/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. */ /* * vim9compile.c: :def and dealing with instructions */ #define USING_FLOAT_STUFF #include "vim.h" #if defined(FEAT_EVAL) || defined(PROTO) #ifdef VMS # include #endif #define DEFINE_VIM9_GLOBALS #include "vim9.h" // values for ctx_skip typedef enum { SKIP_NOT, // condition is a constant, produce code SKIP_YES, // condition is a constant, do NOT produce code SKIP_UNKNOWN // condition is not a constant, produce code } skip_T; /* * Chain of jump instructions where the end label needs to be set. */ typedef struct endlabel_S endlabel_T; struct endlabel_S { endlabel_T *el_next; // chain end_label locations int el_end_label; // instruction idx where to set end }; /* * info specific for the scope of :if / elseif / else */ typedef struct { int is_seen_else; int is_had_return; // every block ends in :return int is_if_label; // instruction idx at IF or ELSEIF endlabel_T *is_end_label; // instructions to set end label } ifscope_T; /* * info specific for the scope of :while */ typedef struct { int ws_top_label; // instruction idx at WHILE endlabel_T *ws_end_label; // instructions to set end } whilescope_T; /* * info specific for the scope of :for */ typedef struct { int fs_top_label; // instruction idx at FOR endlabel_T *fs_end_label; // break instructions } forscope_T; /* * info specific for the scope of :try */ typedef struct { int ts_try_label; // instruction idx at TRY endlabel_T *ts_end_label; // jump to :finally or :endtry int ts_catch_label; // instruction idx of last CATCH int ts_caught_all; // "catch" without argument encountered } tryscope_T; typedef enum { NO_SCOPE, IF_SCOPE, WHILE_SCOPE, FOR_SCOPE, TRY_SCOPE, BLOCK_SCOPE } scopetype_T; /* * Info for one scope, pointed to by "ctx_scope". */ typedef struct scope_S scope_T; struct scope_S { scope_T *se_outer; // scope containing this one scopetype_T se_type; int se_local_count; // ctx_locals.ga_len before scope skip_T se_skip_save; // ctx_skip before the block union { ifscope_T se_if; whilescope_T se_while; forscope_T se_for; tryscope_T se_try; } se_u; }; /* * Entry for "ctx_locals". Used for arguments and local variables. */ typedef struct { char_u *lv_name; type_T *lv_type; int lv_idx; // index of the variable on the stack int lv_from_outer; // when TRUE using ctx_outer scope int lv_const; // when TRUE cannot be assigned to int lv_arg; // when TRUE this is an argument } lvar_T; /* * Context for compiling lines of Vim script. * Stores info about the local variables and condition stack. */ struct cctx_S { ufunc_T *ctx_ufunc; // current function int ctx_lnum; // line number in current function char_u *ctx_line_start; // start of current line or NULL garray_T ctx_instr; // generated instructions garray_T ctx_locals; // currently visible local variables int ctx_locals_count; // total number of local variables int ctx_closure_count; // number of closures created in the // function garray_T ctx_imports; // imported items skip_T ctx_skip; scope_T *ctx_scope; // current scope, NULL at toplevel int ctx_had_return; // last seen statement was "return" cctx_T *ctx_outer; // outer scope for lambda or nested // function int ctx_outer_used; // var in ctx_outer was used garray_T ctx_type_stack; // type of each item on the stack garray_T *ctx_type_list; // list of pointers to allocated types }; static char e_var_notfound[] = N_("E1001: variable not found: %s"); static char e_syntax_at[] = N_("E1002: Syntax error at %s"); static char e_used_as_arg[] = N_("E1006: %s is used as an argument"); static char e_cannot_use_void[] = N_("E1031: Cannot use void value"); static void delete_def_function_contents(dfunc_T *dfunc); static void arg_type_mismatch(type_T *expected, type_T *actual, int argidx); /* * Lookup variable "name" in the local scope and return it. * Return NULL if not found. */ static lvar_T * lookup_local(char_u *name, size_t len, cctx_T *cctx) { int idx; lvar_T *lvar; if (len == 0) return NULL; // Find local in current function scope. for (idx = 0; idx < cctx->ctx_locals.ga_len; ++idx) { lvar = ((lvar_T *)cctx->ctx_locals.ga_data) + idx; if (STRNCMP(name, lvar->lv_name, len) == 0 && STRLEN(lvar->lv_name) == len) { lvar->lv_from_outer = FALSE; return lvar; } } // Find local in outer function scope. if (cctx->ctx_outer != NULL) { lvar = lookup_local(name, len, cctx->ctx_outer); if (lvar != NULL) { // TODO: are there situations we should not mark the outer scope as // used? cctx->ctx_outer_used = TRUE; lvar->lv_from_outer = TRUE; return lvar; } } return NULL; } /* * Lookup an argument in the current function and an enclosing function. * Returns the argument index in "idxp" * Returns the argument type in "type" * Sets "gen_load_outer" to TRUE if found in outer scope. * Returns OK when found, FAIL otherwise. */ static int lookup_arg( char_u *name, size_t len, int *idxp, type_T **type, int *gen_load_outer, cctx_T *cctx) { int idx; char_u *va_name; if (len == 0) return FAIL; for (idx = 0; idx < cctx->ctx_ufunc->uf_args.ga_len; ++idx) { char_u *arg = FUNCARG(cctx->ctx_ufunc, idx); if (STRNCMP(name, arg, len) == 0 && arg[len] == NUL) { if (idxp != NULL) { // Arguments are located above the frame pointer. One further // if there is a vararg argument *idxp = idx - (cctx->ctx_ufunc->uf_args.ga_len + STACK_FRAME_SIZE) + (cctx->ctx_ufunc->uf_va_name != NULL ? -1 : 0); if (cctx->ctx_ufunc->uf_arg_types != NULL) *type = cctx->ctx_ufunc->uf_arg_types[idx]; else *type = &t_any; } return OK; } } va_name = cctx->ctx_ufunc->uf_va_name; if (va_name != NULL && STRNCMP(name, va_name, len) == 0 && va_name[len] == NUL) { if (idxp != NULL) { // varargs is always the last argument *idxp = -STACK_FRAME_SIZE - 1; *type = cctx->ctx_ufunc->uf_va_type; } return OK; } if (cctx->ctx_outer != NULL) { // Lookup the name for an argument of the outer function. if (lookup_arg(name, len, idxp, type, gen_load_outer, cctx->ctx_outer) == OK) { *gen_load_outer = TRUE; return OK; } } return FAIL; } /* * Lookup a variable in the current script. * Returns OK or FAIL. */ static int lookup_script(char_u *name, size_t len) { int cc; hashtab_T *ht = &SCRIPT_VARS(current_sctx.sc_sid); dictitem_T *di; cc = name[len]; name[len] = NUL; di = find_var_in_ht(ht, 0, name, TRUE); name[len] = cc; return di == NULL ? FAIL: OK; } /* * Check if "p[len]" is already defined, either in script "import_sid" or in * compilation context "cctx". * Return FAIL and give an error if it defined. */ int check_defined(char_u *p, size_t len, cctx_T *cctx) { if (lookup_script(p, len) == OK || (cctx != NULL && (lookup_local(p, len, cctx) != NULL || find_imported(p, len, cctx) != NULL))) { semsg("E1073: imported name already defined: %s", p); return FAIL; } return OK; } /* * Allocate memory for a type_T and add the pointer to type_gap, so that it can * be freed later. */ static type_T * alloc_type(garray_T *type_gap) { type_T *type; if (ga_grow(type_gap, 1) == FAIL) return NULL; type = ALLOC_CLEAR_ONE(type_T); if (type != NULL) { ((type_T **)type_gap->ga_data)[type_gap->ga_len] = type; ++type_gap->ga_len; } return type; } void clear_type_list(garray_T *gap) { while (gap->ga_len > 0) vim_free(((type_T **)gap->ga_data)[--gap->ga_len]); ga_clear(gap); } static type_T * get_list_type(type_T *member_type, garray_T *type_gap) { type_T *type; // recognize commonly used types if (member_type->tt_type == VAR_ANY) return &t_list_any; if (member_type->tt_type == VAR_VOID || member_type->tt_type == VAR_UNKNOWN) return &t_list_empty; if (member_type->tt_type == VAR_BOOL) return &t_list_bool; if (member_type->tt_type == VAR_NUMBER) return &t_list_number; if (member_type->tt_type == VAR_STRING) return &t_list_string; // Not a common type, create a new entry. type = alloc_type(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_LIST; type->tt_member = member_type; type->tt_argcount = 0; type->tt_args = NULL; return type; } static type_T * get_dict_type(type_T *member_type, garray_T *type_gap) { type_T *type; // recognize commonly used types if (member_type->tt_type == VAR_ANY) return &t_dict_any; if (member_type->tt_type == VAR_VOID || member_type->tt_type == VAR_UNKNOWN) return &t_dict_empty; if (member_type->tt_type == VAR_BOOL) return &t_dict_bool; if (member_type->tt_type == VAR_NUMBER) return &t_dict_number; if (member_type->tt_type == VAR_STRING) return &t_dict_string; // Not a common type, create a new entry. type = alloc_type(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_DICT; type->tt_member = member_type; type->tt_argcount = 0; type->tt_args = NULL; return type; } /* * Allocate a new type for a function. */ static type_T * alloc_func_type(type_T *ret_type, int argcount, garray_T *type_gap) { type_T *type = alloc_type(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_FUNC; type->tt_member = ret_type; type->tt_argcount = argcount; type->tt_args = NULL; return type; } /* * Get a function type, based on the return type "ret_type". * If "argcount" is -1 or 0 a predefined type can be used. * If "argcount" > 0 always create a new type, so that arguments can be added. */ static type_T * get_func_type(type_T *ret_type, int argcount, garray_T *type_gap) { // recognize commonly used types if (argcount <= 0) { if (ret_type == &t_unknown) { // (argcount == 0) is not possible return &t_func_unknown; } if (ret_type == &t_void) { if (argcount == 0) return &t_func_0_void; else return &t_func_void; } if (ret_type == &t_any) { if (argcount == 0) return &t_func_0_any; else return &t_func_any; } if (ret_type == &t_number) { if (argcount == 0) return &t_func_0_number; else return &t_func_number; } if (ret_type == &t_string) { if (argcount == 0) return &t_func_0_string; else return &t_func_string; } } return alloc_func_type(ret_type, argcount, type_gap); } /* * For a function type, reserve space for "argcount" argument types (including * vararg). */ static int func_type_add_arg_types( type_T *functype, int argcount, garray_T *type_gap) { // To make it easy to free the space needed for the argument types, add the // pointer to type_gap. if (ga_grow(type_gap, 1) == FAIL) return FAIL; functype->tt_args = ALLOC_CLEAR_MULT(type_T *, argcount); if (functype->tt_args == NULL) return FAIL; ((type_T **)type_gap->ga_data)[type_gap->ga_len] = (void *)functype->tt_args; ++type_gap->ga_len; return OK; } /* * Return the type_T for a typval. Only for primitive types. */ type_T * typval2type(typval_T *tv) { if (tv->v_type == VAR_NUMBER) return &t_number; if (tv->v_type == VAR_BOOL) return &t_bool; // not used if (tv->v_type == VAR_STRING) return &t_string; if (tv->v_type == VAR_LIST) // e.g. for v:oldfiles return &t_list_string; if (tv->v_type == VAR_DICT) // e.g. for v:completed_item return &t_dict_any; return &t_any; // not used } static void type_mismatch(type_T *expected, type_T *actual) { char *tofree1, *tofree2; semsg(_("E1013: type mismatch, expected %s but got %s"), type_name(expected, &tofree1), type_name(actual, &tofree2)); vim_free(tofree1); vim_free(tofree2); } static void arg_type_mismatch(type_T *expected, type_T *actual, int argidx) { char *tofree1, *tofree2; semsg(_("E1013: argument %d: type mismatch, expected %s but got %s"), argidx, type_name(expected, &tofree1), type_name(actual, &tofree2)); vim_free(tofree1); vim_free(tofree2); } /* * Check if the expected and actual types match. * Does not allow for assigning "any" to a specific type. */ int check_type(type_T *expected, type_T *actual, int give_msg) { int ret = OK; // When expected is "unknown" we accept any actual type. // When expected is "any" we accept any actual type except "void". if (expected->tt_type != VAR_UNKNOWN && !(expected->tt_type == VAR_ANY && actual->tt_type != VAR_VOID)) { if (expected->tt_type != actual->tt_type) { if (give_msg) type_mismatch(expected, actual); return FAIL; } if (expected->tt_type == VAR_DICT || expected->tt_type == VAR_LIST) { // "unknown" is used for an empty list or dict if (actual->tt_member != &t_unknown) ret = check_type(expected->tt_member, actual->tt_member, FALSE); } else if (expected->tt_type == VAR_FUNC) { if (expected->tt_member != &t_unknown) ret = check_type(expected->tt_member, actual->tt_member, FALSE); if (ret == OK && expected->tt_argcount != -1 && (actual->tt_argcount < expected->tt_min_argcount || actual->tt_argcount > expected->tt_argcount)) ret = FAIL; } if (ret == FAIL && give_msg) type_mismatch(expected, actual); } return ret; } ///////////////////////////////////////////////////////////////////// // Following generate_ functions expect the caller to call ga_grow(). #define RETURN_NULL_IF_SKIP(cctx) if (cctx->ctx_skip == SKIP_YES) return NULL #define RETURN_OK_IF_SKIP(cctx) if (cctx->ctx_skip == SKIP_YES) return OK /* * Generate an instruction without arguments. * Returns a pointer to the new instruction, NULL if failed. */ static isn_T * generate_instr(cctx_T *cctx, isntype_T isn_type) { garray_T *instr = &cctx->ctx_instr; isn_T *isn; RETURN_NULL_IF_SKIP(cctx); if (ga_grow(instr, 1) == FAIL) return NULL; isn = ((isn_T *)instr->ga_data) + instr->ga_len; isn->isn_type = isn_type; isn->isn_lnum = cctx->ctx_lnum + 1; ++instr->ga_len; return isn; } /* * Generate an instruction without arguments. * "drop" will be removed from the stack. * Returns a pointer to the new instruction, NULL if failed. */ static isn_T * generate_instr_drop(cctx_T *cctx, isntype_T isn_type, int drop) { garray_T *stack = &cctx->ctx_type_stack; RETURN_NULL_IF_SKIP(cctx); stack->ga_len -= drop; return generate_instr(cctx, isn_type); } /* * Generate instruction "isn_type" and put "type" on the type stack. */ static isn_T * generate_instr_type(cctx_T *cctx, isntype_T isn_type, type_T *type) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; if ((isn = generate_instr(cctx, isn_type)) == NULL) return NULL; if (ga_grow(stack, 1) == FAIL) return NULL; ((type_T **)stack->ga_data)[stack->ga_len] = type; ++stack->ga_len; return isn; } /* * If type at "offset" isn't already VAR_STRING then generate ISN_2STRING. */ static int may_generate_2STRING(int offset, cctx_T *cctx) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T **type = ((type_T **)stack->ga_data) + stack->ga_len + offset; if ((*type)->tt_type == VAR_STRING) return OK; *type = &t_string; if ((isn = generate_instr(cctx, ISN_2STRING)) == NULL) return FAIL; isn->isn_arg.number = offset; return OK; } static int check_number_or_float(vartype_T type1, vartype_T type2, char_u *op) { if (!