/* SPDX-License-Identifier: GPL-2.0-or-later */ /****************************************************************************** * arch/x86/mm/shadow/hvm.c * * Shadow code that does not need to be multiply compiled and is HVM only. * Parts of this code are Copyright (c) 2006 by XenSource Inc. * Parts of this code are Copyright (c) 2006 by Michael A Fetterman * Parts based on earlier work by Michael A Fetterman, Ian Pratt et al. */ #include #include #include #include #include #include #include #include #include "private.h" /**************************************************************************/ /* x86 emulator support for the shadow code */ /* * Returns a mapped pointer to write to, or one of the following error * indicators. */ #define MAPPING_UNHANDLEABLE ERR_PTR(~(long)X86EMUL_UNHANDLEABLE) #define MAPPING_EXCEPTION ERR_PTR(~(long)X86EMUL_EXCEPTION) #define MAPPING_SILENT_FAIL ERR_PTR(~(long)X86EMUL_OKAY) static void *sh_emulate_map_dest(struct vcpu *v, unsigned long vaddr, unsigned int bytes, struct sh_emulate_ctxt *sh_ctxt); static void sh_emulate_unmap_dest(struct vcpu *v, void *addr, unsigned int bytes, struct sh_emulate_ctxt *sh_ctxt); /* * Callers which pass a known in-range x86_segment can rely on the return * pointer being valid. Other callers must explicitly check for errors. */ static struct segment_register *hvm_get_seg_reg( enum x86_segment seg, struct sh_emulate_ctxt *sh_ctxt) { unsigned int idx = seg; struct segment_register *seg_reg; if ( idx >= ARRAY_SIZE(sh_ctxt->seg_reg) ) return ERR_PTR(-X86EMUL_UNHANDLEABLE); seg_reg = &sh_ctxt->seg_reg[idx]; if ( !__test_and_set_bit(idx, &sh_ctxt->valid_seg_regs) ) hvm_get_segment_register(current, idx, seg_reg); return seg_reg; } static int hvm_translate_virtual_addr( enum x86_segment seg, unsigned long offset, unsigned int bytes, enum hvm_access_type access_type, struct sh_emulate_ctxt *sh_ctxt, unsigned long *linear) { const struct segment_register *reg; int okay; reg = hvm_get_seg_reg(seg, sh_ctxt); if ( IS_ERR(reg) ) return -PTR_ERR(reg); okay = hvm_virtual_to_linear_addr( seg, reg, offset, bytes, access_type, hvm_get_seg_reg(x86_seg_cs, sh_ctxt), linear); if ( !okay ) { /* * Leave exception injection to the caller for non-user segments: We * neither know the exact error code to be used, nor can we easily * determine the kind of exception (#GP or #TS) in that case. */ if ( is_x86_user_segment(seg) ) x86_emul_hw_exception( (seg == x86_seg_ss) ? X86_EXC_SS : X86_EXC_GP, 0, &sh_ctxt->ctxt); return X86EMUL_EXCEPTION; } return 0; } static int hvm_read(enum x86_segment seg, unsigned long offset, void *p_data, unsigned int bytes, enum hvm_access_type access_type, struct sh_emulate_ctxt *sh_ctxt) { pagefault_info_t pfinfo; unsigned long addr; int rc; rc = hvm_translate_virtual_addr( seg, offset, bytes, access_type, sh_ctxt, &addr); if ( rc || !bytes ) return rc; rc = hvm_copy_from_guest_linear(p_data, addr, bytes, (access_type == hvm_access_insn_fetch ? PFEC_insn_fetch : 0), &pfinfo); switch ( rc ) { case HVMTRANS_okay: return X86EMUL_OKAY; case HVMTRANS_bad_linear_to_gfn: x86_emul_pagefault(pfinfo.ec, pfinfo.linear, &sh_ctxt->ctxt); return X86EMUL_EXCEPTION; case HVMTRANS_bad_gfn_to_mfn: case HVMTRANS_unhandleable: return X86EMUL_UNHANDLEABLE; case HVMTRANS_gfn_paged_out: case HVMTRANS_gfn_shared: case HVMTRANS_need_retry: return X86EMUL_RETRY; } BUG(); return X86EMUL_UNHANDLEABLE; } static int cf_check hvm_emulate_read(enum x86_segment seg, unsigned long offset, void *p_data, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { if ( !is_x86_user_segment(seg) ) return X86EMUL_UNHANDLEABLE; return hvm_read(seg, offset, p_data, bytes, hvm_access_read, container_of(ctxt, struct sh_emulate_ctxt, ctxt)); } static int cf_check hvm_emulate_insn_fetch(unsigned long offset, void *p_data, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { struct sh_emulate_ctxt *sh_ctxt = container_of(ctxt, struct sh_emulate_ctxt, ctxt); unsigned int insn_off = offset - sh_ctxt->insn_buf_eip; /* Fall back if requested bytes are not in the prefetch cache. */ if ( unlikely((insn_off + bytes) > sh_ctxt->insn_buf_bytes) ) return