name[PATH_MAX]; snprintf(name, PATH_MAX, "%s/%04x:%02x:%02x.%1u/resource%d", SYS_BUS_PCI, dev->domain, dev->bus, dev->dev, dev->func, bar); ret->fd = open(name, O_RDWR | O_CLOEXEC); if (ret->fd < 0) return NULL; ret->base = base; ret->size = size; ret->is_legacy = 0; return ret; } static struct pci_io_handle * pci_device_linux_sysfs_open_legacy_io(struct pci_io_handle *ret, struct pci_device *dev, pciaddr_t base, pciaddr_t size) { char name[PATH_MAX]; /* First check if there's a legacy io method for the device */ while (dev) { snprintf(name, PATH_MAX, "/sys/class/pci_bus/%04x:%02x/legacy_io", dev->domain, dev->bus); ret->fd = open(name, O_RDWR | O_CLOEXEC); if (ret->fd >= 0) break; dev = pci_device_get_parent_bridge(dev); } /* * You would think you'd want to use /dev/port here. Don't make that * mistake, /dev/port only does byte-wide i/o cycles which means it * doesn't work. If you think this is stupid, well, you're right. */ /* If we've no other choice, iopl */ if (ret->fd < 0) { if (iopl(3)) return NULL; } ret->base = base; ret->size = size; ret->is_legacy = 1; return ret; } static void pci_device_linux_sysfs_close_io(struct pci_device *dev, struct pci_io_handle *handle) { if (handle->fd > -1) close(handle->fd); } static uint32_t pci_device_linux_sysfs_read32(struct pci_io_handle *handle, uint32_t port) { uint32_t ret; if (handle->fd > -1) { if (handle->is_legacy) pread(handle->fd, &ret, 4, port + handle->base); else pread(handle->fd, &ret, 4, port); } else { ret = inl(port + handle->base); } return ret; } static uint16_t pci_device_linux_sysfs_read16(struct pci_io_handle *handle, uint32_t port) { uint16_t ret; if (handle->fd > -1) { if (handle->is_legacy) pread(handle->fd, &ret, 2, port + handle->base); else pread(handle->fd, &ret, 2, port); } else { ret = inw(port + handle->base); } return ret; } static uint8_t pci_device_linux_sysfs_read8(struct pci_io_handle *handle, uint32_t port) { uint8_t ret; if (handle->fd > -1) { if (handle->is_legacy) pread(handle->fd, &ret, 1, port + handle->base); else pread(handle->fd, &ret, 1, port); } else { ret = inb(port + handle->base); } return ret; } static void pci_device_linux_sysfs_write32(struct pci_io_handle *handle, uint32_t port, uint32_t data) { if (handle->fd > -1) { if (handle->is_legacy) pwrite(handle->fd, &data, 4, port + handle->base); else pwrite(handle->fd, &data, 4, port); } else { outl(data, port + handle->base); } } static void pci_device_linux_sysfs_write16(struct pci_io_handle *handle, uint32_t port, uint16_t data) { if (handle->fd > -1) { if (handle->is_legacy) pwrite(handle->fd, &data, 2, port + handle->base); else pwrite(handle->fd, &data, 2, port); } else { outw(data, port + handle->base); } } static void pci_device_linux_sysfs_write8(struct pci_io_handle *handle, uint32_t port, uint8_t data) { if (handle->fd > -1) { if (handle->is_legacy) pwrite(handle->fd, &data, 1, port + handle->base); else pwrite(handle->fd, &data, 1, port); } else { outb(data, port + handle->base); } } static int pci_device_linux_sysfs_map_legacy(struct pci_device *dev, pciaddr_t base, pciaddr_t size, unsigned map_flags, void **addr) { char name[PATH_MAX]; int flags = O_RDONLY; int prot = PROT_READ; int fd; int ret=0; if (map_flags & PCI_DEV_MAP_FLAG_WRITABLE) { flags = O_RDWR; /* O_RDWR != O_WRONLY | O_RDONLY */; prot |= PROT_WRITE; } /* First check if there's a legacy memory method for the device */ while (dev) { snprintf(name, PATH_MAX, "/sys/class/pci_bus/%04x:%02x/legacy_mem", dev->domain, dev->bus); fd = open(name, flags | O_CLOEXEC); if (fd >= 0) break; dev = pci_device_get_parent_bridge(dev); } /* If not, /dev/mem is the best we can do */ if (!dev) fd = open("/dev/mem", flags | O_CLOEXEC); if (fd < 0) return errno; *addr = mmap(NULL, size, prot, MAP_SHARED, fd, base); if (*addr == MAP_FAILED) { ret = errno; } close(fd); return ret; } static int pci_device_linux_sysfs_unmap_legacy(struct pci_device *dev, void *addr, pciaddr_t size) { return munmap(addr, size); } static void pci_system_linux_destroy(void) { #ifdef HAVE_MTRR if (pci_sys->mtrr_fd != -1) close(pci_sys->mtrr_fd); #endif } static const struct pci_system_methods linux_sysfs_methods = { .destroy = pci_system_linux_destroy, .destroy_device = NULL, .read_rom = pci_device_linux_sysfs_read_rom, .probe = pci_device_linux_sysfs_probe, .map_range = pci_device_linux_sysfs_map_range, .unmap_range = pci_device_linux_sysfs_unmap_range, .read = pci_device_linux_sysfs_read, .write = pci_device_linux_sysfs_write, .fill_capabilities = pci_fill_capabilities_generic, .enable = pci_device_linux_sysfs_enable, .boot_vga = pci_device_linux_sysfs_boot_vga, .has_kernel_driver = pci_device_linux_sysfs_has_kernel_driver, .open_device_io = pci_device_linux_sysfs_open_device_io, .open_legacy_io = pci_device_linux_sysfs_open_legacy_io, .close_io = pci_device_linux_sysfs_close_io, .read32 = pci_device_linux_sysfs_read32, .read16 = pci_device_linux_sysfs_read16, .read8 = pci_device_linux_sysfs_read8, .write32 = pci_device_linux_sysfs_write32, .write16 = pci_device_linux_sysfs_write16, .write8 = pci_device_linux_sysfs_write8, .map_legacy = pci_device_linux_sysfs_map_legacy, .unmap_legacy = pci_device_linux_sysfs_unmap_legacy, };