((type1 == VAR_NUMBER || type1 == VAR_FLOAT || type1 == VAR_ANY) && (type2 == VAR_NUMBER || type2 == VAR_FLOAT || type2 == VAR_ANY))) { if (*op == '+') emsg(_("E1051: wrong argument type for +")); else semsg(_("E1036: %c requires number or float arguments"), *op); return FAIL; } return OK; } /* * Generate an instruction with two arguments. The instruction depends on the * type of the arguments. */ static int generate_two_op(cctx_T *cctx, char_u *op) { garray_T *stack = &cctx->ctx_type_stack; type_T *type1; type_T *type2; vartype_T vartype; isn_T *isn; RETURN_OK_IF_SKIP(cctx); // Get the known type of the two items on the stack. If they are matching // use a type-specific instruction. Otherwise fall back to runtime type // checking. type1 = ((type_T **)stack->ga_data)[stack->ga_len - 2]; type2 = ((type_T **)stack->ga_data)[stack->ga_len - 1]; vartype = VAR_ANY; if (type1->tt_type == type2->tt_type && (type1->tt_type == VAR_NUMBER || type1->tt_type == VAR_LIST #ifdef FEAT_FLOAT || type1->tt_type == VAR_FLOAT #endif || type1->tt_type == VAR_BLOB)) vartype = type1->tt_type; switch (*op) { case '+': if (vartype != VAR_LIST && vartype != VAR_BLOB && type1->tt_type != VAR_ANY && type2->tt_type != VAR_ANY && check_number_or_float( type1->tt_type, type2->tt_type, op) == FAIL) return FAIL; isn = generate_instr_drop(cctx, vartype == VAR_NUMBER ? ISN_OPNR : vartype == VAR_LIST ? ISN_ADDLIST : vartype == VAR_BLOB ? ISN_ADDBLOB #ifdef FEAT_FLOAT : vartype == VAR_FLOAT ? ISN_OPFLOAT #endif : ISN_OPANY, 1); if (isn != NULL) isn->isn_arg.op.op_type = EXPR_ADD; break; case '-': case '*': case '/': if (check_number_or_float(type1->tt_type, type2->tt_type, op) == FAIL) return FAIL; if (vartype == VAR_NUMBER) isn = generate_instr_drop(cctx, ISN_OPNR, 1); #ifdef FEAT_FLOAT else if (vartype == VAR_FLOAT) isn = generate_instr_drop(cctx, ISN_OPFLOAT, 1); #endif else isn = generate_instr_drop(cctx, ISN_OPANY, 1); if (isn != NULL) isn->isn_arg.op.op_type = *op == '*' ? EXPR_MULT : *op == '/'? EXPR_DIV : EXPR_SUB; break; case '%': if ((type1->tt_type != VAR_ANY && type1->tt_type != VAR_NUMBER) || (type2->tt_type != VAR_ANY && type2->tt_type != VAR_NUMBER)) { emsg(_("E1035: % requires number arguments")); return FAIL; } isn = generate_instr_drop(cctx, vartype == VAR_NUMBER ? ISN_OPNR : ISN_OPANY, 1); if (isn != NULL) isn->isn_arg.op.op_type = EXPR_REM; break; } // correct type of result if (vartype == VAR_ANY) { type_T *type = &t_any; #ifdef FEAT_FLOAT // float+number and number+float results in float if ((type1->tt_type == VAR_NUMBER || type1->tt_type == VAR_FLOAT) && (type2->tt_type == VAR_NUMBER || type2->tt_type == VAR_FLOAT)) type = &t_float; #endif ((type_T **)stack->ga_data)[stack->ga_len - 1] = type; } return OK; } /* * Get the instruction to use for comparing "type1" with "type2" * Return ISN_DROP when failed. */ static isntype_T get_compare_isn(exptype_T exptype, vartype_T type1, vartype_T type2) { isntype_T isntype = ISN_DROP; if (type1 == VAR_UNKNOWN) type1 = VAR_ANY; if (type2 == VAR_UNKNOWN) type2 = VAR_ANY; if (type1 == type2) { switch (type1) { case VAR_BOOL: isntype = ISN_COMPAREBOOL; break; case VAR_SPECIAL: isntype = ISN_COMPARESPECIAL; break; case VAR_NUMBER: isntype = ISN_COMPARENR; break; case VAR_FLOAT: isntype = ISN_COMPAREFLOAT; break; case VAR_STRING: isntype = ISN_COMPARESTRING; break; case VAR_BLOB: isntype = ISN_COMPAREBLOB; break; case VAR_LIST: isntype = ISN_COMPARELIST; break; case VAR_DICT: isntype = ISN_COMPAREDICT; break; case VAR_FUNC: isntype = ISN_COMPAREFUNC; break; default: isntype = ISN_COMPAREANY; break; } } else if (type1 == VAR_ANY || type2 == VAR_ANY || ((type1 == VAR_NUMBER || type1 == VAR_FLOAT) && (type2 == VAR_NUMBER || type2 ==VAR_FLOAT))) isntype = ISN_COMPAREANY; if ((exptype == EXPR_IS || exptype == EXPR_ISNOT) && (isntype == ISN_COMPAREBOOL || isntype == ISN_COMPARESPECIAL || isntype == ISN_COMPARENR || isntype == ISN_COMPAREFLOAT)) { semsg(_("E1037: Cannot use \"%s\" with %s"), exptype == EXPR_IS ? "is" : "isnot" , vartype_name(type1)); return ISN_DROP; } if (isntype == ISN_DROP || ((exptype != EXPR_EQUAL && exptype != EXPR_NEQUAL && (type1 == VAR_BOOL || type1 == VAR_SPECIAL || type2 == VAR_BOOL || type2 == VAR_SPECIAL))) || ((exptype != EXPR_EQUAL && exptype != EXPR_NEQUAL && exptype != EXPR_IS && exptype != EXPR_ISNOT && (type1 == VAR_BLOB || type2 == VAR_BLOB || type1 == VAR_LIST || type2 == VAR_LIST)))) { semsg(_("E1072: Cannot compare %s with %s"), vartype_name(type1), vartype_name(type2)); return ISN_DROP; } return isntype; } int check_compare_types(exptype_T type, typval_T *tv1, typval_T *tv2) { if (get_compare_isn(type, tv1->v_type, tv2->v_type) == ISN_DROP) return FAIL; return OK; } /* * Generate an ISN_COMPARE* instruction with a boolean result. */ static int generate_COMPARE(cctx_T *cctx, exptype_T exptype, int ic) { isntype_T isntype; isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; vartype_T type1; vartype_T type2; RETURN_OK_IF_SKIP(cctx); // Get the known type of the two items on the stack. If they are matching // use a type-specific instruction. Otherwise fall back to runtime type // checking. type1 = ((type_T **)stack->ga_data)[stack->ga_len - 2]->tt_type; type2 = ((type_T **)stack->ga_data)[stack->ga_len - 1]->tt_type; isntype = get_compare_isn(exptype, type1, type2); if (isntype == ISN_DROP) return FAIL; if ((isn = generate_instr(cctx, isntype)) == NULL) return FAIL; isn->isn_arg.op.op_type = exptype; isn->isn_arg.op.op_ic = ic; // takes two arguments, puts one bool back if (stack->ga_len >= 2) { --stack->ga_len; ((type_T **)stack->ga_data)[stack->ga_len - 1] = &t_bool; } return OK; } /* * Generate an ISN_2BOOL instruction. */ static int generate_2BOOL(cctx_T *cctx, int invert) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_2BOOL)) == NULL) return FAIL; isn->isn_arg.number = invert; // type becomes bool ((type_T **)stack->ga_data)[stack->ga_len - 1] = &t_bool; return OK; } static int generate_TYPECHECK(cctx_T *cctx, type_T *vartype, int offset) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_CHECKTYPE)) == NULL) return FAIL; // TODO: whole type, e.g. for a function also arg and return types isn->isn_arg.type.ct_type = vartype->tt_type; isn->isn_arg.type.ct_off = offset; // type becomes vartype ((type_T **)stack->ga_data)[stack->ga_len + offset] = vartype; return OK; } /* * Check that * - "actual" is "expected" type or * - "actual" is a type that can be "expected" type: add a runtime check; or * - return FAIL. */ static int need_type( type_T *actual, type_T *expected, int offset, cctx_T *cctx, int silent) { if (check_type(expected, actual, FALSE) == OK) return OK; if (actual->tt_type != VAR_ANY && actual->tt_type != VAR_UNKNOWN && !(actual->tt_type == VAR_FUNC && (actual->tt_member == &t_any || actual->tt_argcount < 0))) { if (!silent) type_mismatch(expected, actual); return FAIL; } generate_TYPECHECK(cctx, expected, offset); return OK; } /* * Generate an ISN_PUSHNR instruction. */ static int generate_PUSHNR(cctx_T *cctx, varnumber_T number) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHNR, &t_number)) == NULL) return FAIL; isn->isn_arg.number = number; return OK; } /* * Generate an ISN_PUSHBOOL instruction. */ static int generate_PUSHBOOL(cctx_T *cctx, varnumber_T number) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHBOOL, &t_bool)) == NULL) return FAIL; isn->isn_arg.number = number; return OK; } /* * Generate an ISN_PUSHSPEC instruction. */ static int generate_PUSHSPEC(cctx_T *cctx, varnumber_T number) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHSPEC, &t_special)) == NULL) return FAIL; isn->isn_arg.number = number; return OK; } #ifdef FEAT_FLOAT /* * Generate an ISN_PUSHF instruction. */ static int generate_PUSHF(cctx_T *cctx, float_T fnumber) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHF, &t_float)) == NULL) return FAIL; isn->isn_arg.fnumber = fnumber; return OK; } #endif /* * Generate an ISN_PUSHS instruction. * Consumes "str". */ static int generate_PUSHS(cctx_T *cctx, char_u *str) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHS, &t_string)) == NULL) return FAIL; isn->isn_arg.string = str; return OK; } /* * Generate an ISN_PUSHCHANNEL instruction. * Consumes "channel". */ static int generate_PUSHCHANNEL(cctx_T *cctx, channel_T *channel) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHCHANNEL, &t_channel)) == NULL) return FAIL; isn->isn_arg.channel = channel; return OK; } /* * Generate an ISN_PUSHJOB instruction. * Consumes "job". */ static int generate_PUSHJOB(cctx_T *cctx, job_T *job) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHJOB, &t_channel)) == NULL) return FAIL; isn->isn_arg.job = job; return OK; } /* * Generate an ISN_PUSHBLOB instruction. * Consumes "blob". */ static int generate_PUSHBLOB(cctx_T *cctx, blob_T *blob) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHBLOB, &t_blob)) == NULL) return FAIL; isn->isn_arg.blob = blob; return OK; } /* * Generate an ISN_PUSHFUNC instruction with name "name". * Consumes "name". */ static int generate_PUSHFUNC(cctx_T *cctx, char_u *name, type_T *type) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, ISN_PUSHFUNC, type)) == NULL) return FAIL; isn->isn_arg.string = name; return OK; } /* * Generate an ISN_GETITEM instruction with "index". */ static int generate_GETITEM(cctx_T *cctx, int index) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T *type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; type_T *item_type = &t_any; RETURN_OK_IF_SKIP(cctx); if (type->tt_type == VAR_LIST) item_type = type->tt_member; else if (type->tt_type != VAR_ANY) { emsg(_(e_listreq)); return FAIL; } if ((isn = generate_instr(cctx, ISN_GETITEM)) == NULL) return FAIL; isn->isn_arg.number = index; // add the item type to the type stack if (ga_grow(stack, 1) == FAIL) return FAIL; ((type_T **)stack->ga_data)[stack->ga_len] = item_type; ++stack->ga_len; return OK; } /* * Generate an ISN_SLICE instruction with "count". */ static int generate_SLICE(cctx_T *cctx, int count) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_SLICE)) == NULL) return FAIL; isn->isn_arg.number = count; return OK; } /* * Generate an ISN_CHECKLEN instruction with "min_len". */ static int generate_CHECKLEN(cctx_T *cctx, int min_len, int more_OK) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_CHECKLEN)) == NULL) return FAIL; isn->isn_arg.checklen.cl_min_len = min_len; isn->isn_arg.checklen.cl_more_OK = more_OK; return OK; } /* * Generate an ISN_STORE instruction. */ static int generate_STORE(cctx_T *cctx, isntype_T isn_type, int idx, char_u *name) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_drop(cctx, isn_type, 1)) == NULL) return FAIL; if (name != NULL) isn->isn_arg.string = vim_strsave(name); else isn->isn_arg.number = idx; return OK; } /* * Generate an ISN_STORENR instruction (short for ISN_PUSHNR + ISN_STORE) */ static int generate_STORENR(cctx_T *cctx, int idx, varnumber_T value) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_STORENR)) == NULL) return FAIL; isn->isn_arg.storenr.stnr_idx = idx; isn->isn_arg.storenr.stnr_val = value; return OK; } /* * Generate an ISN_STOREOPT instruction */ static int generate_STOREOPT(cctx_T *cctx, char_u *name, int opt_flags) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_STOREOPT)) == NULL) return FAIL; isn->isn_arg.storeopt.so_name = vim_strsave(name); isn->isn_arg.storeopt.so_flags = opt_flags; return OK; } /* * Generate an ISN_LOAD or similar instruction. */ static int generate_LOAD( cctx_T *cctx, isntype_T isn_type, int idx, char_u *name, type_T *type) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_type(cctx, isn_type, type)) == NULL) return FAIL; if (name != NULL) isn->isn_arg.string = vim_strsave(name); else isn->isn_arg.number = idx; return OK; } /* * Generate an ISN_LOADV instruction for v:var. */ static int generate_LOADV( cctx_T *cctx, char_u *name, int error) { int di_flags; int vidx = find_vim_var(name, &di_flags); type_T *type; RETURN_OK_IF_SKIP(cctx); if (vidx < 0) { if (error) semsg(_(e_var_notfound), name); return FAIL; } type = typval2type(get_vim_var_tv(vidx)); return generate_LOAD(cctx, ISN_LOADV, vidx, NULL, type); } /* * Generate an ISN_UNLET instruction. */ static int generate_UNLET(cctx_T *cctx, isntype_T isn_type, char_u *name, int forceit) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, isn_type)) == NULL) return FAIL; isn->isn_arg.unlet.ul_name = vim_strsave(name); isn->isn_arg.unlet.ul_forceit = forceit; return OK; } /* * Generate an ISN_LOADS instruction. */ static int generate_OLDSCRIPT( cctx_T *cctx, isntype_T isn_type, char_u *name, int sid, type_T *type) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if (isn_type == ISN_LOADS) isn = generate_instr_type(cctx, isn_type, type); else isn = generate_instr_drop(cctx, isn_type, 1); if (isn == NULL) return FAIL; isn->isn_arg.loadstore.ls_name = vim_strsave(name); isn->isn_arg.loadstore.ls_sid = sid; return OK; } /* * Generate an ISN_LOADSCRIPT or ISN_STORESCRIPT instruction. */ static int generate_VIM9SCRIPT( cctx_T *cctx, isntype_T isn_type, int sid, int idx, type_T *type) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if (isn_type == ISN_LOADSCRIPT) isn = generate_instr_type(cctx, isn_type, type); else isn = generate_instr_drop(cctx, isn_type, 1); if (isn == NULL) return FAIL; isn->isn_arg.script.script_sid = sid; isn->isn_arg.script.script_idx = idx; return OK; } /* * Generate an ISN_NEWLIST instruction. */ static int generate_NEWLIST(cctx_T *cctx, int count) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T *type; type_T *member; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_NEWLIST)) == NULL) return FAIL; isn->isn_arg.number = count; // drop the value types stack->ga_len -= count; // Use the first value type for the list member type. Use "any" for an // empty list. if (count > 0) member = ((type_T **)stack->ga_data)[stack->ga_len]; else member = &t_void; type = get_list_type(member, cctx->ctx_type_list); // add the list type to the type stack if (ga_grow(stack, 1) == FAIL) return FAIL; ((type_T **)stack->ga_data)[stack->ga_len] = type; ++stack->ga_len; return OK; } /* * Generate an ISN_NEWDICT instruction. */ static int generate_NEWDICT(cctx_T *cctx, int count) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T *type; type_T *member; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_NEWDICT)) == NULL) return FAIL; isn->isn_arg.number = count; // drop the key and value types stack->ga_len -= 2 * count; // Use the first value type for the list member type. Use "void" for an // empty dict. if (count > 0) member = ((type_T **)stack->ga_data)[stack->ga_len + 1]; else member = &t_void; type = get_dict_type(member, cctx->ctx_type_list); // add the dict type to the type stack if (ga_grow(stack, 1) == FAIL) return FAIL; ((type_T **)stack->ga_data)[stack->ga_len] = type; ++stack->ga_len; return OK; } /* * Generate an ISN_FUNCREF instruction. */ static int generate_FUNCREF(cctx_T *cctx, int dfunc_idx) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_FUNCREF)) == NULL) return FAIL; isn->isn_arg.funcref.fr_func = dfunc_idx; isn->isn_arg.funcref.fr_var_idx = cctx->ctx_closure_count++; if (ga_grow(stack, 1) == FAIL) return FAIL; ((type_T **)stack->ga_data)[stack->ga_len] = &t_func_any; // TODO: argument and return types ++stack->ga_len; return OK; } /* * Generate an ISN_JUMP instruction. */ static int generate_JUMP(cctx_T *cctx, jumpwhen_T when, int where) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_JUMP)) == NULL) return FAIL; isn->isn_arg.jump.jump_when = when; isn->isn_arg.jump.jump_where = where; if (when != JUMP_ALWAYS && stack->ga_len > 0) --stack->ga_len; return OK; } static int generate_FOR(cctx_T *cctx, int loop_idx) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_FOR)) == NULL) return FAIL; isn->isn_arg.forloop.for_idx = loop_idx; if (ga_grow(stack, 1) == FAIL) return FAIL; // type doesn't matter, will be stored next ((type_T **)stack->ga_data)[stack->ga_len] = &t_any; ++stack->ga_len; return OK; } /* * Generate an ISN_BCALL instruction. * "method_call" is TRUE for "value->method()" * Return FAIL if the number of arguments is wrong. */ static int generate_BCALL(cctx_T *cctx, int func_idx, int argcount, int method_call) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; int argoff; type_T *argtypes[MAX_FUNC_ARGS]; int i; RETURN_OK_IF_SKIP(cctx); argoff = check_internal_func(func_idx, argcount); if (argoff < 0) return FAIL; if (method_call && argoff > 1) { if ((isn = generate_instr(cctx, ISN_SHUFFLE)) == NULL) return FAIL; isn->isn_arg.shuffle.shfl_item = argcount; isn->isn_arg.shuffle.shfl_up = argoff - 1; } if ((isn = generate_instr(cctx, ISN_BCALL)) == NULL) return FAIL; isn->isn_arg.bfunc.cbf_idx = func_idx; isn->isn_arg.bfunc.cbf_argcount = argcount; for (i = 0; i < argcount; ++i) argtypes[i] = ((type_T **)stack->ga_data)[stack->ga_len - argcount + i]; stack->ga_len -= argcount; // drop the arguments if (ga_grow(stack, 1) == FAIL) return FAIL; ((type_T **)stack->ga_data)[stack->ga_len] = internal_func_ret_type(func_idx, argcount, argtypes); ++stack->ga_len; // add return value return OK; } /* * Generate an ISN_DCALL or ISN_UCALL instruction. * Return FAIL if the number of arguments is wrong. */ static int generate_CALL(cctx_T *cctx, ufunc_T *ufunc, int pushed_argcount) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; int regular_args = ufunc->uf_args.ga_len; int argcount = pushed_argcount; RETURN_OK_IF_SKIP(cctx); if (argcount > regular_args && !has_varargs(ufunc)) { semsg(_(e_toomanyarg), ufunc->uf_name); return FAIL; } if (argcount < regular_args - ufunc->uf_def_args.ga_len) { semsg(_(e_toofewarg), ufunc->uf_name); return FAIL; } if (ufunc->uf_def_status != UF_NOT_COMPILED) { int i; for (i = 0; i < argcount; ++i) { type_T *expected; type_T *actual; if (i < regular_args) { if (ufunc->uf_arg_types == NULL) continue; expected = ufunc->uf_arg_types[i]; } else expected = ufunc->uf_va_type->tt_member; actual = ((type_T **)stack->ga_data)[stack->ga_len - argcount + i]; if (need_type(actual, expected, -argcount + i, cctx, TRUE) == FAIL) { arg_type_mismatch(expected, actual, i + 1); return FAIL; } } if (ufunc->uf_def_status == UF_TO_BE_COMPILED) if (compile_def_function(ufunc, TRUE, NULL) == FAIL) return FAIL; } if ((isn = generate_instr(cctx, ufunc->uf_def_status != UF_NOT_COMPILED ? ISN_DCALL : ISN_UCALL)) == NULL) return FAIL; if (ufunc->uf_def_status != UF_NOT_COMPILED) { isn->isn_arg.dfunc.cdf_idx = ufunc->uf_dfunc_idx; isn->isn_arg.dfunc.cdf_argcount = argcount; } else { // A user function may be deleted and redefined later, can't use the // ufunc pointer, need to look it up again at runtime. isn->isn_arg.ufunc.cuf_name = vim_strsave(ufunc->uf_name); isn->isn_arg.ufunc.cuf_argcount = argcount; } stack->ga_len -= argcount; // drop the arguments if (ga_grow(stack, 1) == FAIL) return FAIL; // add return value ((type_T **)stack->ga_data)[stack->ga_len] = ufunc->uf_ret_type; ++stack->ga_len; return OK; } /* * Generate an ISN_UCALL instruction when the function isn't defined yet. */ static int generate_UCALL(cctx_T *cctx, char_u *name, int argcount) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_UCALL)) == NULL) return FAIL; isn->isn_arg.ufunc.cuf_name = vim_strsave(name); isn->isn_arg.ufunc.cuf_argcount = argcount; stack->ga_len -= argcount; // drop the arguments if (ga_grow(stack, 1) == FAIL) return FAIL; // add return value ((type_T **)stack->ga_data)[stack->ga_len] = &t_any; ++stack->ga_len; return OK; } /* * Generate an ISN_PCALL instruction. * "type" is the type of the FuncRef. */ static int generate_PCALL( cctx_T *cctx, int argcount, char_u *name, type_T *type, int at_top) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T *ret_type; RETURN_OK_IF_SKIP(cctx); if (type->tt_type == VAR_ANY) ret_type = &t_any; else if (type->tt_type == VAR_FUNC || type->tt_type == VAR_PARTIAL) { if (type->tt_argcount != -1) { int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0; if (argcount < type->tt_min_argcount - varargs) { semsg(_(e_toofewarg), "[reference]"); return FAIL; } if (!varargs && argcount > type->tt_argcount) { semsg(_(e_toomanyarg), "[reference]"); return FAIL; } } ret_type = type->tt_member; } else { semsg(_("E1085: Not a callable type: %s"), name); return FAIL; } if ((isn = generate_instr(cctx, ISN_PCALL)) == NULL) return FAIL; isn->isn_arg.pfunc.cpf_top = at_top; isn->isn_arg.pfunc.cpf_argcount = argcount; stack->ga_len -= argcount; // drop the arguments // drop the funcref/partial, get back the return value ((type_T **)stack->ga_data)[stack->ga_len - 1] = ret_type; // If partial is above the arguments it must be cleared and replaced with // the return value. if (at_top && generate_instr(cctx, ISN_PCALL_END) == NULL) return FAIL; return OK; } /* * Generate an ISN_STRINGMEMBER instruction. */ static int generate_STRINGMEMBER(cctx_T *cctx, char_u *name, size_t len) { isn_T *isn; garray_T *stack = &cctx->ctx_type_stack; type_T *type; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_STRINGMEMBER)) == NULL) return FAIL; isn->isn_arg.string = vim_strnsave(name, len); // check for dict type type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (type->tt_type != VAR_DICT && type != &t_any) { emsg(_(e_dictreq)); return FAIL; } // change dict type to dict member type if (type->tt_type == VAR_DICT) ((type_T **)stack->ga_data)[stack->ga_len - 1] = type->tt_member; return OK; } /* * Generate an ISN_ECHO instruction. */ static int generate_ECHO(cctx_T *cctx, int with_white, int count) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr_drop(cctx, ISN_ECHO, count)) == NULL) return FAIL; isn->isn_arg.echo.echo_with_white = with_white; isn->isn_arg.echo.echo_count = count; return OK; } /* * Generate an ISN_EXECUTE/ISN_ECHOMSG/ISN_ECHOERR instruction. */ static int generate_MULT_EXPR(cctx_T *cctx, isntype_T isn_type, int count) { isn_T *isn; if ((isn = generate_instr_drop(cctx, isn_type, count)) == NULL) return FAIL; isn->isn_arg.number = count; return OK; } static int generate_EXEC(cctx_T *cctx, char_u *line) { isn_T *isn; RETURN_OK_IF_SKIP(cctx); if ((isn = generate_instr(cctx, ISN_EXEC)) == NULL) return FAIL; isn->isn_arg.string = vim_strsave(line); return OK; } static int generate_EXECCONCAT(cctx_T *cctx, int count) { isn_T *isn; if ((isn = generate_instr_drop(cctx, ISN_EXECCONCAT, count)) == NULL) return FAIL; isn->isn_arg.number = count; return OK; } /* * Reserve space for a local variable. * Return the variable or NULL if it failed. */ static lvar_T * reserve_local(cctx_T *cctx, char_u *name, size_t len, int isConst, type_T *type) { lvar_T *lvar; if (lookup_arg(name, len, NULL, NULL, NULL, cctx) == OK) { emsg_namelen(_(e_used_as_arg), name, (int)len); return NULL; } if (ga_grow(&cctx->ctx_locals, 1) == FAIL) return NULL; lvar = ((lvar_T *)cctx->ctx_locals.ga_data) + cctx->ctx_locals.ga_len++; // Every local variable uses the next entry on the stack. We could re-use // the last ones when leaving a scope, but then variables used in a closure // might get overwritten. To keep things simple do not re-use stack // entries. This is less efficient, but memory is cheap these days. lvar->lv_idx = cctx->ctx_locals_count++; lvar->lv_name = vim_strnsave(name, len == 0 ? STRLEN(name) : len); lvar->lv_const = isConst; lvar->lv_type = type; return lvar; } /* * Remove local variables above "new_top". */ static void unwind_locals(cctx_T *cctx, int new_top) { if (cctx->ctx_locals.ga_len > new_top) { int idx; lvar_T *lvar; for (idx = new_top; idx < cctx->ctx_locals.ga_len; ++idx) { lvar = ((lvar_T *)cctx->ctx_locals.ga_data) + idx; vim_free(lvar->lv_name); } } cctx->ctx_locals.ga_len = new_top; } /* * Free all local variables. */ static void free_locals(cctx_T *cctx) { unwind_locals(cctx, 0); ga_clear(&cctx->ctx_locals); } /* * Skip over a type definition and return a pointer to just after it. */ char_u * skip_type(char_u *start) { char_u *p = start; while (ASCII_ISALNUM(*p) || *p == '_') ++p; // Skip over ""; this is permissive about white space. if (*skipwhite(p) == '<') { p = skipwhite(p); p = skip_type(skipwhite(p + 1)); p = skipwhite(p); if (*p == '>') ++p; } else if (*p == '(' && STRNCMP("func", start, 4) == 0) { // handle func(args): type ++p; while (*p != ')' && *p != NUL) { char_u *sp = p; p = skip_type(p); if (p == sp) return p; // syntax error if (*p == ',') p = skipwhite(p + 1); } if (*p == ')') { if (p[1] == ':') p = skip_type(skipwhite(p + 2)); else p = skipwhite(p + 1); } } return p; } /* * Parse the member type: "" and return "type" with the member set. * Use "type_gap" if a new type needs to be added. * Returns NULL in case of failure. */ static type_T * parse_type_member(char_u **arg, type_T *type, garray_T *type_gap) { type_T *member_type; int prev_called_emsg = called_emsg; if (**arg != '<') { if (*skipwhite(*arg) == '<') semsg(_(e_no_white_before), "<"); else emsg(_("E1008: Missing ")); return type; } *arg = skipwhite(*arg + 1); member_type = parse_type(arg, type_gap); *arg = skipwhite(*arg); if (**arg != '>' && called_emsg == prev_called_emsg) { emsg(_("E1009: Missing > after type")); return type; } ++*arg; if (type->tt_type == VAR_LIST) return get_list_type(member_type, type_gap); return get_dict_type(member_type, type_gap); } /* * Parse a type at "arg" and advance over it. * Return &t_any for failure. */ type_T * parse_type(char_u **arg, garray_T *type_gap) { char_u *p = *arg; size_t len; // skip over the first word while (ASCII_ISALNUM(*p) || *p == '_') ++p; len = p - *arg; switch (**arg) { case 'a': if (len == 3 && STRNCMP(*arg, "any", len) == 0) { *arg += len; return &t_any; } break; case 'b': if (len == 4 && STRNCMP(*arg, "bool", len) == 0) { *arg += len; return &t_bool; } if (len == 4 && STRNCMP(*arg, "blob", len) == 0) { *arg += len; return &t_blob; } break; case 'c': if (len == 7 && STRNCMP(*arg, "channel", len) == 0) { *arg += len; return &t_channel; } break; case 'd': if (len == 4 && STRNCMP(*arg, "dict", len) == 0) { *arg += len; return parse_type_member(arg, &t_dict_any, type_gap); } break; case 'f': if (len == 5 && STRNCMP(*arg, "float", len) == 0) { #ifdef FEAT_FLOAT *arg += len; return &t_float; #else emsg(_("E1076: This Vim is not compiled with float support")); return &t_any; #endif } if (len == 4 && STRNCMP(*arg, "func", len) == 0) { type_T *type; type_T *ret_type = &t_unknown; int argcount = -1; int flags = 0; int first_optional = -1; type_T *arg_type[MAX_FUNC_ARGS + 1]; // func({type}, ...{type}): {type} *arg += len; if (**arg == '(') { // "func" may or may not return a value, "func()" does // not return a value. ret_type = &t_void; p = ++*arg; argcount = 0; while (*p != NUL && *p != ')') { if (*p == '?') { if (first_optional == -1) first_optional = argcount; ++p; } else if (first_optional != -1) { emsg(_("E1007: mandatory argument after optional argument")); return &t_any; } else if (STRNCMP(p, "...", 3) == 0) { flags |= TTFLAG_VARARGS; p += 3; } arg_type[argcount++] = parse_type(&p, type_gap); // Nothing comes after "...{type}". if (flags & TTFLAG_VARARGS) break; if (*p != ',' && *skipwhite(p) == ',') { semsg(_(e_no_white_before), ","); return &t_any; } if (*p == ',') { ++p; if (!VIM_ISWHITE(*p)) { semsg(_(e_white_after), ","); return &t_any; } } p = skipwhite(p); if (argcount == MAX_FUNC_ARGS) { emsg(_("E740: Too many argument types")); return &t_any; } } p = skipwhite(p); if (*p != ')') { emsg(_(e_missing_close)); return &t_any; } *arg = p + 1; } if (**arg == ':') { // parse return type ++*arg; if (!VIM_ISWHITE(**arg)) semsg(_(e_white_after), ":"); *arg = skipwhite(*arg); ret_type = parse_type(arg, type_gap); } if (flags == 0 && first_optional == -1 && argcount <= 0) type = get_func_type(ret_type, argcount, type_gap); else { type = alloc_func_type(ret_type, argcount, type_gap); type->tt_flags = flags; if (argcount > 0) { type->tt_argcount = argcount; type->tt_min_argcount = first_optional == -1 ? argcount : first_optional; if (func_type_add_arg_types(type, argcount, type_gap) == FAIL) return &t_any; mch_memmove(type->tt_args, arg_type, sizeof(type_T *) * argcount); } } return type; } break; case 'j': if (len == 3 && STRNCMP(*arg, "job", len) == 0) { *arg += len; return &t_job; } break; case 'l': if (len == 4 && STRNCMP(*arg, "list", len) == 0) { *arg += len; return parse_type_member(arg, &t_list_any, type_gap); } break; case 'n': if (len == 6 && STRNCMP(*arg, "number", len) == 0) { *arg += len; return &t_number; } break; case 's': if (len == 6 && STRNCMP(*arg, "string", len) == 0) { *arg += len; return &t_string; } break; case 'v': if (len == 4 && STRNCMP(*arg, "void", len) == 0) { *arg += len; return &t_void; } break; } semsg(_("E1010: Type not recognized: %s"), *arg); return &t_any; } /* * Check if "type1" and "type2" are exactly the same. */ static int equal_type(type_T *type1, type_T *type2) { int i; if (type1->tt_type != type2->tt_type) return FALSE; switch (type1->tt_type) { case VAR_UNKNOWN: case VAR_ANY: case VAR_VOID: case VAR_SPECIAL: case VAR_BOOL: case VAR_NUMBER: case VAR_FLOAT: case VAR_STRING: case VAR_BLOB: case VAR_JOB: case VAR_CHANNEL: break; // not composite is always OK case VAR_LIST: case VAR_DICT: return equal_type(type1->tt_member, type2->tt_member); case VAR_FUNC: case VAR_PARTIAL: if (!equal_type(type1->tt_member, type2->tt_member) || type1->tt_argcount != type2->tt_argcount) return FALSE; if (type1->tt_argcount < 0 || type1->tt_args == NULL || type2->tt_args == NULL) return TRUE; for (i = 0; i < type1->tt_argcount; ++i) if (!equal_type(type1->tt_args[i], type2->tt_args[i])) return FALSE; return TRUE; } return TRUE; } /* * Find the common type of "type1" and "type2" and put it in "dest". * "type2" and "dest" may be the same. */ static void common_type(type_T *type1, type_T *type2, type_T **dest, garray_T *type_gap) { if (equal_type(type1, type2)) { *dest = type1; return; } if (type1->tt_type == type2->tt_type) { if (type1->tt_type == VAR_LIST || type2->tt_type == VAR_DICT) { type_T *common; common_type(type1->tt_member, type2->tt_member, &common, type_gap); if (type1->tt_type == VAR_LIST) *dest = get_list_type(common, type_gap); else *dest = get_dict_type(common, type_gap); return; } if (type1->tt_type == VAR_FUNC) { type_T *common; common_type(type1->tt_member, type2->tt_member, &common, type_gap); if (type1->tt_argcount == type2->tt_argcount && type1->tt_argcount >= 0) { int argcount = type1->tt_argcount; int i; *dest = alloc_func_type(common, argcount, type_gap); if (type1->tt_args != NULL && type2->tt_args != NULL) { if (func_type_add_arg_types(*dest, argcount, type_gap) == OK) for (i = 0; i < argcount; ++i) common_type(type1->tt_args[i], type2->tt_args[i], &(*dest)->tt_args[i], type_gap); } } else *dest = alloc_func_type(common, -1, type_gap); return; } } *dest = &t_any; } char * vartype_name(vartype_T type) { switch (type) { case VAR_UNKNOWN: break; case VAR_ANY: return "any"; case VAR_VOID: return "void"; case VAR_SPECIAL: return "special"; case VAR_BOOL: return "bool"; case VAR_NUMBER: return "number"; case VAR_FLOAT: return "float"; case VAR_STRING: return "string"; case VAR_BLOB: return "blob"; case VAR_JOB: return "job"; case VAR_CHANNEL: return "channel"; case VAR_LIST: return "list"; case VAR_DICT: return "dict"; case VAR_FUNC: case VAR_PARTIAL: return "func"; } return "unknown"; } /* * Return the name of a type. * The result may be in allocated memory, in which case "tofree" is set. */ char * type_name(type_T *type, char **tofree) { char *name = vartype_name(type->tt_type); *tofree = NULL; if (type->tt_type == VAR_LIST || type->tt_type == VAR_DICT) { char *member_free; char *member_name = type_name(type->tt_member, &member_free); size_t len; len = STRLEN(name) + STRLEN(member_name) + 3; *tofree = alloc(len); if (*tofree != NULL) { vim_snprintf(*tofree, len, "%s<%s>", name, member_name); vim_free(member_free); return *tofree; } } if (type->tt_type == VAR_FUNC) { garray_T ga; int i; int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0; ga_init2(&ga, 1, 100); if (ga_grow(&ga, 20) == FAIL) return "[unknown]"; *tofree = ga.ga_data; STRCPY(ga.ga_data, "func("); ga.ga_len += 5; for (i = 0; i < type->tt_argcount; ++i) { char *arg_free; char *arg_type; int len; if (type->tt_args == NULL) arg_type = "[unknown]"; else arg_type = type_name(type->tt_args[i], &arg_free); if (i > 0) { STRCPY((char *)ga.ga_data + ga.ga_len, ", "); ga.ga_len += 2; } len = (int)STRLEN(arg_type); if (ga_grow(&ga, len + 8) == FAIL) { vim_free(arg_free); return "[unknown]"; } *tofree = ga.ga_data; if (varargs && i == type->tt_argcount - 1) { STRCPY((char *)ga.ga_data + ga.ga_len, "..."); ga.ga_len += 3; } else if (i >= type->tt_min_argcount) *((char *)ga.ga_data + ga.ga_len++) = '?'; STRCPY((char *)ga.ga_data + ga.ga_len, arg_type); ga.ga_len += len; vim_free(arg_free); } if (type->tt_member == &t_void) STRCPY((char *)ga.ga_data + ga.ga_len, ")"); else { char *ret_free; char *ret_name = type_name(type->tt_member, &ret_free); int len; len = (int)STRLEN(ret_name) + 4; if (ga_grow(&ga, len) == FAIL) { vim_free(ret_free); return "[unknown]"; } *tofree = ga.ga_data; STRCPY((char *)ga.ga_data + ga.ga_len, "): "); STRCPY((char *)ga.ga_data + ga.ga_len + 3, ret_name); vim_free(ret_free); } return ga.ga_data; } return name; } /* * Find "name" in script-local items of script "sid". * Returns the index in "sn_var_vals" if found. * If found but not in "sn_var_vals" returns -1. * If not found returns -2. */ int get_script_item_idx(int sid, char_u *name, int check_writable) { hashtab_T *ht; dictitem_T *di; scriptitem_T *si = SCRIPT_ITEM(sid); int idx; // First look the name up in the hashtable. if (sid <= 0 || sid > script_items.ga_len) return -1; ht = &SCRIPT_VARS(sid); di = find_var_in_ht(ht, 0, name, TRUE); if (di == NULL) return -2; // Now find the svar_T index in sn_var_vals. for (idx = 0; idx < si->sn_var_vals.ga_len; ++idx) { svar_T *sv = ((svar_T *)si->sn_var_vals.ga_data) + idx; if (sv->sv_tv == &di->di_tv) { if (check_writable && sv->sv_const) semsg(_(e_readonlyvar), name); return idx; } } return -1; } /* * Find "name" in imported items of the current script or in "cctx" if not * NULL. */ imported_T * find_imported(char_u *name, size_t len, cctx_T *cctx) { scriptitem_T *si; int idx; if (current_sctx.sc_sid <= 0) return NULL; si = SCRIPT_ITEM(current_sctx.sc_sid); if (cctx != NULL) for (idx = 0; idx < cctx->ctx_imports.ga_len; ++idx) { imported_T *import = ((imported_T *)cctx->ctx_imports.ga_data) + idx; if (len == 0 ? STRCMP(name, import->imp_name) == 0 : STRLEN(import->imp_name) == len && STRNCMP(name, import->imp_name, len) == 0) return import; } for (idx = 0; idx < si->sn_imports.ga_len; ++idx) { imported_T *import = ((imported_T *)si->sn_imports.ga_data) + idx; if (len == 0 ? STRCMP(name, import->imp_name) == 0 : STRLEN(import->imp_name) == len && STRNCMP(name, import->imp_name, len) == 0) return import; } return NULL; } /* * Free all imported variables. */ static void free_imported(cctx_T *cctx) { int idx; for (idx = 0; idx < cctx->ctx_imports.ga_len; ++idx) { imported_T *import = ((imported_T *)cctx->ctx_imports.ga_data) + idx; vim_free(import->imp_name); } ga_clear(&cctx->ctx_imports); } /* * Return TRUE if "p" points at a "#" but not at "#{". */ static int vim9_comment_start(char_u *p) { return p[0] == '#' && p[1] != '{'; } /* * Return a pointer to the next line that isn't empty or only contains a * comment. Skips over white space. * Returns NULL if there is none. */ char_u * peek_next_line_from_context(cctx_T *cctx) { int lnum = cctx->ctx_lnum; while (++lnum < cctx->ctx_ufunc->uf_lines.ga_len) { char_u *line = ((char_u **)cctx->ctx_ufunc->uf_lines.ga_data)[lnum]; char_u *p; if (line == NULL) break; p = skipwhite(line); if (*p != NUL && !vim9_comment_start(p)) return p; } return NULL; } /* * Called when checking for a following operator at "arg". When the rest of * the line is empty or only a comment, peek the next line. If there is a next * line return a pointer to it and set "nextp". * Otherwise skip over white space. */ static char_u * may_peek_next_line(cctx_T *cctx, char_u *arg, char_u **nextp) { char_u *p = skipwhite(arg); *nextp = NULL; if (*p == NUL || (VIM_ISWHITE(*arg) && vim9_comment_start(p))) { *nextp = peek_next_line_from_context(cctx); if (*nextp != NULL) return *nextp; } return p; } /* * Get the next line of the function from "cctx". * Skips over empty lines. Skips over comment lines if "skip_comment" is TRUE. * Returns NULL when at the end. */ char_u * next_line_from_context(cctx_T *cctx, int skip_comment) { char_u *line; do { ++cctx->ctx_lnum; if (cctx->ctx_lnum >= cctx->ctx_ufunc->uf_lines.ga_len) { line = NULL; break; } line = ((char_u **)cctx->ctx_ufunc->uf_lines.ga_data)[cctx->ctx_lnum]; cctx->ctx_line_start = line; SOURCING_LNUM = cctx->ctx_lnum + 1; } while (line == NULL || *skipwhite(line) == NUL || (skip_comment && vim9_comment_start(skipwhite(line)))); return line; } /* * If "*arg" is at the end of the line, advance to the next line. * Also when "whitep" points to white space and "*arg" is on a "#". * Return FAIL if beyond the last line, "*arg" is unmodified then. */ static int may_get_next_line(char_u *whitep, char_u **arg, cctx_T *cctx) { if (**arg == NUL || (VIM_ISWHITE(*whitep) && vim9_comment_start(*arg))) { char_u *next = next_line_from_context(cctx, TRUE); if (next == NULL) return FAIL; *arg = skipwhite(next); } return OK; } /* * Idem, and give an error when failed. */ static int may_get_next_line_error(char_u *whitep, char_u **arg, cctx_T *cctx) { if (may_get_next_line(whitep, arg, cctx) == FAIL) { emsg(_("E1097: line incomplete")); return FAIL; } return OK; } // Structure passed between the compile_expr* functions to keep track of // constants that have been parsed but for which no code was produced yet. If // possible expressions on these constants are applied at compile time. If // that is not possible, the code to push the constants needs to be generated // before other instructions. // Using 50 should be more than enough of 5 levels of (). #define PPSIZE 50 typedef struct { typval_T pp_tv[PPSIZE]; // stack of ppconst constants int pp_used; // active entries in pp_tv[] } ppconst_T; static int compile_expr0(char_u **arg, cctx_T *cctx); static int compile_expr1(char_u **arg, cctx_T *cctx, ppconst_T *ppconst); /* * Generate a PUSH instruction for "tv". * "tv" will be consumed or cleared. * Nothing happens if "tv" is NULL or of type VAR_UNKNOWN; */ static int generate_tv_PUSH(cctx_T *cctx, typval_T *tv) { if (tv != NULL) { switch (tv->v_type) { case VAR_UNKNOWN: break; case VAR_BOOL: generate_PUSHBOOL(cctx, tv->vval.v_number); break; case VAR_SPECIAL: generate_PUSHSPEC(cctx, tv->vval.v_number); break; case VAR_NUMBER: generate_PUSHNR(cctx, tv->vval.v_number); break; #ifdef FEAT_FLOAT case VAR_FLOAT: generate_PUSHF(cctx, tv->vval.v_float); break; #endif case VAR_BLOB: generate_PUSHBLOB(cctx, tv->vval.v_blob); tv->vval.v_blob = NULL; break; case VAR_STRING: generate_PUSHS(cctx, tv->vval.v_string); tv->vval.v_string = NULL; break; default: iemsg("constant type not supported"); clear_tv(tv); return FAIL; } tv->v_type = VAR_UNKNOWN; } return OK; } /* * Generate code for any ppconst entries. */ static int generate_ppconst(cctx_T *cctx, ppconst_T *ppconst) { int i; int ret = OK; int save_skip = cctx->ctx_skip; cctx->ctx_skip = SKIP_NOT; for (i = 0; i < ppconst->pp_used; ++i) if (generate_tv_PUSH(cctx, &ppconst->pp_tv[i]) == FAIL) ret = FAIL; ppconst->pp_used = 0; cctx->ctx_skip = save_skip; return ret; } /* * Clear ppconst constants. Used when failing. */ static void clear_ppconst(ppconst_T *ppconst) { int i; for (i = 0; i < ppconst->pp_used; ++i) clear_tv(&ppconst->pp_tv[i]); ppconst->pp_used = 0; } /* * Generate an instruction to load script-local variable "name", without the * leading "s:". * Also finds imported variables. */ static int compile_load_scriptvar( cctx_T *cctx, char_u *name, // variable NUL terminated char_u *start, // start of variable char_u **end, // end of variable int error) // when TRUE may give error { scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid); int idx = get_script_item_idx(current_sctx.sc_sid, name, FALSE); imported_T *import; if (idx == -1 || si->sn_version != SCRIPT_VERSION_VIM9) { // variable is not in sn_var_vals: old style script. return generate_OLDSCRIPT(cctx, ISN_LOADS, name, current_sctx.sc_sid, &t_any); } if (idx >= 0) { svar_T *sv = ((svar_T *)si->sn_var_vals.ga_data) + idx; generate_VIM9SCRIPT(cctx, ISN_LOADSCRIPT, current_sctx.sc_sid, idx, sv->sv_type); return OK; } import = find_imported(name, 0, cctx); if (import != NULL) { if (import->imp_all) { char_u *p = skipwhite(*end); char_u *exp_name; int cc; ufunc_T *ufunc; type_T *type; // Used "import * as Name", need to lookup the member. if (*p != '.') { semsg(_("E1060: expected dot after name: %s"), start); return FAIL; } ++p; if (VIM_ISWHITE(*p)) { emsg(_("E1074: no white space allowed after dot")); return FAIL; } // isolate one name exp_name = p; while (eval_isnamec(*p)) ++p; cc = *p; *p = NUL; idx = find_exported(import->imp_sid, exp_name, &ufunc, &type); *p = cc; p = skipwhite(p); // TODO: what if it is a function? if (idx < 0) return FAIL; *end = p; generate_VIM9SCRIPT(cctx, ISN_LOADSCRIPT, import->imp_sid, idx, type); } else { // TODO: check this is a variable, not a function? generate_VIM9SCRIPT(cctx, ISN_LOADSCRIPT, import->imp_sid, import->imp_var_vals_idx, import->imp_type); } return OK; } if (error) semsg(_("E1050: Item not found: %s"), name); return FAIL; } static int generate_funcref(cctx_T *cctx, char_u *name) { ufunc_T *ufunc = find_func(name, FALSE, cctx); if (ufunc == NULL) return FAIL; return generate_PUSHFUNC(cctx, vim_strsave(ufunc->uf_name), ufunc->uf_func_type); } /* * Compile a variable name into a load instruction. * "end" points to just after the name. * When "error" is FALSE do not give an error when not found. */ static int compile_load(char_u **arg, char_u *end_arg, cctx_T *cctx, int error) { type_T *type; char_u *name; char_u *end = end_arg; int res = FAIL; int prev_called_emsg = called_emsg; if (*(*arg + 1) == ':') { // load namespaced variable if (end <= *arg + 2) name = vim_strsave((char_u *)"[empty]"); else name = vim_strnsave(*arg + 2, end - (*arg + 2)); if (name == NULL) return FAIL; if (**arg == 'v') { res = generate_LOADV(cctx, name, error); } else if (**arg == 'g') { // Global variables can be defined later, thus we don't check if it // exists, give error at runtime. res = generate_LOAD(cctx, ISN_LOADG, 0, name, &t_any); } else if (**arg == 's') { res = compile_load_scriptvar(cctx, name, NULL, NULL, error); } else if (**arg == 'b') { // Buffer-local variables can be defined later, thus we don't check // if it exists, give error at runtime. res = generate_LOAD(cctx, ISN_LOADB, 0, name, &t_any); } else if (**arg == 'w') { // Window-local variables can be defined later, thus we don't check // if it exists, give error at runtime. res = generate_LOAD(cctx, ISN_LOADW, 0, name, &t_any); } else if (**arg == 't') { // Tabpage-local variables can be defined later, thus we don't // check if it exists, give error at runtime. res = generate_LOAD(cctx, ISN_LOADT, 0, name, &t_any); } else { semsg("E1075: Namespace not supported: %s", *arg); goto theend; } } else { size_t len = end - *arg; int idx; int gen_load = FALSE; int gen_load_outer = FALSE; name = vim_strnsave(*arg, end - *arg); if (name == NULL) return FAIL; if (lookup_arg(*arg, len, &idx, &type, &gen_load_outer, cctx) == OK) { if (!gen_load_outer) gen_load = TRUE; } else { lvar_T *lvar = lookup_local(*arg, len, cctx); if (lvar != NULL) { type = lvar->lv_type; idx = lvar->lv_idx; if (lvar->lv_from_outer) gen_load_outer = TRUE; else gen_load = TRUE; } else { // "var" can be script-local even without using "s:" if it // already exists. if (SCRIPT_ITEM(current_sctx.sc_sid)->sn_version == SCRIPT_VERSION_VIM9 || lookup_script(*arg, len) == OK) res = compile_load_scriptvar(cctx, name, *arg, &end, FALSE); // When the name starts with an uppercase letter or "x:" it // can be a user defined function. if (res == FAIL && (ASCII_ISUPPER(*name) || name[1] == ':')) res = generate_funcref(cctx, name); } } if (gen_load) res = generate_LOAD(cctx, ISN_LOAD, idx, NULL, type); if (gen_load_outer) res = generate_LOAD(cctx, ISN_LOADOUTER, idx, NULL, type); } *arg = end; theend: if (res == FAIL && error && called_emsg == prev_called_emsg) semsg(_(e_var_notfound), name); vim_free(name); return res; } /* * Compile the argument expressions. * "arg" points to just after the "(" and is advanced to after the ")" */ static int compile_arguments(char_u **arg, cctx_T *cctx, int *argcount) { char_u *p = *arg; char_u *whitep = *arg; for (;;) { if (may_get_next_line(whitep, &p, cctx) == FAIL) goto failret; if (*p == ')') { *arg = p + 1; return OK; } if (compile_expr0(&p, cctx) == FAIL) return FAIL; ++*argcount; if (*p != ',' && *skipwhite(p) == ',') { semsg(_(e_no_white_before), ","); p = skipwhite(p); } if (*p == ',') { ++p; if (*p != NUL && !VIM_ISWHITE(*p)) semsg(_(e_white_after), ","); } whitep = p; p = skipwhite(p); } failret: emsg(_(e_missing_close)); return FAIL; } /* * Compile a function call: name(arg1, arg2) * "arg" points to "name", "arg + varlen" to the "(". * "argcount_init" is 1 for "value->method()" * Instructions: * EVAL arg1 * EVAL arg2 * BCALL / DCALL / UCALL */ static int compile_call( char_u **arg, size_t varlen, cctx_T *cctx, ppconst_T *ppconst, int argcount_init) { char_u *name = *arg; char_u *p; int argcount = argcount_init; char_u namebuf[100]; char_u fname_buf[FLEN_FIXED + 1]; char_u *tofree = NULL; int error = FCERR_NONE; ufunc_T *ufunc; int res = FAIL; // we can evaluate "has('name')" at compile time if (varlen == 3 && STRNCMP(*arg, "has", 3) == 0) { char_u *s = skipwhite(*arg + varlen + 1); typval_T argvars[2]; argvars[0].v_type = VAR_UNKNOWN; if (*s == '"') (void)eval_string(&s, &argvars[0], TRUE); else if (*s == '\'') (void)eval_lit_string(&s, &argvars[0], TRUE); s = skipwhite(s); if (*s == ')' && argvars[0].v_type == VAR_STRING) { typval_T *tv = &ppconst->pp_tv[ppconst->pp_used]; *arg = s + 1; argvars[1].v_type = VAR_UNKNOWN; tv->v_type = VAR_NUMBER; tv->vval.v_number = 0; f_has(argvars, tv); clear_tv(&argvars[0]); ++ppconst->pp_used; return OK; } clear_tv(&argvars[0]); } if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; if (varlen >= sizeof(namebuf)) { semsg(_("E1011: name too long: %s"), name); return FAIL; } vim_strncpy(namebuf, *arg, varlen); name = fname_trans_sid(namebuf, fname_buf, &tofree, &error); *arg = skipwhite(*arg + varlen + 1); if (compile_arguments(arg, cctx, &argcount) == FAIL) goto theend; if (ASCII_ISLOWER(*name) && name[1] != ':') { int idx; // builtin function idx = find_internal_func(name); if (idx >= 0) res = generate_BCALL(cctx, idx, argcount, argcount_init == 1); else semsg(_(e_unknownfunc), namebuf); goto theend; } // If we can find the function by name generate the right call. ufunc = find_func(name, FALSE, cctx); if (ufunc != NULL) { res = generate_CALL(cctx, ufunc, argcount); goto theend; } // If the name is a variable, load it and use PCALL. // Not for g:Func(), we don't know if it is a variable or not. p = namebuf; if (STRNCMP(namebuf, "g:", 2) != 0 && compile_load(&p, namebuf + varlen, cctx, FALSE) == OK) { garray_T *stack = &cctx->ctx_type_stack; type_T *type; type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; res = generate_PCALL(cctx, argcount, namebuf, type, FALSE); goto theend; } // A global function may be defined only later. Need to figure out at // runtime. Also handles a FuncRef at runtime. if (STRNCMP(namebuf, "g:", 2) == 0) res = generate_UCALL(cctx, name, argcount); else semsg(_(e_unknownfunc), namebuf); theend: vim_free(tofree); return res; } // like NAMESPACE_CHAR but with 'a' and 'l'. #define VIM9_NAMESPACE_CHAR (char_u *)"bgstvw" /* * Find the end of a variable or function name. Unlike find_name_end() this * does not recognize magic braces. * When "namespace" is TRUE recognize "b:", "s:", etc. * Return a pointer to just after the name. Equal to "arg" if there is no * valid name. */ static char_u * to_name_end(char_u *arg, int namespace) { char_u *p; // Quick check for valid starting character. if (!eval_isnamec1(*arg)) return arg; for (p = arg + 1; *p != NUL && eval_isnamec(*p); MB_PTR_ADV(p)) // Include a namespace such as "s:var" and "v:var". But "n:" is not // and can be used in slice "[n:]". if (*p == ':' && (p != arg + 1 || !namespace || vim_strchr(VIM9_NAMESPACE_CHAR, *arg) == NULL)) break; return p; } /* * Like to_name_end() but also skip over a list or dict constant. * This intentionally does not handle line continuation. */ char_u * to_name_const_end(char_u *arg) { char_u *p = to_name_end(arg, TRUE); typval_T rettv; if (p == arg && *arg == '[') { // Can be "[1, 2, 3]->Func()". if (eval_list(&p, &rettv, NULL, FALSE) == FAIL) p = arg; } else if (p == arg && *arg == '#' && arg[1] == '{') { // Can be "#{a: 1}->Func()". ++p; if (eval_dict(&p, &rettv, NULL, TRUE) == FAIL) p = arg; } else if (p == arg && *arg == '{') { int ret = get_lambda_tv(&p, &rettv, NULL); // Can be "{x -> ret}()". // Can be "{'a': 1}->Func()". if (ret == NOTDONE) ret = eval_dict(&p, &rettv, NULL, FALSE); if (ret != OK) p = arg; } return p; } /* * parse a list: [expr, expr] * "*arg" points to the '['. */ static int compile_list(char_u **arg, cctx_T *cctx) { char_u *p = skipwhite(*arg + 1); char_u *whitep = *arg + 1; int count = 0; for (;;) { if (may_get_next_line(whitep, &p, cctx) == FAIL) { semsg(_(e_list_end), *arg); return FAIL; } if (*p == ']') { ++p; // Allow for following comment, after at least one space. if (VIM_ISWHITE(*p) && *skipwhite(p) == '#') p += STRLEN(p); break; } if (compile_expr0(&p, cctx) == FAIL) break; ++count; if (*p == ',') { ++p; if (*p != ']' && !IS_WHITE_OR_NUL(*p)) { semsg(_(e_white_after), ","); return FAIL; } } whitep = p; p = skipwhite(p); } *arg = p; generate_NEWLIST(cctx, count); return OK; } /* * parse a lambda: {arg, arg -> expr} * "*arg" points to the '{'. */ static int compile_lambda(char_u **arg, cctx_T *cctx) { typval_T rettv; ufunc_T *ufunc; evalarg_T evalarg; CLEAR_FIELD(evalarg); evalarg.eval_flags = EVAL_EVALUATE; evalarg.eval_cctx = cctx; // Get the funcref in "rettv". if (get_lambda_tv(arg, &rettv, &evalarg) != OK) return FAIL; ufunc = rettv.vval.v_partial->pt_func; ++ufunc->uf_refcount; clear_tv(&rettv); ga_init2(&ufunc->uf_type_list, sizeof(type_T *), 10); // The function will have one line: "return {expr}". // Compile it into instructions. compile_def_function(ufunc, TRUE, cctx); clear_evalarg(&evalarg, NULL); if (ufunc->uf_def_status == UF_COMPILED) return generate_FUNCREF(cctx, ufunc->uf_dfunc_idx); func_ptr_unref(ufunc); return FAIL; } /* * Compile a lamda call: expr->{lambda}(args) * "arg" points to the "{". */ static int compile_lambda_call(char_u **arg, cctx_T *cctx) { ufunc_T *ufunc; typval_T rettv; int argcount = 1; int ret = FAIL; // Get the funcref in "rettv". if (get_lambda_tv(arg, &rettv, &EVALARG_EVALUATE) == FAIL) return FAIL; if (**arg != '(') { if (*skipwhite(*arg) == '(') emsg(_(e_nowhitespace)); else semsg(_(e_missing_paren), "lambda"); clear_tv(&rettv); return FAIL; } ufunc = rettv.vval.v_partial->pt_func; ++ufunc->uf_refcount; clear_tv(&rettv); ga_init2(&ufunc->uf_type_list, sizeof(type_T *), 10); // The function will have one line: "return {expr}". // Compile it into instructions. compile_def_function(ufunc, TRUE, cctx); // compile the arguments *arg = skipwhite(*arg + 1); if (compile_arguments(arg, cctx, &argcount) == OK) // call the compiled function ret = generate_CALL(cctx, ufunc, argcount); if (ret == FAIL) func_ptr_unref(ufunc); return ret; } /* * parse a dict: {'key': val} or #{key: val} * "*arg" points to the '{'. */ static int compile_dict(char_u **arg, cctx_T *cctx, int literal) { garray_T *instr = &cctx->ctx_instr; garray_T *stack = &cctx->ctx_type_stack; int count = 0; dict_T *d = dict_alloc(); dictitem_T *item; char_u *whitep = *arg; char_u *p; if (d == NULL) return FAIL; *arg = skipwhite(*arg + 1); for (;;) { char_u *key = NULL; if (may_get_next_line(whitep, arg, cctx) == FAIL) { *arg = NULL; goto failret; } if (**arg == '}') break; if (literal) { char_u *end = to_name_end(*arg, !literal); if (end == *arg) { semsg(_("E1014: Invalid key: %s"), *arg); return FAIL; } key = vim_strnsave(*arg, end - *arg); if (generate_PUSHS(cctx, key) == FAIL) return FAIL; *arg = end; } else { isn_T *isn; if (compile_expr0(arg, cctx) == FAIL) return FAIL; isn = ((isn_T *)instr->ga_data) + instr->ga_len - 1; if (isn->isn_type == ISN_PUSHS) key = isn->isn_arg.string; else { type_T *keytype = ((type_T **)stack->ga_data) [stack->ga_len - 1]; if (need_type(keytype, &t_string, -1, cctx, FALSE) == FAIL) return FAIL; } } // Check for duplicate keys, if using string keys. if (key != NULL) { item = dict_find(d, key, -1); if (item != NULL) { semsg(_(e_duplicate_key), key); goto failret; } item = dictitem_alloc(key); if (item != NULL) { item->di_tv.v_type = VAR_UNKNOWN; item->di_tv.v_lock = 