hvm_read(x86_seg_cs, offset, p_data, bytes, hvm_access_insn_fetch, sh_ctxt); /* Hit the cache. Simple memcpy. */ memcpy(p_data, &sh_ctxt->insn_buf[insn_off], bytes); return X86EMUL_OKAY; } static int cf_check hvm_emulate_write(enum x86_segment seg, unsigned long offset, void *p_data, unsigned int bytes, struct x86_emulate_ctxt *ctxt) { struct sh_emulate_ctxt *sh_ctxt = container_of(ctxt, struct sh_emulate_ctxt, ctxt); struct vcpu *v = current; unsigned long addr; void *ptr; int rc; /* How many emulations could we save if we unshadowed on stack writes? */ if ( seg == x86_seg_ss ) perfc_incr(shadow_fault_emulate_stack); rc = hvm_translate_virtual_addr( seg, offset, bytes, hvm_access_write, sh_ctxt, &addr); if ( rc || !bytes ) return rc; /* Unaligned writes are only acceptable on HVM */ if ( (addr & (bytes - 1)) && !is_hvm_vcpu(v) ) return X86EMUL_UNHANDLEABLE; ptr = sh_emulate_map_dest(v, addr, bytes, sh_ctxt); if ( IS_ERR(ptr) ) return ~PTR_ERR(ptr); paging_lock(v->domain); /* Where possible use single (and hence generally atomic) MOV insns. */ switch ( bytes ) { case 2: write_u16_atomic(ptr, *(uint16_t *)p_data); break; case 4: write_u32_atomic(ptr, *(uint32_t *)p_data); break; case 8: write_u64_atomic(ptr, *(uint64_t *)p_data); break; default: memcpy(ptr, p_data, bytes); break; } if ( tb_init_done ) v->arch.paging.mode->shadow.trace_emul_write_val(ptr, addr, p_data, bytes); sh_emulate_unmap_dest(v, ptr, bytes, sh_ctxt); shadow_audit_tables(v); paging_unlock(v->domain); return X86EMUL_OKAY; } static int cf_check hvm_emulate_cmpxchg(enum x86_segment seg, unsigned long offset, void *p_old, void *p_new, unsigned int bytes, bool lock, struct x86_emulate_ctxt *ctxt) { struct sh_emulate_ctxt *sh_ctxt = container_of(ctxt, struct sh_emulate_ctxt, ctxt); struct vcpu *v = current; unsigned long addr, old, new, prev; void *ptr; int rc; if ( bytes > sizeof(long) ) return X86EMUL_UNHANDLEABLE; rc = hvm_translate_virtual_addr( seg, offset, bytes, hvm_access_write, sh_ctxt, &addr); if ( rc ) return rc; /* Unaligned writes are only acceptable on HVM */ if ( (addr & (bytes - 1)) && !is_hvm_vcpu(v) ) return X86EMUL_UNHANDLEABLE; ptr = sh_emulate_map_dest(v, addr, bytes, sh_ctxt); if ( IS_ERR(ptr) ) return ~PTR_ERR(ptr); old = new = 0; memcpy(&old, p_old, bytes); memcpy(&new, p_new, bytes); paging_lock(v->domain); switch ( bytes ) { case 1: prev = cmpxchg((uint8_t *)ptr, old, new); break; case 2: prev = cmpxchg((uint16_t *)ptr, old, new); break; case 4: prev = cmpxchg((uint32_t *)ptr, old, new); break; case 8: prev = cmpxchg((uint64_t *)ptr, old, new); break; default: SHADOW_PRINTK("cmpxchg size %u is not supported\n", bytes); prev = ~old; } if ( prev != old ) { memcpy(p_old, &prev, bytes); rc = X86EMUL_CMPXCHG_FAILED; } SHADOW_DEBUG(EMULATE, "va %#lx was %#lx expected %#lx wanted %#lx now %#lx bytes %u\n", addr, prev, old, new, *(unsigned long *)ptr, bytes); sh_emulate_unmap_dest(v, ptr, bytes, sh_ctxt); shadow_audit_tables(v); paging_unlock(v->domain); return rc; } static const struct x86_emulate_ops hvm_shadow_emulator_ops = { .read = hvm_emulate_read, .insn_fetch = hvm_emulate_insn_fetch, .write = hvm_emulate_write, .cmpxchg = hvm_emulate_cmpxchg, }; const struct x86_emulate_ops *shadow_init_emulation( struct sh_emulate_ctxt *sh_ctxt, struct cpu_user_regs *regs, unsigned int pte_size) { struct segment_register *creg, *sreg; const struct vcpu *curr = current; unsigned long addr; ASSERT(is_hvm_vcpu(curr)); memset(sh_ctxt, 0, sizeof(*sh_ctxt)); sh_ctxt->ctxt.regs = regs; sh_ctxt->ctxt.cpu_policy = curr->domain->arch.cpu_policy; sh_ctxt->ctxt.lma = hvm_long_mode_active(curr); /* Segment cache initialisation. Primed with CS. */ creg = hvm_get_seg_reg(x86_seg_cs, sh_ctxt); /* Work out the emulation mode. */ if ( sh_ctxt->ctxt.lma && creg->l ) sh_ctxt->ctxt.addr_size = sh_ctxt->ctxt.sp_size = 64; else { sreg = hvm_get_seg_reg(x86_seg_ss, sh_ctxt); sh_ctxt->ctxt.addr_size = creg->db ? 32 : 16; sh_ctxt->ctxt.sp_size = sreg->db ? 32 : 16; } sh_ctxt->pte_size = pte_size; /* Attempt to prefetch whole instruction. */ sh_ctxt->insn_buf_eip = regs->rip; sh_ctxt->insn_buf_bytes = (!hvm_translate_virtual_addr( x86_seg_cs, regs->rip, sizeof(sh_ctxt->insn_buf), hvm_access_insn_fetch, sh_ctxt, &addr) && !hvm_copy_from_guest_linear( sh_ctxt->insn_buf, addr, sizeof(sh_ctxt->insn_buf), PFEC_insn_fetch, NULL)) ? sizeof(sh_ctxt->insn_buf) : 0; return &hvm_shadow_emulator_ops; } /* * Update an initialized emulation context to prepare for the next * instruction. */ void shadow_continue_emulation(struct sh_emulate_ctxt *sh_ctxt, struct cpu_user_regs *regs) { unsigned long addr, diff; ASSERT(is_hvm_vcpu(current)); /* * We don't refetch the segment bases, because we don't emulate * writes to segment registers */ diff = regs->rip - sh_ctxt->insn_buf_eip; if ( diff > sh_ctxt->insn_buf_bytes ) { /* Prefetch more bytes. */ sh_ctxt->insn_buf_bytes = (!hvm_translate_virtual_addr( x86_seg_cs, regs->rip, sizeof(sh_ctxt->insn_buf), hvm_access_insn_fetch, sh_ctxt, &addr) && !hvm_copy_from_guest_linear( sh_ctxt->insn_buf, addr, sizeof(sh_ctxt->insn_buf), PFEC_insn_fetch, NULL)) ? sizeof(sh_ctxt->insn_buf) : 0; sh_ctxt->insn_buf_eip = regs->rip; } } /**************************************************************************/ /* Handling guest writes to pagetables. */ /* * Translate a VA to an MFN, injecting a page-fault if we fail. If the * mapping succeeds, a reference will be held on the underlying page. */ #define BAD_GVA_TO_GFN (~0UL) #define BAD_GFN_TO_MFN (~1UL) #define READONLY_GFN (~2UL) static mfn_t emulate_gva_to_mfn(struct vcpu *v, unsigned long vaddr, struct sh_emulate_ctxt *sh_ctxt) { unsigned long gfn; struct page_info *page; mfn_t mfn; p2m_type_t p2mt; uint32_t pfec = PFEC_page_present | PFEC_write_access; /* Translate the VA to a GFN. */ gfn = paging_get_hostmode(v)->gva_to_gfn(v, NULL, vaddr, &pfec); if ( gfn == gfn_x(INVALID_GFN) ) { x86_emul_pagefault(pfec, vaddr, &sh_ctxt->ctxt); return _mfn(BAD_GVA_TO_GFN); } /* Translate the GFN to an MFN. */ ASSERT(!paging_locked_by_me(v->domain)); page = get_page_from_gfn(v->domain, gfn, &p2mt, P2M_ALLOC); /* Sanity checking. */ if ( page == NULL ) { return _mfn(BAD_GFN_TO_MFN); } if ( p2mt == p2m_ioreq_server ) { put_page(page); return _mfn(BAD_GFN_TO_MFN); } if ( p2m_is_discard_write(p2mt) ) { put_page(page); return _mfn(READONLY_GFN); } if ( !p2m_is_ram(p2mt) ) { put_page(page); return _mfn(BAD_GFN_TO_MFN); } mfn = page_to_mfn(page); ASSERT(mfn_valid(mfn)); v->arch.paging.last_write_was_pt = !!sh_mfn_is_a_page_table(mfn); return mfn; } /* * Check that the user is allowed to perform this write. If a mapping is * returned, page references will be held on sh_ctxt->mfn[0] and * sh_ctxt->mfn[1] iff !INVALID_MFN. */ static void *sh_emulate_map_dest(struct vcpu *v, unsigned long vaddr, unsigned int bytes, struct sh_emulate_ctxt *sh_ctxt) { struct domain *d = v->domain; void *map; #ifndef NDEBUG /* We don't emulate user-mode writes to page tables. */ if ( is_hvm_domain(d) ? hvm_get_cpl(v) == 3 : !guest_kernel_mode(v, guest_cpu_user_regs()) ) { gdprintk(XENLOG_DEBUG, "User-mode write to pagetable reached " "emulate_map_dest(). This should never happen!\n"); return MAPPING_UNHANDLEABLE; } #endif sh_ctxt->mfn[0] = emulate_gva_to_mfn(v, vaddr, sh_ctxt); if ( !mfn_valid(sh_ctxt->mfn[0]) ) { switch ( mfn_x(sh_ctxt->mfn[0]) ) { case BAD_GVA_TO_GFN: return MAPPING_EXCEPTION; case READONLY_GFN: return MAPPING_SILENT_FAIL; default: return MAPPING_UNHANDLEABLE; } } /* Unaligned writes mean probably this isn't a pagetable. */ if ( vaddr & (bytes - 1) ) sh_remove_shadows(d, sh_ctxt->mfn[0], 0, 0 /* Slow, can fail. */ ); if ( likely(((vaddr + bytes - 1) & PAGE_MASK) == (vaddr & PAGE_MASK)) ) { /* Whole write fits on a single page. */ sh_ctxt->mfn[1] = INVALID_MFN; map = map_domain_page(sh_ctxt->mfn[0]) + (vaddr & ~PAGE_MASK); } else if ( !is_hvm_domain(d) ) { /* * Cross-page emulated writes are only supported for HVM guests; * PV guests ought to know better. */ put_page(mfn_to_page(sh_ctxt->mfn[0])); return MAPPING_UNHANDLEABLE; } else { /* This write crosses a page boundary. Translate the second page. */ sh_ctxt->mfn[1] = emulate_gva_to_mfn( v, (vaddr + bytes - 1) & PAGE_MASK, sh_ctxt); if ( !mfn_valid(sh_ctxt->mfn[1]) ) { put_page(mfn_to_page(sh_ctxt->mfn[0])); switch ( mfn_x(sh_ctxt->mfn[1]) ) { case BAD_GVA_TO_GFN: return