0; if (dict_add(d, item) == FAIL) dictitem_free(item); } } *arg = skipwhite(*arg); if (**arg != ':') { semsg(_(e_missing_dict_colon), *arg); return FAIL; } whitep = *arg + 1; *arg = skipwhite(*arg + 1); if (may_get_next_line(whitep, arg, cctx) == FAIL) { *arg = NULL; goto failret; } if (compile_expr0(arg, cctx) == FAIL) return FAIL; ++count; whitep = *arg; *arg = skipwhite(*arg); if (may_get_next_line(whitep, arg, cctx) == FAIL) { *arg = NULL; goto failret; } if (**arg == '}') break; if (**arg != ',') { semsg(_(e_missing_dict_comma), *arg); goto failret; } whitep = *arg + 1; *arg = skipwhite(*arg + 1); } *arg = *arg + 1; // Allow for following comment, after at least one space. p = skipwhite(*arg); if (VIM_ISWHITE(**arg) && vim9_comment_start(p)) *arg += STRLEN(*arg); dict_unref(d); return generate_NEWDICT(cctx, count); failret: if (*arg == NULL) semsg(_(e_missing_dict_end), _("[end of lines]")); dict_unref(d); return FAIL; } /* * Compile "&option". */ static int compile_get_option(char_u **arg, cctx_T *cctx) { typval_T rettv; char_u *start = *arg; int ret; // parse the option and get the current value to get the type. rettv.v_type = VAR_UNKNOWN; ret = eval_option(arg, &rettv, TRUE); if (ret == OK) { // include the '&' in the name, eval_option() expects it. char_u *name = vim_strnsave(start, *arg - start); type_T *type = rettv.v_type == VAR_NUMBER ? &t_number : &t_string; ret = generate_LOAD(cctx, ISN_LOADOPT, 0, name, type); vim_free(name); } clear_tv(&rettv); return ret; } /* * Compile "$VAR". */ static int compile_get_env(char_u **arg, cctx_T *cctx) { char_u *start = *arg; int len; int ret; char_u *name; ++*arg; len = get_env_len(arg); if (len == 0) { semsg(_(e_syntax_at), start - 1); return FAIL; } // include the '$' in the name, eval_env_var() expects it. name = vim_strnsave(start, len + 1); ret = generate_LOAD(cctx, ISN_LOADENV, 0, name, &t_string); vim_free(name); return ret; } /* * Compile "@r". */ static int compile_get_register(char_u **arg, cctx_T *cctx) { int ret; ++*arg; if (**arg == NUL) { semsg(_(e_syntax_at), *arg - 1); return FAIL; } if (!valid_yank_reg(**arg, TRUE)) { emsg_invreg(**arg); return FAIL; } ret = generate_LOAD(cctx, ISN_LOADREG, **arg, NULL, &t_string); ++*arg; return ret; } /* * Apply leading '!', '-' and '+' to constant "rettv". */ static int apply_leader(typval_T *rettv, char_u *start, char_u *end) { char_u *p = end; // this works from end to start while (p > start) { --p; if (*p == '-' || *p == '+') { // only '-' has an effect, for '+' we only check the type #ifdef FEAT_FLOAT if (rettv->v_type == VAR_FLOAT) { if (*p == '-') rettv->vval.v_float = -rettv->vval.v_float; } else #endif { varnumber_T val; int error = FALSE; // tv_get_number_chk() accepts a string, but we don't want that // here if (check_not_string(rettv) == FAIL) return FAIL; val = tv_get_number_chk(rettv, &error); clear_tv(rettv); if (error) return FAIL; if (*p == '-') val = -val; rettv->v_type = VAR_NUMBER; rettv->vval.v_number = val; } } else { int v = tv2bool(rettv); // '!' is permissive in the type. clear_tv(rettv); rettv->v_type = VAR_BOOL; rettv->vval.v_number = v ? VVAL_FALSE : VVAL_TRUE; } } return OK; } /* * Recognize v: variables that are constants and set "rettv". */ static void get_vim_constant(char_u **arg, typval_T *rettv) { if (STRNCMP(*arg, "v:true", 6) == 0) { rettv->v_type = VAR_BOOL; rettv->vval.v_number = VVAL_TRUE; *arg += 6; } else if (STRNCMP(*arg, "v:false", 7) == 0) { rettv->v_type = VAR_BOOL; rettv->vval.v_number = VVAL_FALSE; *arg += 7; } else if (STRNCMP(*arg, "v:null", 6) == 0) { rettv->v_type = VAR_SPECIAL; rettv->vval.v_number = VVAL_NULL; *arg += 6; } else if (STRNCMP(*arg, "v:none", 6) == 0) { rettv->v_type = VAR_SPECIAL; rettv->vval.v_number = VVAL_NONE; *arg += 6; } } static exptype_T get_compare_type(char_u *p, int *len, int *type_is) { exptype_T type = EXPR_UNKNOWN; int i; switch (p[0]) { case '=': if (p[1] == '=') type = EXPR_EQUAL; else if (p[1] == '~') type = EXPR_MATCH; break; case '!': if (p[1] == '=') type = EXPR_NEQUAL; else if (p[1] == '~') type = EXPR_NOMATCH; break; case '>': if (p[1] != '=') { type = EXPR_GREATER; *len = 1; } else type = EXPR_GEQUAL; break; case '<': if (p[1] != '=') { type = EXPR_SMALLER; *len = 1; } else type = EXPR_SEQUAL; break; case 'i': if (p[1] == 's') { // "is" and "isnot"; but not a prefix of a name if (p[2] == 'n' && p[3] == 'o' && p[4] == 't') *len = 5; i = p[*len]; if (!isalnum(i) && i != '_') { type = *len == 2 ? EXPR_IS : EXPR_ISNOT; *type_is = TRUE; } } break; } return type; } /* * Compile code to apply '-', '+' and '!'. */ static int compile_leader(cctx_T *cctx, char_u *start, char_u *end) { char_u *p = end; // this works from end to start while (p > start) { --p; if (*p == '-' || *p == '+') { int negate = *p == '-'; isn_T *isn; // TODO: check type while (p > start && (p[-1] == '-' || p[-1] == '+')) { --p; if (*p == '-') negate = !negate; } // only '-' has an effect, for '+' we only check the type if (negate) isn = generate_instr(cctx, ISN_NEGATENR); else isn = generate_instr(cctx, ISN_CHECKNR); if (isn == NULL) return FAIL; } else { int invert = TRUE; while (p > start && p[-1] == '!') { --p; invert = !invert; } if (generate_2BOOL(cctx, invert) == FAIL) return FAIL; } } return OK; } /* * Compile whatever comes after "name" or "name()". * Advances "*arg" only when something was recognized. */ static int compile_subscript( char_u **arg, cctx_T *cctx, char_u **start_leader, char_u *end_leader, ppconst_T *ppconst) { for (;;) { char_u *p = skipwhite(*arg); if (*p == NUL || (VIM_ISWHITE(**arg) && vim9_comment_start(p))) { char_u *next = peek_next_line_from_context(cctx); // If a following line starts with "->{" or "->X" advance to that // line, so that a line break before "->" is allowed. // Also if a following line starts with ".x". if (next != NULL && ((next[0] == '-' && next[1] == '>' && (next[2] == '{' || ASCII_ISALPHA(next[2]))) || (next[0] == '.' && ASCII_ISALPHA(next[1])))) { next = next_line_from_context(cctx, TRUE); if (next == NULL) return FAIL; *arg = next; p = skipwhite(*arg); } } if (*p == '(') { garray_T *stack = &cctx->ctx_type_stack; type_T *type; int argcount = 0; if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; // funcref(arg) type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; *arg = skipwhite(p + 1); if (compile_arguments(arg, cctx, &argcount) == FAIL) return FAIL; if (generate_PCALL(cctx, argcount, end_leader, type, TRUE) == FAIL) return FAIL; } else if (*p == '-' && p[1] == '>') { if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; // something->method() // Apply the '!', '-' and '+' first: // -1.0->func() works like (-1.0)->func() if (compile_leader(cctx, *start_leader, end_leader) == FAIL) return FAIL; *start_leader = end_leader; // don't apply again later p += 2; *arg = skipwhite(p); if (may_get_next_line(p, arg, cctx) == FAIL) return FAIL; if (**arg == '{') { // lambda call: list->{lambda} if (compile_lambda_call(arg, cctx) == FAIL) return FAIL; } else { // method call: list->method() p = *arg; if (ASCII_ISALPHA(*p) && p[1] == ':') p += 2; for ( ; eval_isnamec1(*p); ++p) ; if (*p != '(') { semsg(_(e_missing_paren), *arg); return FAIL; } // TODO: base value may not be the first argument if (compile_call(arg, p - *arg, cctx, ppconst, 1) == FAIL) return FAIL; } } else if (*p == '[') { garray_T *stack = &cctx->ctx_type_stack; type_T **typep; // list index: list[123] // dict member: dict[key] // TODO: blob index // TODO: more arguments // TODO: recognize list or dict at runtime if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; ++p; *arg = skipwhite(p); if (may_get_next_line_error(p, arg, cctx) == FAIL) return FAIL; if (compile_expr0(arg, cctx) == FAIL) return FAIL; if (may_get_next_line_error(p, arg, cctx) == FAIL) return FAIL; if (**arg != ']') { emsg(_(e_missbrac)); return FAIL; } *arg = *arg + 1; typep = ((type_T **)stack->ga_data) + stack->ga_len - 2; if ((*typep)->tt_type == VAR_LIST || (*typep) == &t_any) { if ((*typep)->tt_type == VAR_LIST) *typep = (*typep)->tt_member; if (generate_instr_drop(cctx, ISN_INDEX, 1) == FAIL) return FAIL; } else if ((*typep)->tt_type == VAR_DICT) { *typep = (*typep)->tt_member; if (may_generate_2STRING(-1, cctx) == FAIL) return FAIL; if (generate_instr_drop(cctx, ISN_MEMBER, 1) == FAIL) return FAIL; } else { emsg(_(e_listdictblobreq)); return FAIL; } } else if (*p == '.' && p[1] != '.') { if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; *arg = p + 1; if (may_get_next_line(*arg, arg, cctx) == FAIL) return FAIL; // dictionary member: dict.name p = *arg; if (eval_isnamec1(*p)) while (eval_isnamec(*p)) MB_PTR_ADV(p); if (p == *arg) { semsg(_(e_syntax_at), *arg); return FAIL; } if (generate_STRINGMEMBER(cctx, *arg, p - *arg) == FAIL) return FAIL; *arg = p; } else break; } // TODO - see handle_subscript(): // Turn "dict.Func" into a partial for "Func" bound to "dict". // Don't do this when "Func" is already a partial that was bound // explicitly (pt_auto is FALSE). return OK; } /* * Compile an expression at "*arg" and add instructions to "cctx->ctx_instr". * "arg" is advanced until after the expression, skipping white space. * * If the value is a constant "ppconst->pp_ret" will be set. * Before instructions are generated, any values in "ppconst" will generated. * * This is the compiling equivalent of eval1(), eval2(), etc. */ /* * number number constant * 0zFFFFFFFF Blob constant * "string" string constant * 'string' literal string constant * &option-name option value * @r register contents * identifier variable value * function() function call * $VAR environment variable * (expression) nested expression * [expr, expr] List * {key: val, key: val} Dictionary * #{key: val, key: val} Dictionary with literal keys * * Also handle: * ! in front logical NOT * - in front unary minus * + in front unary plus (ignored) * trailing (arg) funcref/partial call * trailing [] subscript in String or List * trailing .name entry in Dictionary * trailing ->name() method call */ static int compile_expr7( char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { char_u *start_leader, *end_leader; int ret = OK; typval_T *rettv = &ppconst->pp_tv[ppconst->pp_used]; int used_before = ppconst->pp_used; /* * Skip '!', '-' and '+' characters. They are handled later. */ start_leader = *arg; while (**arg == '!' || **arg == '-' || **arg == '+') *arg = skipwhite(*arg + 1); end_leader = *arg; rettv->v_type = VAR_UNKNOWN; switch (**arg) { /* * Number constant. */ case '0': // also for blob starting with 0z case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '.': if (eval_number(arg, rettv, TRUE, FALSE) == FAIL) return FAIL; break; /* * String constant: "string". */ case '"': if (eval_string(arg, rettv, TRUE) == FAIL) return FAIL; break; /* * Literal string constant: 'str''ing'. */ case '\'': if (eval_lit_string(arg, rettv, TRUE) == FAIL) return FAIL; break; /* * Constant Vim variable. */ case 'v': get_vim_constant(arg, rettv); ret = NOTDONE; break; /* * "true" constant */ case 't': if (STRNCMP(*arg, "true", 4) == 0 && !eval_isnamec((*arg)[4])) { *arg += 4; rettv->v_type = VAR_BOOL; rettv->vval.v_number = VVAL_TRUE; } else ret = NOTDONE; break; /* * "false" constant */ case 'f': if (STRNCMP(*arg, "false", 5) == 0 && !eval_isnamec((*arg)[5])) { *arg += 5; rettv->v_type = VAR_BOOL; rettv->vval.v_number = VVAL_FALSE; } else ret = NOTDONE; break; /* * List: [expr, expr] */ case '[': ret = compile_list(arg, cctx); break; /* * Dictionary: #{key: val, key: val} */ case '#': if ((*arg)[1] == '{') { ++*arg; ret = compile_dict(arg, cctx, TRUE); } else ret = NOTDONE; break; /* * Lambda: {arg, arg -> expr} * Dictionary: {'key': val, 'key': val} */ case '{': { char_u *start = skipwhite(*arg + 1); // Find out what comes after the arguments. ret = get_function_args(&start, '-', NULL, NULL, NULL, NULL, TRUE, NULL, NULL); if (ret != FAIL && *start == '>') ret = compile_lambda(arg, cctx); else ret = compile_dict(arg, cctx, FALSE); } break; /* * Option value: &name */ case '&': ret = compile_get_option(arg, cctx); break; /* * Environment variable: $VAR. */ case '$': ret = compile_get_env(arg, cctx); break; /* * Register contents: @r. */ case '@': ret = compile_get_register(arg, cctx); break; /* * nested expression: (expression). */ case '(': *arg = skipwhite(*arg + 1); // recursive! if (ppconst->pp_used <= PPSIZE - 10) { ret = compile_expr1(arg, cctx, ppconst); } else { // Not enough space in ppconst, flush constants. if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; ret = compile_expr0(arg, cctx); } *arg = skipwhite(*arg); if (**arg == ')') ++*arg; else if (ret == OK) { emsg(_(e_missing_close)); ret = FAIL; } break; default: ret = NOTDONE; break; } if (ret == FAIL) return FAIL; if (rettv->v_type != VAR_UNKNOWN && used_before == ppconst->pp_used) { // apply the '!', '-' and '+' before the constant if (apply_leader(rettv, start_leader, end_leader) == FAIL) { clear_tv(rettv); return FAIL; } start_leader = end_leader; // don't apply again below if (cctx->ctx_skip == SKIP_YES) clear_tv(rettv); else // A constant expression can possibly be handled compile time, // return the value instead of generating code. ++ppconst->pp_used; } else if (ret == NOTDONE) { char_u *p; int r; if (!eval_isnamec1(**arg)) { semsg(_("E1015: Name expected: %s"), *arg); return FAIL; } // "name" or "name()" p = to_name_end(*arg, TRUE); if (*p == '(') { r = compile_call(arg, p - *arg, cctx, ppconst, 0); } else { if (generate_ppconst(cctx, ppconst) == FAIL) return FAIL; r = compile_load(arg, p, cctx, TRUE); } if (r == FAIL) return FAIL; } // Handle following "[]", ".member", etc. // Then deal with prefixed '-', '+' and '!', if not done already. if (compile_subscript(arg, cctx, &start_leader, end_leader, ppconst) == FAIL) return FAIL; if (ppconst->pp_used > 0) { // apply the '!', '-' and '+' before the constant rettv = &ppconst->pp_tv[ppconst->pp_used - 1]; if (apply_leader(rettv, start_leader, end_leader) == FAIL) return FAIL; return OK; } if (compile_leader(cctx, start_leader, end_leader) == FAIL) return FAIL; return OK; } /* * * number multiplication * / number division * % number modulo */ static int compile_expr6(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { char_u *op; char_u *next; int ppconst_used = ppconst->pp_used; // get the first expression if (compile_expr7(arg, cctx, ppconst) == FAIL) return FAIL; /* * Repeat computing, until no "*", "/" or "%" is following. */ for (;;) { op = may_peek_next_line(cctx, *arg, &next); if (*op != '*' && *op != '/' && *op != '%') break; if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); op = skipwhite(*arg); } if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(op[1])) { char_u buf[3]; vim_strncpy(buf, op, 1); semsg(_(e_white_both), buf); return FAIL; } *arg = skipwhite(op + 1); if (may_get_next_line(op + 1, arg, cctx) == FAIL) return FAIL; // get the second expression if (compile_expr7(arg, cctx, ppconst) == FAIL) return FAIL; if (ppconst->pp_used == ppconst_used + 2 && ppconst->pp_tv[ppconst_used].v_type == VAR_NUMBER && ppconst->pp_tv[ppconst_used + 1].v_type == VAR_NUMBER) { typval_T *tv1 = &ppconst->pp_tv[ppconst_used]; typval_T *tv2 = &ppconst->pp_tv[ppconst_used + 1]; varnumber_T res = 0; // both are numbers: compute the result switch (*op) { case '*': res = tv1->vval.v_number * tv2->vval.v_number; break; case '/': res = tv1->vval.v_number / tv2->vval.v_number; break; case '%': res = tv1->vval.v_number % tv2->vval.v_number; break; } tv1->vval.v_number = res; --ppconst->pp_used; } else { generate_ppconst(cctx, ppconst); generate_two_op(cctx, op); } } return OK; } /* * + number addition * - number subtraction * .. string concatenation */ static int compile_expr5(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { char_u *op; char_u *next; int oplen; int ppconst_used = ppconst->pp_used; // get the first variable if (compile_expr6(arg, cctx, ppconst) == FAIL) return FAIL; /* * Repeat computing, until no "+", "-" or ".." is following. */ for (;;) { op = may_peek_next_line(cctx, *arg, &next); if (*op != '+' && *op != '-' && !(*op == '.' && *(op + 1) == '.')) break; oplen = (*op == '.' ? 