MAPPING_EXCEPTION; case READONLY_GFN: return MAPPING_SILENT_FAIL; default: return MAPPING_UNHANDLEABLE; } } /* Cross-page writes mean probably not a pagetable. */ sh_remove_shadows(d, sh_ctxt->mfn[1], 0, 0 /* Slow, can fail. */ ); map = vmap(sh_ctxt->mfn, 2); if ( !map ) { put_page(mfn_to_page(sh_ctxt->mfn[0])); put_page(mfn_to_page(sh_ctxt->mfn[1])); return MAPPING_UNHANDLEABLE; } map += (vaddr & ~PAGE_MASK); } #if (SHADOW_OPTIMIZATIONS & SHOPT_SKIP_VERIFY) /* * Remember if the bottom bit was clear, so we can choose not to run * the change through the verify code if it's still clear afterwards. */ sh_ctxt->low_bit_was_clear = map != NULL && !(*(u8 *)map & _PAGE_PRESENT); #endif return map; } /* * Optimization: If we see two emulated writes of zeros to the same * page-table without another kind of page fault in between, we guess * that this is a batch of changes (for process destruction) and * unshadow the page so we don't take a pagefault on every entry. This * should also make finding writeable mappings of pagetables much * easier. * * Look to see if this is the second emulated write in a row to this * page, and unshadow if it is. */ static inline void check_for_early_unshadow(struct vcpu *v, mfn_t gmfn) { #if SHADOW_OPTIMIZATIONS & SHOPT_EARLY_UNSHADOW struct domain *d = v->domain; /* * If the domain has never made a "dying" op, use the two-writes * heuristic; otherwise, unshadow as soon as we write a zero for a dying * process. * * Don't bother trying to unshadow if it's not a PT, or if it's > l1. */ if ( ( v->arch.paging.shadow.pagetable_dying || ( !d->arch.paging.shadow.pagetable_dying_op && v->arch.paging.shadow.last_emulated_mfn_for_unshadow == mfn_x(gmfn) ) ) && sh_mfn_is_a_page_table(gmfn) && (!d->arch.paging.shadow.pagetable_dying_op || !(mfn_to_page(gmfn)->shadow_flags & (SHF_L2_32|SHF_L2_PAE|SHF_L4_64))) ) { perfc_incr(shadow_early_unshadow); sh_remove_shadows(d, gmfn, 1, 0 /* Fast, can fail to unshadow */ ); TRACE_SHADOW_PATH_FLAG(TRCE_SFLAG_EARLY_UNSHADOW); } v->arch.paging.shadow.last_emulated_mfn_for_unshadow = mfn_x(gmfn); #endif } /* This is the entry point for emulated writes to pagetables in HVM guests */ static void validate_guest_pt_write(struct vcpu *v, mfn_t gmfn, void *entry, unsigned int size) { struct domain *d = v->domain; int rc; ASSERT(paging_locked_by_me(v->domain)); rc = sh_validate_guest_entry(v, gmfn, entry, size); if ( rc & SHADOW_SET_FLUSH ) /* Need to flush TLBs to pick up shadow PT changes */ guest_flush_tlb_mask(d, d->dirty_cpumask); if ( rc & SHADOW_SET_ERROR ) { /* * This page is probably not a pagetable any more: tear it out of the * shadows, along with any tables that reference it. * Since the validate call above will have made a "safe" (i.e. zero) * shadow entry, we can let the domain live even if we can't fully * unshadow the page. */ sh_remove_shadows(d, gmfn, 0, 0); } } /* * Tidy up after the emulated write: mark pages dirty, verify the new * contents, and undo the mapping. */ static void sh_emulate_unmap_dest(struct vcpu *v, void *addr, unsigned int bytes, struct sh_emulate_ctxt *sh_ctxt) { u32 b1 = bytes, b2 = 0, shflags; ASSERT(mfn_valid(sh_ctxt->mfn[0])); /* If we are writing lots of PTE-aligned zeros, might want to unshadow */ if ( likely(bytes >= 4) && (*(u32 *)addr == 0) ) { if ( !((unsigned long)addr & (sh_ctxt->pte_size - 1)) ) check_for_early_unshadow(v, sh_ctxt->mfn[0]); /* * Don't reset the heuristic if we're writing zeros at non-aligned * addresses, otherwise it doesn't catch REP MOVSD on PAE guests. */ } else sh_reset_early_unshadow(v); /* * We can avoid re-verifying the page contents after the write if: * - it was no larger than the PTE type of this pagetable; * - it was aligned to the PTE boundaries; and * - _PAGE_PRESENT was clear before and after the write. */ shflags = mfn_to_page(sh_ctxt->mfn[0])->shadow_flags; #if (SHADOW_OPTIMIZATIONS & SHOPT_SKIP_VERIFY) if ( sh_ctxt->low_bit_was_clear && !(*(u8 *)addr & _PAGE_PRESENT) && ((!(shflags & SHF_32) /* * Not shadowed 32-bit: aligned 64-bit writes that leave * the present bit unset are safe to ignore. */ && ((unsigned long)addr & 7) == 0 && bytes <= 8) || (!