2 : 1); if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); op = skipwhite(*arg); } if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(op[oplen])) { char_u buf[3]; vim_strncpy(buf, op, oplen); semsg(_(e_white_both), buf); return FAIL; } *arg = skipwhite(op + oplen); if (may_get_next_line(op + oplen, arg, cctx) == FAIL) return FAIL; // get the second expression if (compile_expr6(arg, cctx, ppconst) == FAIL) return FAIL; if (ppconst->pp_used == ppconst_used + 2 && (*op == '.' ? (ppconst->pp_tv[ppconst_used].v_type == VAR_STRING && ppconst->pp_tv[ppconst_used + 1].v_type == VAR_STRING) : (ppconst->pp_tv[ppconst_used].v_type == VAR_NUMBER && ppconst->pp_tv[ppconst_used + 1].v_type == VAR_NUMBER))) { typval_T *tv1 = &ppconst->pp_tv[ppconst_used]; typval_T *tv2 = &ppconst->pp_tv[ppconst_used + 1]; // concat/subtract/add constant numbers if (*op == '+') tv1->vval.v_number = tv1->vval.v_number + tv2->vval.v_number; else if (*op == '-') tv1->vval.v_number = tv1->vval.v_number - tv2->vval.v_number; else { // concatenate constant strings char_u *s1 = tv1->vval.v_string; char_u *s2 = tv2->vval.v_string; size_t len1 = STRLEN(s1); tv1->vval.v_string = alloc((int)(len1 + STRLEN(s2) + 1)); if (tv1->vval.v_string == NULL) { clear_ppconst(ppconst); return FAIL; } mch_memmove(tv1->vval.v_string, s1, len1); STRCPY(tv1->vval.v_string + len1, s2); vim_free(s1); vim_free(s2); } --ppconst->pp_used; } else { generate_ppconst(cctx, ppconst); if (*op == '.') { if (may_generate_2STRING(-2, cctx) == FAIL || may_generate_2STRING(-1, cctx) == FAIL) return FAIL; generate_instr_drop(cctx, ISN_CONCAT, 1); } else generate_two_op(cctx, op); } } return OK; } /* * expr5a == expr5b * expr5a =~ expr5b * expr5a != expr5b * expr5a !~ expr5b * expr5a > expr5b * expr5a >= expr5b * expr5a < expr5b * expr5a <= expr5b * expr5a is expr5b * expr5a isnot expr5b * * Produces instructions: * EVAL expr5a Push result of "expr5a" * EVAL expr5b Push result of "expr5b" * COMPARE one of the compare instructions */ static int compile_expr4(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { exptype_T type = EXPR_UNKNOWN; char_u *p; char_u *next; int len = 2; int type_is = FALSE; int ppconst_used = ppconst->pp_used; // get the first variable if (compile_expr5(arg, cctx, ppconst) == FAIL) return FAIL; p = may_peek_next_line(cctx, *arg, &next); type = get_compare_type(p, &len, &type_is); /* * If there is a comparative operator, use it. */ if (type != EXPR_UNKNOWN) { int ic = FALSE; // Default: do not ignore case if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); p = skipwhite(*arg); } if (type_is && (p[len] == '?' || p[len] == '#')) { semsg(_(e_invexpr2), *arg); return FAIL; } // extra question mark appended: ignore case if (p[len] == '?') { ic = TRUE; ++len; } // extra '#' appended: match case (ignored) else if (p[len] == '#') ++len; // nothing appended: match case if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(p[len])) { char_u buf[7]; vim_strncpy(buf, p, len); semsg(_(e_white_both), buf); return FAIL; } // get the second variable *arg = skipwhite(p + len); if (may_get_next_line(p + len, arg, cctx) == FAIL) return FAIL; if (compile_expr5(arg, cctx, ppconst) == FAIL) return FAIL; if (ppconst->pp_used == ppconst_used + 2) { typval_T * tv1 = &ppconst->pp_tv[ppconst->pp_used - 2]; typval_T *tv2 = &ppconst->pp_tv[ppconst->pp_used - 1]; int ret; // Both sides are a constant, compute the result now. // First check for a valid combination of types, this is more // strict than typval_compare(). if (check_compare_types(type, tv1, tv2) == FAIL) ret = FAIL; else { ret = typval_compare(tv1, tv2, type, ic); tv1->v_type = VAR_BOOL; tv1->vval.v_number = tv1->vval.v_number ? VVAL_TRUE : VVAL_FALSE; clear_tv(tv2); --ppconst->pp_used; } return ret; } generate_ppconst(cctx, ppconst); return generate_COMPARE(cctx, type, ic); } return OK; } static int compile_expr3(char_u **arg, cctx_T *cctx, ppconst_T *ppconst); /* * Compile || or &&. */ static int compile_and_or( char_u **arg, cctx_T *cctx, char *op, ppconst_T *ppconst, int ppconst_used UNUSED) { char_u *next; char_u *p = may_peek_next_line(cctx, *arg, &next); int opchar = *op; if (p[0] == opchar && p[1] == opchar) { garray_T *instr = &cctx->ctx_instr; garray_T end_ga; /* * Repeat until there is no following "||" or "&&" */ ga_init2(&end_ga, sizeof(int), 10); while (p[0] == opchar && p[1] == opchar) { if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); p = skipwhite(*arg); } if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(p[2])) { semsg(_(e_white_both), op); return FAIL; } // TODO: use ppconst if the value is a constant generate_ppconst(cctx, ppconst); if (ga_grow(&end_ga, 1) == FAIL) { ga_clear(&end_ga); return FAIL; } *(((int *)end_ga.ga_data) + end_ga.ga_len) = instr->ga_len; ++end_ga.ga_len; generate_JUMP(cctx, opchar == '|' ? JUMP_AND_KEEP_IF_TRUE : JUMP_AND_KEEP_IF_FALSE, 0); // eval the next expression *arg = skipwhite(p + 2); if (may_get_next_line(p + 2, arg, cctx) == FAIL) return FAIL; if ((opchar == '|' ? compile_expr3(arg, cctx, ppconst) : compile_expr4(arg, cctx, ppconst)) == FAIL) { ga_clear(&end_ga); return FAIL; } p = may_peek_next_line(cctx, *arg, &next); } generate_ppconst(cctx, ppconst); // Fill in the end label in all jumps. while (end_ga.ga_len > 0) { isn_T *isn; --end_ga.ga_len; isn = ((isn_T *)instr->ga_data) + *(((int *)end_ga.ga_data) + end_ga.ga_len); isn->isn_arg.jump.jump_where = instr->ga_len; } ga_clear(&end_ga); } return OK; } /* * expr4a && expr4a && expr4a logical AND * * Produces instructions: * EVAL expr4a Push result of "expr4a" * JUMP_AND_KEEP_IF_FALSE end * EVAL expr4b Push result of "expr4b" * JUMP_AND_KEEP_IF_FALSE end * EVAL expr4c Push result of "expr4c" * end: */ static int compile_expr3(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { int ppconst_used = ppconst->pp_used; // get the first variable if (compile_expr4(arg, cctx, ppconst) == FAIL) return FAIL; // || and && work almost the same return compile_and_or(arg, cctx, "&&", ppconst, ppconst_used); } /* * expr3a || expr3b || expr3c logical OR * * Produces instructions: * EVAL expr3a Push result of "expr3a" * JUMP_AND_KEEP_IF_TRUE end * EVAL expr3b Push result of "expr3b" * JUMP_AND_KEEP_IF_TRUE end * EVAL expr3c Push result of "expr3c" * end: */ static int compile_expr2(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { int ppconst_used = ppconst->pp_used; // eval the first expression if (compile_expr3(arg, cctx, ppconst) == FAIL) return FAIL; // || and && work almost the same return compile_and_or(arg, cctx, "||", ppconst, ppconst_used); } /* * Toplevel expression: expr2 ? expr1a : expr1b * * Produces instructions: * EVAL expr2 Push result of "expr" * JUMP_IF_FALSE alt jump if false * EVAL expr1a * JUMP_ALWAYS end * alt: EVAL expr1b * end: */ static int compile_expr1(char_u **arg, cctx_T *cctx, ppconst_T *ppconst) { char_u *p; int ppconst_used = ppconst->pp_used; char_u *next; // Evaluate the first expression. if (compile_expr2(arg, cctx, ppconst) == FAIL) return FAIL; p = may_peek_next_line(cctx, *arg, &next); if (*p == '?') { garray_T *instr = &cctx->ctx_instr; garray_T *stack = &cctx->ctx_type_stack; int alt_idx = instr->ga_len; int end_idx = 0; isn_T *isn; type_T *type1 = NULL; type_T *type2; int has_const_expr = FALSE; int const_value = FALSE; int save_skip = cctx->ctx_skip; if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); p = skipwhite(*arg); } if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(p[1])) { semsg(_(e_white_both), "?"); return FAIL; } if (ppconst->pp_used == ppconst_used + 1) { // the condition is a constant, we know whether the ? or the : // expression is to be evaluated. has_const_expr = TRUE; const_value = tv2bool(&ppconst->pp_tv[ppconst_used]); clear_tv(&ppconst->pp_tv[ppconst_used]); --ppconst->pp_used; cctx->ctx_skip = save_skip == SKIP_YES || !const_value ? SKIP_YES : SKIP_NOT; } else { generate_ppconst(cctx, ppconst); generate_JUMP(cctx, JUMP_IF_FALSE, 0); } // evaluate the second expression; any type is accepted *arg = skipwhite(p + 1); if (may_get_next_line(p + 1, arg, cctx) == FAIL) return FAIL; if (compile_expr1(arg, cctx, ppconst) == FAIL) return FAIL; if (!has_const_expr) { generate_ppconst(cctx, ppconst); // remember the type and drop it --stack->ga_len; type1 = ((type_T **)stack->ga_data)[stack->ga_len]; end_idx = instr->ga_len; generate_JUMP(cctx, JUMP_ALWAYS, 0); // jump here from JUMP_IF_FALSE isn = ((isn_T *)instr->ga_data) + alt_idx; isn->isn_arg.jump.jump_where = instr->ga_len; } // Check for the ":". p = may_peek_next_line(cctx, *arg, &next); if (*p != ':') { emsg(_(e_missing_colon)); return FAIL; } if (next != NULL) { *arg = next_line_from_context(cctx, TRUE); p = skipwhite(*arg); } if (!IS_WHITE_OR_NUL(**arg) || !IS_WHITE_OR_NUL(p[1])) { semsg(_(e_white_both), ":"); return FAIL; } // evaluate the third expression if (has_const_expr) cctx->ctx_skip = save_skip == SKIP_YES || const_value ? SKIP_YES : SKIP_NOT; *arg = skipwhite(p + 1); if (may_get_next_line(p + 1, arg, cctx) == FAIL) return FAIL; if (compile_expr1(arg, cctx, ppconst) == FAIL) return FAIL; if (!has_const_expr) { generate_ppconst(cctx, ppconst); // If the types differ, the result has a more generic type. type2 = ((type_T **)stack->ga_data)[stack->ga_len - 1]; common_type(type1, type2, &type2, cctx->ctx_type_list); // jump here from JUMP_ALWAYS isn = ((isn_T *)instr->ga_data) + end_idx; isn->isn_arg.jump.jump_where = instr->ga_len; } cctx->ctx_skip = save_skip; } return OK; } /* * Toplevel expression. */ static int compile_expr0(char_u **arg, cctx_T *cctx) { ppconst_T ppconst; CLEAR_FIELD(ppconst); if (compile_expr1(arg, cctx, &ppconst) == FAIL) { clear_ppconst(&ppconst); return FAIL; } if (generate_ppconst(cctx, &ppconst) == FAIL) return FAIL; return OK; } /* * compile "return [expr]" */ static char_u * compile_return(char_u *arg, int set_return_type, cctx_T *cctx) { char_u *p = arg; garray_T *stack = &cctx->ctx_type_stack; type_T *stack_type; if (*p != NUL && *p != '|' && *p != '\n') { // compile return argument into instructions if (compile_expr0(&p, cctx) == FAIL) return NULL; stack_type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (set_return_type) cctx->ctx_ufunc->uf_ret_type = stack_type; else { if (cctx->ctx_ufunc->uf_ret_type->tt_type == VAR_VOID && stack_type->tt_type != VAR_VOID && stack_type->tt_type != VAR_UNKNOWN) { emsg(_("E1096: Returning a value in a function without a return type")); return NULL; } if (need_type(stack_type, cctx->ctx_ufunc->uf_ret_type, -1, cctx, FALSE) == FAIL) return NULL; } } else { // "set_return_type" cannot be TRUE, only used for a lambda which // always has an argument. if (cctx->ctx_ufunc->uf_ret_type->tt_type != VAR_VOID && cctx->ctx_ufunc->uf_ret_type->tt_type != VAR_UNKNOWN) { emsg(_("E1003: Missing return value")); return NULL; } // No argument, return zero. generate_PUSHNR(cctx, 0); } if (generate_instr(cctx, ISN_RETURN) == NULL) return NULL; // "return val | endif" is possible return skipwhite(p); } /* * Get a line from the compilation context, compatible with exarg_T getline(). * Return a pointer to the line in allocated memory. * Return NULL for end-of-file or some error. */ static char_u * exarg_getline( int c UNUSED, void *cookie, int indent UNUSED, int do_concat UNUSED) { cctx_T *cctx = (cctx_T *)cookie; if (cctx->ctx_lnum == cctx->ctx_ufunc->uf_lines.ga_len) { iemsg("Heredoc got to end"); return NULL; } ++cctx->ctx_lnum; return vim_strsave(((char_u **)cctx->ctx_ufunc->uf_lines.ga_data) [cctx->ctx_lnum]); } /* * Compile a nested :def command. */ static char_u * compile_nested_function(exarg_T *eap, cctx_T *cctx) { char_u *name_start = eap->arg; char_u *name_end = to_name_end(eap->arg, FALSE); char_u *name = get_lambda_name(); lvar_T *lvar; ufunc_T *ufunc; eap->arg = name_end; eap->getline = exarg_getline; eap->cookie = cctx; eap->skip = cctx->ctx_skip == SKIP_YES; eap->forceit = FALSE; ufunc = def_function(eap, name); if (ufunc == NULL) return NULL; if (ufunc->uf_def_status == UF_TO_BE_COMPILED && compile_def_function(ufunc, TRUE, cctx) == FAIL) return NULL; // Define a local variable for the function reference. lvar = reserve_local(cctx, name_start, name_end - name_start, TRUE, ufunc->uf_func_type); if (generate_FUNCREF(cctx, ufunc->uf_dfunc_idx) == FAIL || generate_STORE(cctx, ISN_STORE, lvar->lv_idx, NULL) == FAIL) return NULL; // TODO: warning for trailing text? return (char_u *)""; } /* * Return the length of an assignment operator, or zero if there isn't one. */ int assignment_len(char_u *p, int *heredoc) { if (*p == '=') { if (p[1] == '<' && p[2] == '<') { *heredoc = TRUE; return 3; } return 1; } if (vim_strchr((char_u *)"+-*/%", *p) != NULL && p[1] == '=') return 2; if (STRNCMP(p, "..=", 3) == 0) return 3; return 0; } // words that cannot be used as a variable static char *reserved[] = { "true", "false", NULL }; typedef enum { dest_local, dest_option, dest_env, dest_global, dest_buffer, dest_window, dest_tab, dest_vimvar, dest_script, dest_reg, } assign_dest_T; /* * Generate the load instruction for "name". */ static void generate_loadvar( cctx_T *cctx, assign_dest_T dest, char_u *name, lvar_T *lvar, type_T *type) { switch (dest) { case dest_option: // TODO: check the option exists generate_LOAD(cctx, ISN_LOADOPT, 0, name, type); break; case dest_global: generate_LOAD(cctx, ISN_LOADG, 0, name + 2, type); break; case dest_buffer: generate_LOAD(cctx, ISN_LOADB, 0, name + 2, type); break; case dest_window: generate_LOAD(cctx, ISN_LOADW, 0, name + 2, type); break; case dest_tab: generate_LOAD(cctx, ISN_LOADT, 0, name + 2, type); break; case dest_script: compile_load_scriptvar(cctx, name + (name[1] == ':' ? 2 : 0), NULL, NULL, TRUE); break; case dest_env: // Include $ in the name here generate_LOAD(cctx, ISN_LOADENV, 0, name, type); break; case dest_reg: generate_LOAD(cctx, ISN_LOADREG, name[1], NULL, &t_string); break; case dest_vimvar: generate_LOADV(cctx, name + 2, TRUE); break; case dest_local: if (lvar->lv_from_outer) generate_LOAD(cctx, ISN_LOADOUTER, lvar->lv_idx, NULL, type); else generate_LOAD(cctx, ISN_LOAD, lvar->lv_idx, NULL, type); break; } } void vim9_declare_error(char_u *name) { char *scope = ""; switch (*name) { case 'g': scope = _("global"); break; case 'b': scope = _("buffer"); break; case 'w': scope = _("window"); break; case 't': scope = _("tab"); break; case 'v': scope = "v:"; break; case '$': semsg(_(e_declare_env_var), name); return; default: return; } semsg(_(e_declare_var), scope, name); } /* * Compile declaration and assignment: * "let var", "let var = expr", "const var = expr" and "var = expr" * "arg" points to "var". * Return NULL for an error. * Return "arg" if it does not look like a variable list. */ static char_u * compile_assignment(char_u *arg, exarg_T *eap, cmdidx_T cmdidx, cctx_T *cctx) { char_u *var_start; char_u *p; char_u *end = arg; char_u *ret = NULL; int var_count = 0; int var_idx; int semicolon = 0; garray_T *instr = &cctx->ctx_instr; garray_T *stack = &cctx->ctx_type_stack; char_u *op; int oplen = 0; int heredoc = FALSE; type_T *type = &t_any; type_T *member_type = &t_any; char_u *name = NULL; char_u *sp; int is_decl = cmdidx == CMD_let || cmdidx == CMD_const; // Skip over the "var" or "[var, var]" to get to any "=". p = skip_var_list(arg, TRUE, &var_count, &semicolon, TRUE); if (p == NULL) return *arg == '[' ? arg : NULL; if (var_count > 0 && is_decl) { emsg(_("E1092: Cannot use a list for a declaration")); return NULL; } sp = p; p = skipwhite(p); op = p; oplen = assignment_len(p, &heredoc); if (var_count > 0 && oplen == 0) // can be something like "[1, 2]->func()" return arg; if (oplen > 0 && (!VIM_ISWHITE(*sp) || !VIM_ISWHITE(op[oplen]))) { char_u buf[4]; vim_strncpy(buf, op, oplen); semsg(_(e_white_both), buf); return NULL; } if (heredoc) { list_T *l; listitem_T *li; // [let] varname =<< [trim] {end} eap->getline = exarg_getline; eap->cookie = cctx; l = heredoc_get(eap, op + 3, FALSE); // Push each line and the create the list. FOR_ALL_LIST_ITEMS(l, li) { generate_PUSHS(cctx, li->li_tv.vval.v_string); li->li_tv.vval.v_string = NULL; } generate_NEWLIST(cctx, l->lv_len); type = &t_list_string; member_type = &t_list_string; list_free(l); p += STRLEN(p); end = p; } else if (var_count > 0) { // for "[var, var] = expr" evaluate the expression here, loop over the // list of variables below. p = skipwhite(op + oplen); if (compile_expr0(&p, cctx) == FAIL) return NULL; end = p; if (cctx->ctx_skip != SKIP_YES) { type_T *stacktype; stacktype = stack->ga_len == 0 ? &t_void : ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (stacktype->tt_type == VAR_VOID) { emsg(_(e_cannot_use_void)); goto theend; } if (need_type(stacktype, &t_list_any, -1, cctx, FALSE) == FAIL) goto theend; // TODO: check the length of a constant list here generate_CHECKLEN(cctx, semicolon ? var_count - 1 : var_count, semicolon); } } /* * Loop over variables in "[var, var] = expr". * For "var = expr" and "let var: type" this is done only once. */ if (var_count > 0) var_start = skipwhite(arg + 1); // skip over the "[" else var_start = arg; for (var_idx = 0; var_idx == 0 || var_idx < var_count; var_idx++) { char_u *var_end = skip_var_one(var_start, FALSE); size_t varlen; int new_local = FALSE; int opt_type; int opt_flags = 0; assign_dest_T dest = dest_local; int vimvaridx = -1; lvar_T *lvar = NULL; lvar_T arg_lvar; int has_type = FALSE; int has_index = FALSE; int instr_count = -1; p = (*var_start == '&' || *var_start == '$' || *var_start == '@') ? var_start + 1 : var_start; p = to_name_end(p, TRUE); // "a: type" is