(shflags & (SHF_PAE|SHF_64)) /* * Not shadowed PAE/64-bit: aligned 32-bit writes that * leave the present bit unset are safe to ignore. */ && ((unsigned long)addr & 3) == 0 && bytes <= 4)) ) { /* Writes with this alignment constraint can't possibly cross pages. */ ASSERT(!mfn_valid(sh_ctxt->mfn[1])); } else #endif /* SHADOW_OPTIMIZATIONS & SHOPT_SKIP_VERIFY */ { if ( unlikely(mfn_valid(sh_ctxt->mfn[1])) ) { /* Validate as two writes, one to each page. */ b1 = PAGE_SIZE - (((unsigned long)addr) & ~PAGE_MASK); b2 = bytes - b1; ASSERT(b2 < bytes); } if ( likely(b1 > 0) ) validate_guest_pt_write(v, sh_ctxt->mfn[0], addr, b1); if ( unlikely(b2 > 0) ) validate_guest_pt_write(v, sh_ctxt->mfn[1], addr + b1, b2); } paging_mark_dirty(v->domain, sh_ctxt->mfn[0]); put_page(mfn_to_page(sh_ctxt->mfn[0])); if ( unlikely(mfn_valid(sh_ctxt->mfn[1])) ) { paging_mark_dirty(v->domain, sh_ctxt->mfn[1]); put_page(mfn_to_page(sh_ctxt->mfn[1])); vunmap((void *)((unsigned long)addr & PAGE_MASK)); } else unmap_domain_page(addr); atomic_inc(&v->domain->arch.paging.shadow.gtable_dirty_version); } static bool flush_vcpu(const struct vcpu *v, const unsigned long *vcpu_bitmap) { return !vcpu_bitmap || test_bit(v->vcpu_id, vcpu_bitmap); } /* Flush TLB of selected vCPUs. NULL for all. */ bool cf_check shadow_flush_tlb(const unsigned long *vcpu_bitmap) { static DEFINE_PER_CPU(cpumask_t, flush_cpumask); cpumask_t *mask = &this_cpu(flush_cpumask); const struct vcpu *curr = current; struct domain *d = curr->domain; struct vcpu *v; /* Avoid deadlock if more than one vcpu tries this at the same time. */ if ( !spin_trylock(&d->hypercall_deadlock_mutex) ) return false; /* Pause all other vcpus. */ for_each_vcpu ( d, v ) if ( v != curr && flush_vcpu(v, vcpu_bitmap) ) vcpu_pause_nosync(v); /* Now that all VCPUs are signalled to deschedule, we wait... */ for_each_vcpu ( d, v ) if ( v != curr && flush_vcpu(v, vcpu_bitmap) ) while ( !vcpu_runnable(v) && v->is_running ) cpu_relax(); /* All other vcpus are paused, safe to unlock now. */ spin_unlock(&d->hypercall_deadlock_mutex); cpumask_clear(mask); /* Flush paging-mode soft state (e.g., va->gfn cache; PAE PDPE cache). */ for_each_vcpu ( d, v ) { unsigned int cpu; if ( !flush_vcpu(v, vcpu_bitmap) ) continue; paging_update_cr3(v, false); cpu = read_atomic(&v->dirty_cpu); if ( is_vcpu_dirty_cpu(cpu) ) __cpumask_set_cpu(cpu, mask); } /* Flush TLBs on all CPUs with dirty vcpu state. */ guest_flush_tlb_mask(d, mask); /* Done. */ for_each_vcpu ( d, v ) if ( v != curr && flush_vcpu(v, vcpu_bitmap) ) vcpu_unpause(v); return true; } mfn_t sh_make_monitor_table(const struct vcpu *v, unsigned int shadow_levels) { struct domain *d = v->domain; mfn_t m4mfn; l4_pgentry_t *l4e; ASSERT(!pagetable_get_pfn(v->arch.hvm.monitor_table)); /* Guarantee we can get the memory we need */ if ( !shadow_prealloc(d, SH_type_monitor_table, CONFIG_PAGING_LEVELS) ) return INVALID_MFN; m4mfn = shadow_alloc(d, SH_type_monitor_table, 0); mfn_to_page(m4mfn)->shadow_flags = 4; l4e = map_domain_page(m4mfn); /* * Create a self-linear mapping, but no shadow-linear mapping. A * shadow-linear mapping will either be inserted below when creating * lower level monitor tables, or later in sh_update_cr3(). */ init_xen_l4_slots(l4e, m4mfn, d, INVALID_MFN, false); if ( shadow_levels < 4 ) { mfn_t m3mfn, m2mfn; l3_pgentry_t *l3e; /* * Install an l3 table and an l2 table that will hold the shadow * linear map entries. This overrides the empty entry that was * installed by init_xen_l4_slots(). */ m3mfn = shadow_alloc(d, SH_type_monitor_table, 0); mfn_to_page(m3mfn)->shadow_flags = 3; l4e[l4_table_offset(SH_LINEAR_PT_VIRT_START)] = l4e_from_mfn(m3mfn, __PAGE_HYPERVISOR_RW); m2mfn = shadow_alloc(d, SH_type_monitor_table, 0); mfn_to_page(m2mfn)->shadow_flags = 2; l3e = map_domain_page(m3mfn); l3e[0] = l3e_from_mfn(m2mfn, __PAGE_HYPERVISOR_RW); unmap_domain_page(l3e); } unmap_domain_page(l4e); return m4mfn; } void sh_destroy_monitor_table(const struct vcpu *v, mfn_t mmfn, unsigned int shadow_levels) { struct domain *d = v->domain; ASSERT(mfn_to_page(mmfn)->u.sh.type == SH_type_monitor_table); if ( shadow_levels < 4 ) { mfn_t m3mfn; l4_pgentry_t *l4e = map_domain_page(mmfn); l3_pgentry_t *l3e; unsigned int linear_slot = l4_table_offset(SH_LINEAR_PT_VIRT_START); /* * Need to destroy the l3 and l2 monitor pages used * for the linear map. */ ASSERT(l4e_get_flags(l4e[linear_slot]) & _PAGE_PRESENT); m3mfn = l4e_get_mfn(l4e[linear_slot]); l3e = map_domain_page(m3mfn); ASSERT(l3e_get_flags(l3e[0]) & _PAGE_PRESENT); shadow_free(d, l3e_get_mfn(l3e[0])); unmap_domain_page(l3e); shadow_free(d, m3mfn); unmap_domain_page(l4e); } /* Put the memory back in the pool */ shadow_free(d, mmfn); } /**************************************************************************/ /* P2M map manipulations */ /* shadow specific code which should be called when P2M table entry is updated * with new content. It is responsible for update the entry, as well as other * shadow processing jobs. */ static void sh_remove_all_shadows_and_parents(struct domain *d, mfn_t gmfn) /* Even harsher: this is a HVM page that we thing is no longer a pagetable. * Unshadow it, and recursively unshadow pages that reference it. */ { shadow_remove_all_shadows(d, gmfn); /* XXX TODO: * Rework this hashtable walker to return a linked-list of all * the shadows it modified, then do breadth-first recursion * to find the way up to higher-level tables and unshadow them too. * * The current code (just tearing down each page's shadows as we * detect that it is not a pagetable) is correct, but very slow. * It means extra emulated writes and slows down removal of mappings. */ } static void cf_check sh_unshadow_for_p2m_change( struct domain *d, unsigned long gfn, l1_pgentry_t old, l1_pgentry_t new, unsigned int level) { mfn_t omfn = l1e_get_mfn(old); unsigned int oflags = l1e_get_flags(old); p2m_type_t p2mt = p2m_flags_to_type(oflags); bool flush = false; /* * If there are any shadows, update them. But if shadow_teardown() * has already been called then it's not safe to try. */ if ( unlikely(!d->arch.paging.total_pages) ) return; /* Only previously present / valid entries need processing. */ if ( !(oflags & _PAGE_PRESENT) || (!p2m_is_valid(p2mt) && !p2m_is_grant(p2mt)) || !mfn_valid(omfn) ) return; switch ( level ) { default: /* * The following assertion is to make sure we don't step on 1GB host * page support of HVM guest. Plus we rely on ->set_entry() to never * be called with orders above PAGE_ORDER_2M, not even to install * non-present entries (which in principle ought to be fine even * without respective large page support). */ ASSERT(!(oflags & _PAGE_PSE)); break; /* If we're removing an MFN from the p2m, remove it from the shadows too */ case 1: if ( l1e_get_intpte(old) != l1e_get_intpte(new) ) { sh_remove_all_shadows_and_parents(d, omfn); if ( sh_remove_all_mappings(d, omfn, _gfn(gfn)) ) flush = true; } break; /* * If we're removing a superpage mapping from the p2m, we need to check * all the pages covered by it. If they're still there in the new * scheme, that's OK, but otherwise they must be unshadowed. */ case 2: { unsigned int i; mfn_t nmfn = l1e_get_mfn(new); unsigned int nflags = l1e_get_flags(new); l1_pgentry_t *npte = NULL, *opte = NULL; BUILD_BUG_ON(_PAGE_PAT != _PAGE_PSE); if ( !(nflags & _PAGE_PRESENT) ) nmfn = INVALID_MFN; /* If we're replacing a superpage with a normal L1 page, map it */ else if ( !(nflags & _PAGE_PSE) ) npte = map_domain_page(nmfn); else if ( !(mfn_x(nmfn) & (_PAGE_PSE_PAT >> PAGE_SHIFT)) ) nflags &= ~_PAGE_PSE; else nmfn = mfn_add(nmfn, -(long)(_PAGE_PSE_PAT >> PAGE_SHIFT)); /* If we're replacing a normal L1 page, map it as well. */ if ( !(oflags & _PAGE_PSE) ) opte = map_domain_page(omfn); else if ( !(mfn_x(omfn) & (_PAGE_PSE_PAT >> PAGE_SHIFT)) ) oflags &= ~_PAGE_PSE; else omfn = mfn_add(omfn, -(long)(_PAGE_PSE_PAT >> PAGE_SHIFT)); gfn &= ~(L1_PAGETABLE_ENTRIES - 1); for ( i = 0; i < L1_PAGETABLE_ENTRIES; i++ ) { if ( opte ) { oflags = l1e_get_flags(opte[i]); if ( !(oflags & _PAGE_PRESENT) ) continue; omfn = l1e_get_mfn(opte[i]); } if ( npte ) { nflags = l1e_get_flags(npte[i]); nmfn = nflags & _PAGE_PRESENT ? l1e_get_mfn(npte[i]) : INVALID_MFN; } if ( !mfn_eq(nmfn, omfn) || nflags != oflags ) { /* This GFN->MFN mapping has gone away */ sh_remove_all_shadows_and_parents(d, omfn); if ( sh_remove_all_mappings(d, omfn, _gfn(gfn + i)) ) flush = true; } omfn = mfn_add(omfn, 1); nmfn = mfn_add(nmfn, !mfn_eq(nmfn, INVALID_MFN)); } unmap_domain_page(opte); unmap_domain_page(npte); } break; } if ( flush ) guest_flush_tlb_mask(d, d->dirty_cpumask); } #if (SHADOW_OPTIMIZATIONS & SHOPT_FAST_FAULT_PATH) static void cf_check sh_write_p2m_entry_post(struct p2m_domain *p2m, unsigned int oflags) { struct domain *d = p2m->domain; /* If we're doing FAST_FAULT_PATH, then shadow mode may have cached the fact that this is an mmio region in the shadow page tables. Blow the tables away to remove the cache. This is pretty heavy handed, but this is a rare operation (it might happen a dozen times during boot and then never again), so it doesn't matter too much. */ if ( d->arch.paging.shadow.has_fast_mmio_entries ) { shadow_blow_tables(d); d->arch.paging.shadow.has_fast_mmio_entries = false; } } #else # define sh_write_p2m_entry_post NULL #endif void shadow_p2m_init(struct p2m_domain *p2m) { p2m->write_p2m_entry_pre = sh_unshadow_for_p2m_change; p2m->write_p2m_entry_post = sh_write_p2m_entry_post; } /**************************************************************************/ /* VRAM dirty tracking support */ int shadow_track_dirty_vram(struct domain *d, unsigned long begin_pfn, unsigned int nr_frames, XEN_GUEST_HANDLE(void) guest_dirty_bitmap) { int rc = 0; unsigned long end_pfn = begin_pfn + nr_frames; unsigned int dirty_size = DIV_ROUND_UP(nr_frames, BITS_PER_BYTE); int flush_tlb = 0; unsigned long i; p2m_type_t t; struct sh_dirty_vram *dirty_vram; struct p2m_domain *p2m = p2m_get_hostp2m(d); uint8_t *dirty_bitmap = NULL; if ( end_pfn < begin_pfn || end_pfn > p2m->max_mapped_pfn + 1 ) return -EINVAL; /* We perform p2m lookups, so lock the p2m upfront to avoid deadlock */ p2m_lock(p2m_get_hostp2m(d)); paging_lock(d); dirty_vram = d->arch.hvm.dirty_vram; if ( dirty_vram && (!nr_frames || ( begin_pfn != dirty_vram->begin_pfn || end_pfn != dirty_vram->end_pfn )) ) { /* Different tracking, tear the previous down. */ gdprintk(XENLOG_INFO, "stopping tracking VRAM %lx - %lx\n", dirty_vram->begin_pfn, dirty_vram->end_pfn); xfree(dirty_vram->sl1ma); xfree(dirty_vram->dirty_bitmap); xfree(dirty_vram); dirty_vram = d->arch.hvm.dirty_vram = NULL; } if ( !nr_frames ) goto out; dirty_bitmap = vzalloc(dirty_size); if ( dirty_bitmap == NULL ) { rc = -ENOMEM; goto out; } /* * This should happen seldomly (Video mode change), * no need to be careful. */ if ( !dirty_vram ) { /* * Throw away all the shadows rather than walking through them * up to nr times getting rid of mappings of each pfn. */ shadow_blow_tables(d); gdprintk(XENLOG_INFO, "tracking VRAM %lx - %lx\n", begin_pfn, end_pfn); rc = -ENOMEM; if ( (dirty_vram = xmalloc(struct sh_dirty_vram)) == NULL ) goto out; dirty_vram->begin_pfn = begin_pfn; dirty_vram->end_pfn = end_pfn; d->arch.hvm.dirty_vram = dirty_vram; if ( (dirty_vram->sl1ma = xmalloc_array(paddr_t, nr_frames)) == NULL ) goto out_dirty_vram; memset(dirty_vram->sl1ma, ~0, sizeof(paddr_t) * nr_frames); if ( (dirty_vram->dirty_bitmap = xzalloc_array(uint8_t, dirty_size)) == NULL ) goto out_sl1ma; dirty_vram->last_dirty = NOW(); /* Tell the caller that this time we could not track dirty bits. */ rc = -ENODATA; } else if ( dirty_vram->last_dirty == -1 ) /* still completely clean, just copy our empty bitmap */ memcpy(dirty_bitmap, dirty_vram->dirty_bitmap, dirty_size); else { mfn_t map_mfn = INVALID_MFN; void *map_sl1p = NULL; /* Iterate over VRAM to track dirty bits. */ for ( i = 0; i < nr_frames; i++ ) { mfn_t mfn = get_gfn_query_unlocked(d, begin_pfn + i, &t); struct page_info *page; int dirty = 0; paddr_t sl1ma = dirty_vram->sl1ma[i]; if ( mfn_eq(mfn, INVALID_MFN) ) dirty = 1; else { page = mfn_to_page(mfn); switch ( page->u.inuse.type_info & PGT_count_mask ) { case 0: /* No guest reference, nothing to track. */ break; case 1: /* One guest reference. */ if ( sl1ma == INVALID_PADDR ) { /* We don't know which sl1e points to this, too bad. */ dirty = 1; /* * TODO: Heuristics for finding the single mapping of * this gmfn */ flush_tlb |= sh_remove_all_mappings(d, mfn, _gfn(begin_pfn + i)); } else { /* * Hopefully the most common case: only one mapping, * whose dirty bit we can use. */ l1_pgentry_t *sl1e; mfn_t sl1mfn = maddr_to_mfn(sl1ma); if ( !mfn_eq(sl1mfn, map_mfn) ) { if ( map_sl1p ) unmap_domain_page(map_sl1p); map_sl1p = map_domain_page(sl1mfn); map_mfn = sl1mfn; } sl1e = map_sl1p + (sl1ma & ~PAGE_MASK); if ( l1e_get_flags(*sl1e) & _PAGE_DIRTY ) { dirty = 1; /* * Note: this is atomic, so we may clear a * _PAGE_ACCESSED set by another processor. */ l1e_remove_flags(*sl1e, _PAGE_DIRTY); flush_tlb = 1; } } break; default: /* More than one guest reference, * we don't afford tracking that. */ dirty = 1; break; } } if ( dirty ) { dirty_vram->dirty_bitmap[i / 8] |= 1 << (i % 8); dirty_vram->last_dirty = NOW(); } } if ( map_sl1p ) unmap_domain_page(map_sl1p); memcpy(dirty_bitmap, dirty_vram->dirty_bitmap, dirty_size); memset(dirty_vram->dirty_bitmap, 0, dirty_size); if ( dirty_vram->last_dirty + SECONDS(2) < NOW() ) { /* * Was clean for more than two seconds, try to disable guest * write access. */ for ( i = begin_pfn; i < end_pfn; i++ ) { mfn_t mfn = get_gfn_query_unlocked(d, i, &t); if ( !mfn_eq(mfn, INVALID_MFN) ) flush_tlb |= sh_remove_write_access(d, mfn, 1, 0); } dirty_vram->last_dirty = -1; } } if ( flush_tlb ) guest_flush_tlb_mask(d, d->dirty_cpumask); goto out; out_sl1ma: xfree(dirty_vram->sl1ma); out_dirty_vram: xfree(dirty_vram); dirty_vram = d->arch.hvm.dirty_vram = NULL; out: paging_unlock(d); if ( rc == 0 && dirty_bitmap != NULL && copy_to_guest(guest_dirty_bitmap, dirty_bitmap, dirty_size) ) { paging_lock(d); for ( i = 0; i < dirty_size; i++ ) dirty_vram->dirty_bitmap[i] |= dirty_bitmap[i]; paging_unlock(d); rc = -EFAULT; } vfree(dirty_bitmap); p2m_unlock(p2m_get_hostp2m(d)); return rc; } void shadow_vram_get_mfn(mfn_t mfn, unsigned int l1f, mfn_t sl1mfn, const void *sl1e, const struct domain *d) { unsigned long gfn; struct sh_dirty_vram *dirty_vram = d->arch.hvm.dirty_vram; ASSERT(is_hvm_domain(d)); if ( !dirty_vram /* tracking disabled? */ || !(l1f & _PAGE_RW) /* read-only mapping? */ || !mfn_valid(mfn) /* mfn can be invalid in mmio_direct */) return; gfn = gfn_x(mfn_to_gfn(d, mfn)); /* Page sharing not supported on shadow PTs */ BUG_ON(SHARED_M2P(gfn)); if ( (gfn >= dirty_vram->begin_pfn) && (gfn < dirty_vram->end_pfn) ) { unsigned long i = gfn - dirty_vram->begin_pfn; const struct page_info *page = mfn_to_page(mfn); if ( (page->u.inuse.type_info & PGT_count_mask) == 1 ) /* Initial guest reference, record it */ dirty_vram->sl1ma[i] = mfn_to_maddr(sl1mfn) | PAGE_OFFSET(sl1e); } } void shadow_vram_put_mfn(mfn_t mfn, unsigned int l1f, mfn_t sl1mfn, const void *sl1e, const struct domain *d) { unsigned long gfn; struct sh_dirty_vram *dirty_vram = d->arch.hvm.dirty_vram; ASSERT(is_hvm_domain(d)); if ( !dirty_vram /* tracking disabled? */ || !(l1f & _PAGE_RW) /* read-only mapping? */ || !mfn_valid(mfn) /* mfn can be invalid in mmio_direct */) return; gfn = gfn_x(mfn_to_gfn(d, mfn)); /* Page sharing not supported on shadow PTs */ BUG_ON(SHARED_M2P(gfn)); if ( (gfn >= dirty_vram->begin_pfn) && (gfn < dirty_vram->end_pfn) ) { unsigned long i = gfn - dirty_vram->begin_pfn; const struct page_info *page = mfn_to_page(mfn); bool dirty = false; paddr_t sl1ma = mfn_to_maddr(sl1mfn) | PAGE_OFFSET(sl1e); if ( (page->u.inuse.type_info & PGT_count_mask) == 1 ) { /* Last reference */ if ( dirty_vram->sl1ma[i] == INVALID_PADDR ) { /* We didn't know it was that one, let's say it is dirty */ dirty = true; } else { ASSERT(dirty_vram->sl1ma[i] == sl1ma); dirty_vram->sl1ma[i] = INVALID_PADDR; if ( l1f & _PAGE_DIRTY ) dirty = true; } } else { /* We had more than one reference, just consider the page dirty. */ dirty = true; /* Check that it's not the one we recorded. */ if ( dirty_vram->sl1ma[i] == sl1ma ) { /* Too bad, we remembered the wrong one... */ dirty_vram->sl1ma[i] = INVALID_PADDR; } else { /* * Ok, our recorded sl1e is still pointing to this page, let's * just hope it will remain. */ } } if ( dirty ) { dirty_vram->dirty_bitmap[i / 8] |= 1 << (i % 8); dirty_vram->last_dirty = NOW(); } } } /* * Local variables: * mode: C * c-file-style: "BSD" * c-basic-offset: 4 * indent-tabs-mode: nil * End: */