declaring variable "a" with a type, not "a:". if (is_decl && var_end == var_start + 2 && var_end[-1] == ':') --var_end; if (is_decl && p == var_start + 2 && p[-1] == ':') --p; varlen = p - var_start; vim_free(name); name = vim_strnsave(var_start, varlen); if (name == NULL) return NULL; if (!heredoc) type = &t_any; if (cctx->ctx_skip != SKIP_YES) { if (*var_start == '&') { int cc; long numval; dest = dest_option; if (cmdidx == CMD_const) { emsg(_(e_const_option)); goto theend; } if (is_decl) { semsg(_("E1052: Cannot declare an option: %s"), var_start); goto theend; } p = var_start; p = find_option_end(&p, &opt_flags); if (p == NULL) { // cannot happen? emsg(_(e_letunexp)); goto theend; } cc = *p; *p = NUL; opt_type = get_option_value(var_start + 1, &numval, NULL, opt_flags); *p = cc; if (opt_type == -3) { semsg(_(e_unknown_option), var_start); goto theend; } if (opt_type == -2 || opt_type == 0) type = &t_string; else type = &t_number; // both number and boolean option } else if (*var_start == '$') { dest = dest_env; type = &t_string; if (is_decl) { vim9_declare_error(name); goto theend; } } else if (*var_start == '@') { if (!valid_yank_reg(var_start[1], TRUE)) { emsg_invreg(var_start[1]); goto theend; } dest = dest_reg; type = &t_string; if (is_decl) { semsg(_("E1066: Cannot declare a register: %s"), name); goto theend; } } else if (STRNCMP(var_start, "g:", 2) == 0) { dest = dest_global; if (is_decl) { vim9_declare_error(name); goto theend; } } else if (STRNCMP(var_start, "b:", 2) == 0) { dest = dest_buffer; if (is_decl) { vim9_declare_error(name); goto theend; } } else if (STRNCMP(var_start, "w:", 2) == 0) { dest = dest_window; if (is_decl) { vim9_declare_error(name); goto theend; } } else if (STRNCMP(var_start, "t:", 2) == 0) { dest = dest_tab; if (is_decl) { vim9_declare_error(name); goto theend; } } else if (STRNCMP(var_start, "v:", 2) == 0) { typval_T *vtv; int di_flags; vimvaridx = find_vim_var(name + 2, &di_flags); if (vimvaridx < 0) { semsg(_(e_var_notfound), var_start); goto theend; } // We use the current value of "sandbox" here, is that OK? if (var_check_ro(di_flags, name, FALSE)) goto theend; dest = dest_vimvar; vtv = get_vim_var_tv(vimvaridx); type = typval2type(vtv); if (is_decl) { vim9_declare_error(name); goto theend; } } else { int idx; for (idx = 0; reserved[idx] != NULL; ++idx) if (STRCMP(reserved[idx], name) == 0) { semsg(_("E1034: Cannot use reserved name %s"), name); goto theend; } lvar = lookup_local(var_start, varlen, cctx); if (lvar == NULL) { CLEAR_FIELD(arg_lvar); if (lookup_arg(var_start, varlen, &arg_lvar.lv_idx, &arg_lvar.lv_type, &arg_lvar.lv_from_outer, cctx) == OK) { if (is_decl) { semsg(_(e_used_as_arg), name); goto theend; } lvar = &arg_lvar; } } if (lvar != NULL) { if (is_decl) { semsg(_("E1017: Variable already declared: %s"), name); goto theend; } else if (lvar->lv_const) { semsg(_("E1018: Cannot assign to a constant: %s"), name); goto theend; } } else if (STRNCMP(var_start, "s:", 2) == 0 || lookup_script(var_start, varlen) == OK || find_imported(var_start, varlen, cctx) != NULL) { dest = dest_script; if (is_decl) { semsg(_("E1054: Variable already declared in the script: %s"), name); goto theend; } } else if (name[1] == ':' && name[2] != NUL) { semsg(_("E1082: Cannot use a namespaced variable: %s"), name); goto theend; } else if (!is_decl) { semsg(_("E1089: unknown variable: %s"), name); goto theend; } } } // handle "a:name" as a name, not index "name" on "a" if (varlen > 1 || var_start[varlen] != ':') p = var_end; if (dest != dest_option) { if (is_decl && *p == ':') { // parse optional type: "let var: type = expr" if (!VIM_ISWHITE(p[1])) { semsg(_(e_white_after), ":"); goto theend; } p = skipwhite(p + 1); type = parse_type(&p, cctx->ctx_type_list); has_type = TRUE; } else if (lvar != NULL) type = lvar->lv_type; } if (oplen == 3 && !heredoc && dest != dest_global && type->tt_type != VAR_STRING && type->tt_type != VAR_ANY) { emsg(_("E1019: Can only concatenate to string")); goto theend; } if (lvar == NULL && dest == dest_local && cctx->ctx_skip != SKIP_YES) { if (oplen > 1 && !heredoc) { // +=, /=, etc. require an existing variable semsg(_("E1020: cannot use an operator on a new variable: %s"), name); goto theend; } // new local variable if (type->tt_type == VAR_FUNC && var_check_func_name(name, TRUE)) goto theend; lvar = reserve_local(cctx, var_start, varlen, cmdidx == CMD_const, type); if (lvar == NULL) goto theend; new_local = TRUE; } member_type = type; if (var_end > var_start + varlen) { // Something follows after the variable: "var[idx]". if (is_decl) { emsg(_("E1087: cannot use an index when declaring a variable")); goto theend; } if (var_start[varlen] == '[') { has_index = TRUE; if (type->tt_member == NULL) { semsg(_("E1088: cannot use an index on %s"), name); goto theend; } member_type = type->tt_member; } else { semsg("Not supported yet: %s", var_start); goto theend; } } else if (lvar == &arg_lvar) { semsg(_("E1090: Cannot assign to argument %s"), name); goto theend; } if (!heredoc) { if (cctx->ctx_skip == SKIP_YES) { if (oplen > 0 && var_count == 0) { // skip over the "=" and the expression p = skipwhite(op + oplen); compile_expr0(&p, cctx); } } else if (oplen > 0) { type_T *stacktype; // For "var = expr" evaluate the expression. if (var_count == 0) { int r; // for "+=", "*=", "..=" etc. first load the current value if (*op != '=') { generate_loadvar(cctx, dest, name, lvar, type); if (has_index) { // TODO: get member from list or dict emsg("Index with operation not supported yet"); goto theend; } } // Compile the expression. Temporarily hide the new local // variable here, it is not available to this expression. if (new_local) --cctx->ctx_locals.ga_len; instr_count = instr->ga_len; p = skipwhite(op + oplen); r = compile_expr0(&p, cctx); if (new_local) ++cctx->ctx_locals.ga_len; if (r == FAIL) goto theend; } else if (semicolon && var_idx == var_count - 1) { // For "[var; var] = expr" get the rest of the list if (generate_SLICE(cctx, var_count - 1) == FAIL) goto theend; } else { // For "[var, var] = expr" get the "var_idx" item from the // list. if (generate_GETITEM(cctx, var_idx) == FAIL) return FAIL; } stacktype = stack->ga_len == 0 ? &t_void : ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (lvar != NULL && (is_decl || !has_type)) { if (new_local && !has_type) { if (stacktype->tt_type == VAR_VOID) { emsg(_(e_cannot_use_void)); goto theend; } else { // An empty list or dict has a &t_void member, // for a variable that implies &t_any. if (stacktype == &t_list_empty) lvar->lv_type = &t_list_any; else if (stacktype == &t_dict_empty) lvar->lv_type = &t_dict_any; else lvar->lv_type = stacktype; } } else { type_T *use_type = lvar->lv_type; if (has_index) { use_type = use_type->tt_member; if (use_type == NULL) use_type = &t_void; } if (need_type(stacktype, use_type, -1, cctx, FALSE) == FAIL) goto theend; } } else if (*p != '=' && need_type(stacktype, member_type, -1, cctx, FALSE) == FAIL) goto theend; } else if (cmdidx == CMD_const) { emsg(_(e_const_req_value)); goto theend; } else if (!has_type || dest == dest_option) { emsg(_(e_type_req)); goto theend; } else { // variables are always initialized if (ga_grow(instr, 1) == FAIL) goto theend; switch (member_type->tt_type) { case VAR_BOOL: generate_PUSHBOOL(cctx, VVAL_FALSE); break; case VAR_FLOAT: #ifdef FEAT_FLOAT generate_PUSHF(cctx, 0.0); #endif break; case VAR_STRING: generate_PUSHS(cctx, NULL); break; case VAR_BLOB: generate_PUSHBLOB(cctx, NULL); break; case VAR_FUNC: generate_PUSHFUNC(cctx, NULL, &t_func_void); break; case VAR_LIST: generate_NEWLIST(cctx, 0); break; case VAR_DICT: generate_NEWDICT(cctx, 0); break; case VAR_JOB: generate_PUSHJOB(cctx, NULL); break; case VAR_CHANNEL: generate_PUSHCHANNEL(cctx, NULL); break; case VAR_NUMBER: case VAR_UNKNOWN: case VAR_ANY: case VAR_PARTIAL: case VAR_VOID: case VAR_SPECIAL: // cannot happen generate_PUSHNR(cctx, 0); break; } } if (var_count == 0) end = p; } // no need to parse more when skipping if (cctx->ctx_skip == SKIP_YES) break; if (oplen > 0 && *op != '=') { type_T *expected = &t_number; type_T *stacktype; // TODO: if type is known use float or any operation if (*op == '.') expected = &t_string; stacktype = ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (need_type(stacktype, expected, -1, cctx, FALSE) == FAIL) goto theend; if (*op == '.') generate_instr_drop(cctx, ISN_CONCAT, 1); else { isn_T *isn = generate_instr_drop(cctx, ISN_OPNR, 1); if (isn == NULL) goto theend; switch (*op) { case '+': isn->isn_arg.op.op_type = EXPR_ADD; break; case '-': isn->isn_arg.op.op_type = EXPR_SUB; break; case '*': isn->isn_arg.op.op_type = EXPR_MULT; break; case '/': isn->isn_arg.op.op_type = EXPR_DIV; break; case '%': isn->isn_arg.op.op_type = EXPR_REM; break; } } } if (has_index) { int r; // Compile the "idx" in "var[idx]". if (new_local) --cctx->ctx_locals.ga_len; p = skipwhite(var_start + varlen + 1); r = compile_expr0(&p, cctx); if (new_local) ++cctx->ctx_locals.ga_len; if (r == FAIL) goto theend; if (*skipwhite(p) != ']') { emsg(_(e_missbrac)); goto theend; } if (type->tt_type == VAR_DICT && may_generate_2STRING(-1, cctx) == FAIL) goto theend; if (type->tt_type == VAR_LIST && ((type_T **)stack->ga_data)[stack->ga_len - 1]->tt_type != VAR_NUMBER) { emsg(_(e_number_exp)); goto theend; } // Load the dict or list. On the stack we then have: // - value // - index // - variable generate_loadvar(cctx, dest, name, lvar, type); if (type->tt_type == VAR_LIST) { if (generate_instr_drop(cctx, ISN_STORELIST, 3) == FAIL) return FAIL; } else if (type->tt_type == VAR_DICT) { if (generate_instr_drop(cctx, ISN_STOREDICT, 3) == FAIL) return FAIL; } else { emsg(_(e_listreq)); goto theend; } } else { switch (dest) { case dest_option: generate_STOREOPT(cctx, name + 1, opt_flags); break; case dest_global: // include g: with the name, easier to execute that way generate_STORE(cctx, ISN_STOREG, 0, name); break; case dest_buffer: // include b: with the name, easier to execute that way generate_STORE(cctx, ISN_STOREB, 0, name); break; case dest_window: // include w: with the name, easier to execute that way generate_STORE(cctx, ISN_STOREW, 0, name); break; case dest_tab: // include t: with the name, easier to execute that way generate_STORE(cctx, ISN_STORET, 0, name); break; case dest_env: generate_STORE(cctx, ISN_STOREENV, 0, name + 1); break; case dest_reg: generate_STORE(cctx, ISN_STOREREG, name[1], NULL); break; case dest_vimvar: generate_STORE(cctx, ISN_STOREV, vimvaridx, NULL); break; case dest_script: { char_u *rawname = name + (name[1] == ':' ? 2 : 0); imported_T *import = NULL; int sid = current_sctx.sc_sid; int idx; if (name[1] != ':') { import = find_imported(name, 0, cctx); if (import != NULL) sid = import->imp_sid; } idx = get_script_item_idx(sid, rawname, TRUE); // TODO: specific type if (idx < 0) { char_u *name_s = name; // Include s: in the name for store_var() if (name[1] != ':') { int len = (int)STRLEN(name) + 3; name_s = alloc(len); if (name_s == NULL) name_s = name; else vim_snprintf((char *)name_s, len, "s:%s", name); } generate_OLDSCRIPT(cctx, ISN_STORES, name_s, sid, &t_any); if (name_s != name) vim_free(name_s); } else generate_VIM9SCRIPT(cctx, ISN_STORESCRIPT, sid, idx, &t_any); } break; case dest_local: if (lvar != NULL) { isn_T *isn = ((isn_T *)instr->ga_data) + instr->ga_len - 1; // optimization: turn "var = 123" from ISN_PUSHNR + // ISN_STORE into ISN_STORENR if (!lvar->lv_from_outer && instr->ga_len == instr_count + 1 && isn->isn_type == ISN_PUSHNR) { varnumber_T val = isn->isn_arg.number; isn->isn_type = ISN_STORENR; isn->isn_arg.storenr.stnr_idx = lvar->lv_idx; isn->isn_arg.storenr.stnr_val = val; if (stack->ga_len > 0) --stack->ga_len; } else if (lvar->lv_from_outer) generate_STORE(cctx, ISN_STOREOUTER, lvar->lv_idx, NULL); else generate_STORE(cctx, ISN_STORE, lvar->lv_idx, NULL); } break; } } if (var_idx + 1 < var_count) var_start = skipwhite(var_end + 1); } // for "[var, var] = expr" drop the "expr" value if (var_count > 0 && !semicolon) { if (generate_instr_drop(cctx, ISN_DROP, 1) == NULL) goto theend; } ret = end; theend: vim_free(name); return ret; } /* * Check if "name" can be "unlet". */ int check_vim9_unlet(char_u *name) { if (name[1] != ':' || vim_strchr((char_u *)"gwtb", *name) == NULL) { semsg(_("E1081: Cannot unlet %s"), name); return FAIL; } return OK; } /* * Callback passed to ex_unletlock(). */ static int compile_unlet( lval_T *lvp, char_u *name_end, exarg_T *eap, int deep UNUSED, void *coookie) { cctx_T *cctx = coookie; if (lvp->ll_tv == NULL) { char_u *p = lvp->ll_name; int cc = *name_end; int ret = OK; // Normal name. Only supports g:, w:, t: and b: namespaces. *name_end = NUL; if (*p == '$') ret = generate_UNLET(cctx, ISN_UNLETENV, p + 1, eap->forceit); else if (check_vim9_unlet(p) == FAIL) ret = FAIL; else ret = generate_UNLET(cctx, ISN_UNLET, p, eap->forceit); *name_end = cc; return ret; } // TODO: unlet {list}[idx] // TODO: unlet {dict}[key] emsg("Sorry, :unlet not fully implemented yet"); return FAIL; } /* * compile "unlet var", "lock var" and "unlock var" * "arg" points to "var". */ static char_u * compile_unletlock(char_u *arg, exarg_T *eap, cctx_T *cctx) { char_u *p = arg; if (eap->cmdidx != CMD_unlet) { emsg("Sorry, :lock and unlock not implemented yet"); return NULL; } if (*p == '!') { p = skipwhite(p + 1); eap->forceit = TRUE; } ex_unletlock(eap, p, 0, GLV_NO_AUTOLOAD, compile_unlet, cctx); return eap->nextcmd == NULL ? (char_u *)"" : eap->nextcmd; } /* * Compile an :import command. */ static char_u * compile_import(char_u *arg, cctx_T *cctx) { return handle_import(arg, &cctx->ctx_imports, 0, NULL, cctx); } /* * generate a jump to the ":endif"/":endfor"/":endwhile"/":finally"/":endtry". */ static int compile_jump_to_end(endlabel_T **el, jumpwhen_T when, cctx_T *cctx) { garray_T *instr = &cctx->ctx_instr; endlabel_T *endlabel = ALLOC_CLEAR_ONE(endlabel_T); if (endlabel == NULL) return FAIL; endlabel->el_next = *el; *el = endlabel; endlabel->el_end_label = instr->ga_len; generate_JUMP(cctx, when, 0); return OK; } static void compile_fill_jump_to_end(endlabel_T **el, cctx_T *cctx) { garray_T *instr = &cctx->ctx_instr; while (*el != NULL) { endlabel_T *cur = (*el); isn_T *isn; isn = ((isn_T *)instr->ga_data) + cur->el_end_label; isn->isn_arg.jump.jump_where = instr->ga_len; *el = cur->el_next; vim_free(cur); } } static void compile_free_jump_to_end(endlabel_T **el) { while (*el != NULL) { endlabel_T *cur = (*el); *el = cur->el_next; vim_free(cur); } } /* * Create a new scope and set up the generic items. */ static scope_T * new_scope(cctx_T *cctx, scopetype_T type) { scope_T *scope = ALLOC_CLEAR_ONE(scope_T); if (scope == NULL) return NULL; scope->se_outer = cctx->ctx_scope; cctx->ctx_scope = scope; scope->se_type = type; scope->se_local_count = cctx->ctx_locals.ga_len; return scope; } /* * Free the current scope and go back to the outer scope. */ static void drop_scope(cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; if (scope == NULL) { iemsg("calling drop_scope() without a scope"); return; } cctx->ctx_scope = scope->se_outer; switch (scope->se_type) { case IF_SCOPE: compile_free_jump_to_end(&scope->se_u.se_if.is_end_label); break; case FOR_SCOPE: compile_free_jump_to_end(&scope->se_u.se_for.fs_end_label); break; case WHILE_SCOPE: compile_free_jump_to_end(&scope->se_u.se_while.ws_end_label); break; case TRY_SCOPE: compile_free_jump_to_end(&scope->se_u.se_try.ts_end_label); break; case NO_SCOPE: case BLOCK_SCOPE: break; } vim_free(scope); } /* * compile "if expr" * * "if expr" Produces instructions: * EVAL expr Push result of "expr" * JUMP_IF_FALSE end * ... body ... * end: * * "if expr | else" Produces instructions: * EVAL expr Push result of "expr" * JUMP_IF_FALSE else * ... body ... * JUMP_ALWAYS end * else: * ... body ... * end: * * "if expr1 | elseif expr2 | else" Produces instructions: * EVAL expr Push result of "expr" * JUMP_IF_FALSE elseif * ... body ... * JUMP_ALWAYS end * elseif: * EVAL expr Push result of "expr" * JUMP_IF_FALSE else * ... body ... * JUMP_ALWAYS end * else: * ... body ... * end: */ static char_u * compile_if(char_u *arg, cctx_T *cctx) { char_u *p = arg; garray_T *instr = &cctx->ctx_instr; int instr_count = instr->ga_len; scope_T *scope; skip_T skip_save = cctx->ctx_skip; ppconst_T ppconst; CLEAR_FIELD(ppconst); if (compile_expr1(&p, cctx, &ppconst) == FAIL) { clear_ppconst(&ppconst); return NULL; } if (cctx->ctx_skip == SKIP_YES) clear_ppconst(&ppconst); else if (instr->ga_len == instr_count && ppconst.pp_used == 1) { // The expression results in a constant. cctx->ctx_skip = tv2bool(&ppconst.pp_tv[0]) ? SKIP_NOT : SKIP_YES; clear_ppconst(&ppconst); } else { // Not a constant, generate instructions for the expression. cctx->ctx_skip = SKIP_UNKNOWN; if (generate_ppconst(cctx, &ppconst) == FAIL) return NULL; } scope = new_scope(cctx, IF_SCOPE); if (scope == NULL) return NULL; scope->se_skip_save = skip_save; // "is_had_return" will be reset if any block does not end in :return scope->se_u.se_if.is_had_return = TRUE; if (cctx->ctx_skip == SKIP_UNKNOWN) { // "where" is set when ":elseif", "else" or ":endif" is found scope->se_u.se_if.is_if_label = instr->ga_len; generate_JUMP(cctx, JUMP_IF_FALSE, 0); } else scope->se_u.se_if.is_if_label = -1; return p; } static char_u * compile_elseif(char_u *arg, cctx_T *cctx) { char_u *p = arg; garray_T *instr = &cctx->ctx_instr; int instr_count = instr->ga_len; isn_T *isn; scope_T *scope = cctx->ctx_scope; ppconst_T ppconst; if (scope == NULL || scope->se_type != IF_SCOPE) { emsg(_(e_elseif_without_if)); return NULL; } unwind_locals(cctx, scope->se_local_count); if (!cctx->ctx_had_return) scope->se_u.se_if.is_had_return = FALSE; if (cctx->ctx_skip == SKIP_UNKNOWN) { if (compile_jump_to_end(&scope->se_u.se_if.is_end_label, JUMP_ALWAYS, cctx) == FAIL) return NULL; // previous "if" or "elseif" jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_if.is_if_label; isn->isn_arg.jump.jump_where = instr->ga_len; } // compile "expr"; if we know it evaluates to FALSE skip the block CLEAR_FIELD(ppconst); if (compile_expr1(&p, cctx, &ppconst) == FAIL) { clear_ppconst(&ppconst); return NULL; } if (scope->se_skip_save == SKIP_YES) clear_ppconst(&ppconst); else if (instr->ga_len == instr_count && ppconst.pp_used == 1) { // The expression results in a constant. // TODO: how about nesting? cctx->ctx_skip = tv2bool(&ppconst.pp_tv[0]) ? SKIP_NOT : SKIP_YES; clear_ppconst(&ppconst); scope->se_u.se_if.is_if_label = -1; } else { // Not a constant, generate instructions for the expression. cctx->ctx_skip = SKIP_UNKNOWN; if (generate_ppconst(cctx, &ppconst) == FAIL) return NULL; // "where" is set when ":elseif", "else" or ":endif" is found scope->se_u.se_if.is_if_label = instr->ga_len; generate_JUMP(cctx, JUMP_IF_FALSE, 0); } return p; } static char_u * compile_else(char_u *arg, cctx_T *cctx) { char_u *p = arg; garray_T *instr = &cctx->ctx_instr; isn_T *isn; scope_T *scope = cctx->ctx_scope; if (scope == NULL || scope->se_type != IF_SCOPE) { emsg(_(e_else_without_if)); return NULL; } unwind_locals(cctx, scope->se_local_count); if (!cctx->ctx_had_return) scope->se_u.se_if.is_had_return = FALSE; scope->se_u.se_if.is_seen_else = TRUE; if (scope->se_skip_save != SKIP_YES) { // jump from previous block to the end, unless the else block is empty if (cctx->ctx_skip == SKIP_UNKNOWN) { if (!cctx->ctx_had_return && compile_jump_to_end(&scope->se_u.se_if.is_end_label, JUMP_ALWAYS, cctx) == FAIL) return NULL; } if (cctx->ctx_skip == SKIP_UNKNOWN) { if (scope->se_u.se_if.is_if_label >= 0) { // previous "if" or "elseif" jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_if.is_if_label; isn->isn_arg.jump.jump_where = instr->ga_len; scope->se_u.se_if.is_if_label = -1; } } if (cctx->ctx_skip != SKIP_UNKNOWN) cctx->ctx_skip = cctx->ctx_skip == SKIP_YES ? SKIP_NOT : SKIP_YES; } return p; } static char_u * compile_endif(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; ifscope_T *ifscope; garray_T *instr = &cctx->ctx_instr; isn_T *isn; if (scope == NULL || scope->se_type != IF_SCOPE) { emsg(_(e_endif_without_if)); return NULL; } ifscope = &scope->se_u.se_if; unwind_locals(cctx, scope->se_local_count); if (!cctx->ctx_had_return) ifscope->is_had_return = FALSE; if (scope->se_u.se_if.is_if_label >= 0) { // previous "if" or "elseif" jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_if.is_if_label; isn->isn_arg.jump.jump_where = instr->ga_len; } // Fill in the "end" label in jumps at the end of the blocks. compile_fill_jump_to_end(&ifscope->is_end_label, cctx); cctx->ctx_skip = scope->se_skip_save; // If all the blocks end in :return and there is an :else then the // had_return flag is set. cctx->ctx_had_return = ifscope->is_had_return && ifscope->is_seen_else; drop_scope(cctx); return arg; } /* * compile "for var in expr" * * Produces instructions: * PUSHNR -1 * STORE loop-idx Set index to -1 * EVAL expr Push result of "expr" * top: FOR loop-idx, end Increment index, use list on bottom of stack * - if beyond end, jump to "end" * - otherwise get item from list and push it * STORE var Store item in "var" * ... body ... * JUMP top Jump back to repeat * end: DROP Drop the result of "expr" * */ static char_u * compile_for(char_u *arg, cctx_T *cctx) { char_u *p; size_t varlen; garray_T *instr = &cctx->ctx_instr; garray_T *stack = &cctx->ctx_type_stack; scope_T *scope; lvar_T *loop_lvar; // loop iteration variable lvar_T *var_lvar; // variable for "var" type_T *vartype; // TODO: list of variables: "for [key, value] in dict" // parse "var" for (p = arg; eval_isnamec1(*p); ++p) ; varlen = p - arg; var_lvar = lookup_local(arg, varlen, cctx); if (var_lvar != NULL) { semsg(_("E1023: variable already defined: %s"), arg); return NULL; } // consume "in" p = skipwhite(p); if (STRNCMP(p, "in", 2) != 0 || !VIM_ISWHITE(p[2])) { emsg(_(e_missing_in)); return NULL; } p = skipwhite(p + 2); scope = new_scope(cctx, FOR_SCOPE); if (scope == NULL) return NULL; // Reserve a variable to store the loop iteration counter. loop_lvar = reserve_local(cctx, (char_u *)"", 0, FALSE, &t_number); if (loop_lvar == NULL) { // out of memory drop_scope(cctx); return NULL; } // Reserve a variable to store "var" var_lvar = reserve_local(cctx, arg, varlen, FALSE, &t_any); if (var_lvar == NULL) { // out of memory or used as an argument drop_scope(cctx); return NULL; } generate_STORENR(cctx, loop_lvar->lv_idx, -1); // compile "expr", it remains on the stack until "endfor" arg = p; if (compile_expr0(&arg, cctx) == FAIL) { drop_scope(cctx); return NULL; } // Now that we know the type of "var", check that it is a list, now or at // runtime. vartype = ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (need_type(vartype, &t_list_any, -1, cctx, FALSE) == FAIL) { drop_scope(cctx); return NULL; } if (vartype->tt_type == VAR_LIST && vartype->tt_member->tt_type != VAR_ANY) var_lvar->lv_type = vartype->tt_member; // "for_end" is set when ":endfor" is found scope->se_u.se_for.fs_top_label = instr->ga_len; generate_FOR(cctx, loop_lvar->lv_idx); generate_STORE(cctx, ISN_STORE, var_lvar->lv_idx, NULL); return arg; } /* * compile "endfor" */ static char_u * compile_endfor(char_u *arg, cctx_T *cctx) { garray_T *instr = &cctx->ctx_instr; scope_T *scope = cctx->ctx_scope; forscope_T *forscope; isn_T *isn; if (scope == NULL || scope->se_type != FOR_SCOPE) { emsg(_(e_for)); return NULL; } forscope = &scope->se_u.se_for; cctx->ctx_scope = scope->se_outer; unwind_locals(cctx, scope->se_local_count); // At end of ":for" scope jump back to the FOR instruction. generate_JUMP(cctx, JUMP_ALWAYS, forscope->fs_top_label); // Fill in the "end" label in the FOR statement so it can jump here isn = ((isn_T *)instr->ga_data) + forscope->fs_top_label; isn->isn_arg.forloop.for_end = instr->ga_len; // Fill in the "end" label any BREAK statements compile_fill_jump_to_end(&forscope->fs_end_label, cctx); // Below the ":for" scope drop the "expr" list from the stack. if (generate_instr_drop(cctx, ISN_DROP, 1) == NULL) return NULL; vim_free(scope); return arg; } /* * compile "while expr" * * Produces instructions: * top: EVAL expr Push result of "expr" * JUMP_IF_FALSE end jump if false * ... body ... * JUMP top Jump back to repeat * end: * */ static char_u * compile_while(char_u *arg, cctx_T *cctx) { char_u *p = arg; garray_T *instr = &cctx->ctx_instr; scope_T *scope; scope = new_scope(cctx, WHILE_SCOPE); if (scope == NULL) return NULL; scope->se_u.se_while.ws_top_label = instr->ga_len; // compile "expr" if (compile_expr0(&p, cctx) == FAIL) return NULL; // "while_end" is set when ":endwhile" is found if (compile_jump_to_end(&scope->se_u.se_while.ws_end_label, JUMP_IF_FALSE, cctx) == FAIL) return FAIL; return p; } /* * compile "endwhile" */ static char_u * compile_endwhile(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; if (scope == NULL || scope->se_type != WHILE_SCOPE) { emsg(_(e_while)); return NULL; } cctx->ctx_scope = scope->se_outer; unwind_locals(cctx, scope->se_local_count); // At end of ":for" scope jump back to the FOR instruction. generate_JUMP(cctx, JUMP_ALWAYS, scope->se_u.se_while.ws_top_label); // Fill in the "end" label in the WHILE statement so it can jump here. // And in any jumps for ":break" compile_fill_jump_to_end(&scope->se_u.se_while.ws_end_label, cctx); vim_free(scope); return arg; } /* * compile "continue" */ static char_u * compile_continue(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; for (;;) { if (scope == NULL) { emsg(_(e_continue)); return NULL; } if (scope->se_type == FOR_SCOPE || scope->se_type == WHILE_SCOPE) break; scope = scope->se_outer; } // Jump back to the FOR or WHILE instruction. generate_JUMP(cctx, JUMP_ALWAYS, scope->se_type == FOR_SCOPE ? scope->se_u.se_for.fs_top_label : scope->se_u.se_while.ws_top_label); return arg; } /* * compile "break" */ static char_u * compile_break(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; endlabel_T **el; for (;;) { if (scope == NULL) { emsg(_(e_break)); return NULL; } if (scope->se_type == FOR_SCOPE || scope->se_type == WHILE_SCOPE) break; scope = scope->se_outer; } // Jump to the end of the FOR or WHILE loop. if (scope->se_type == FOR_SCOPE) el = &scope->se_u.se_for.fs_end_label; else el = &scope->se_u.se_while.ws_end_label; if (compile_jump_to_end(el, JUMP_ALWAYS, cctx) == FAIL) return FAIL; return arg; } /* * compile "{" start of block */ static char_u * compile_block(char_u *arg, cctx_T *cctx) { if (new_scope(cctx, BLOCK_SCOPE) == NULL) return NULL; return skipwhite(arg + 1); } /* * compile end of block: drop one scope */ static void compile_endblock(cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; cctx->ctx_scope = scope->se_outer; unwind_locals(cctx, scope->se_local_count); vim_free(scope); } /* * compile "try" * Creates a new scope for the try-endtry, pointing to the first catch and * finally. * Creates another scope for the "try" block itself. * TRY instruction sets up exception handling at runtime. * * "try" * TRY -> catch1, -> finally push trystack entry * ... try block * "throw {exception}" * EVAL {exception} * THROW create exception * ... try block * " catch {expr}" * JUMP -> finally * catch1: PUSH exeception * EVAL {expr} * MATCH * JUMP nomatch -> catch2 * CATCH remove exception * ... catch block * " catch" * JUMP -> finally * catch2: CATCH remove exception * ... catch block * " finally" * finally: * ... finally block * " endtry" * ENDTRY pop trystack entry, may rethrow */ static char_u * compile_try(char_u *arg, cctx_T *cctx) { garray_T *instr = &cctx->ctx_instr; scope_T *try_scope; scope_T *scope; // scope that holds the jumps that go to catch/finally/endtry try_scope = new_scope(cctx, TRY_SCOPE); if (try_scope == NULL) return NULL; // "catch" is set when the first ":catch" is found. // "finally" is set when ":finally" or ":endtry" is found try_scope->se_u.se_try.ts_try_label = instr->ga_len; if (generate_instr(cctx, ISN_TRY) == NULL) return NULL; // scope for the try block itself scope = new_scope(cctx, BLOCK_SCOPE); if (scope == NULL) return NULL; return arg; } /* * compile "catch {expr}" */ static char_u * compile_catch(char_u *arg, cctx_T *cctx UNUSED) { scope_T *scope = cctx->ctx_scope; garray_T *instr = &cctx->ctx_instr; char_u *p; isn_T *isn; // end block scope from :try or :catch if (scope != NULL && scope->se_type == BLOCK_SCOPE) compile_endblock(cctx); scope = cctx->ctx_scope; // Error if not in a :try scope if (scope == NULL || scope->se_type != TRY_SCOPE) { emsg(_(e_catch)); return NULL; } if (scope->se_u.se_try.ts_caught_all) { emsg(_("E1033: catch unreachable after catch-all")); return NULL; } // Jump from end of previous block to :finally or :endtry if (compile_jump_to_end(&scope->se_u.se_try.ts_end_label, JUMP_ALWAYS, cctx) == FAIL) return NULL; // End :try or :catch scope: set value in ISN_TRY instruction isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_try_label; if (isn->isn_arg.try.try_catch == 0) isn->isn_arg.try.try_catch = instr->ga_len; if (scope->se_u.se_try.ts_catch_label != 0) { // Previous catch without match jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_catch_label; isn->isn_arg.jump.jump_where = instr->ga_len; } p = skipwhite(arg); if (ends_excmd2(arg, p)) { scope->se_u.se_try.ts_caught_all = TRUE; scope->se_u.se_try.ts_catch_label = 0; } else { char_u *end; char_u *pat; char_u *tofree = NULL; int dropped = 0; int len; // Push v:exception, push {expr} and MATCH generate_instr_type(cctx, ISN_PUSHEXC, &t_string); end = skip_regexp_ex(p + 1, *p, TRUE, &tofree, &dropped); if (*end != *p) { semsg(_("E1067: Separator mismatch: %s"), p); vim_free(tofree); return FAIL; } if (tofree == NULL) len = (int)(end - (p + 1)); else len = (int)(end - tofree); pat = vim_strnsave(tofree == NULL ? p + 1 : tofree, len); vim_free(tofree); p += len + 2 + dropped; if (pat == NULL) return FAIL; if (generate_PUSHS(cctx, pat) == FAIL) return FAIL; if (generate_COMPARE(cctx, EXPR_MATCH, FALSE) == FAIL) return NULL; scope->se_u.se_try.ts_catch_label = instr->ga_len; if (generate_JUMP(cctx, JUMP_IF_FALSE, 0) == FAIL) return NULL; } if (generate_instr(cctx, ISN_CATCH) == NULL) return NULL; if (new_scope(cctx, BLOCK_SCOPE) == NULL) return NULL; return p; } static char_u * compile_finally(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; garray_T *instr = &cctx->ctx_instr; isn_T *isn; // end block scope from :try or :catch if (scope != NULL && scope->se_type == BLOCK_SCOPE) compile_endblock(cctx); scope = cctx->ctx_scope; // Error if not in a :try scope if (scope == NULL || scope->se_type != TRY_SCOPE) { emsg(_(e_finally)); return NULL; } // End :catch or :finally scope: set value in ISN_TRY instruction isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_try_label; if (isn->isn_arg.try.try_finally != 0) { emsg(_(e_finally_dup)); return NULL; } // Fill in the "end" label in jumps at the end of the blocks. compile_fill_jump_to_end(&scope->se_u.se_try.ts_end_label, cctx); isn->isn_arg.try.try_finally = instr->ga_len; if (scope->se_u.se_try.ts_catch_label != 0) { // Previous catch without match jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_catch_label; isn->isn_arg.jump.jump_where = instr->ga_len; scope->se_u.se_try.ts_catch_label = 0; } // TODO: set index in ts_finally_label jumps return arg; } static char_u * compile_endtry(char_u *arg, cctx_T *cctx) { scope_T *scope = cctx->ctx_scope; garray_T *instr = &cctx->ctx_instr; isn_T *isn; // end block scope from :catch or :finally if (scope != NULL && scope->se_type == BLOCK_SCOPE) compile_endblock(cctx); scope = cctx->ctx_scope; // Error if not in a :try scope if (scope == NULL || scope->se_type != TRY_SCOPE) { if (scope == NULL) emsg(_(e_no_endtry)); else if (scope->se_type == WHILE_SCOPE) emsg(_(e_endwhile)); else if (scope->se_type == FOR_SCOPE) emsg(_(e_endfor)); else emsg(_(e_endif)); return NULL; } isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_try_label; if (isn->isn_arg.try.try_catch == 0 && isn->isn_arg.try.try_finally == 0) { emsg(_("E1032: missing :catch or :finally")); return NULL; } // Fill in the "end" label in jumps at the end of the blocks, if not done // by ":finally". compile_fill_jump_to_end(&scope->se_u.se_try.ts_end_label, cctx); // End :catch or :finally scope: set value in ISN_TRY instruction if (isn->isn_arg.try.try_catch == 0) isn->isn_arg.try.try_catch = instr->ga_len; if (isn->isn_arg.try.try_finally == 0) isn->isn_arg.try.try_finally = instr->ga_len; if (scope->se_u.se_try.ts_catch_label != 0) { // Last catch without match jumps here isn = ((isn_T *)instr->ga_data) + scope->se_u.se_try.ts_catch_label; isn->isn_arg.jump.jump_where = instr->ga_len; } compile_endblock(cctx); if (generate_instr(cctx, ISN_ENDTRY) == NULL) return NULL; return arg; } /* * compile "throw {expr}" */ static char_u * compile_throw(char_u *arg, cctx_T *cctx UNUSED) { char_u *p = skipwhite(arg); if (compile_expr0(&p, cctx) == FAIL) return NULL; if (may_generate_2STRING(-1, cctx) == FAIL) return NULL; if (generate_instr_drop(cctx, ISN_THROW, 1) == NULL) return NULL; return p; } /* * compile "echo expr" * compile "echomsg expr" * compile "echoerr expr" * compile "execute expr" */ static char_u * compile_mult_expr(char_u *arg, int cmdidx, cctx_T *cctx) { char_u *p = arg; int count = 0; for (;;) { if (compile_expr0(&p, cctx) == FAIL) return NULL; ++count; p = skipwhite(p); if (ends_excmd(*p)) break; } if (cmdidx == CMD_echo || cmdidx == CMD_echon) generate_ECHO(cctx, cmdidx == CMD_echo, count); else if (cmdidx == CMD_execute) generate_MULT_EXPR(cctx, ISN_EXECUTE, count); else if (cmdidx == CMD_echomsg) generate_MULT_EXPR(cctx, ISN_ECHOMSG, count); else generate_MULT_EXPR(cctx, ISN_ECHOERR, count); return p; } /* * A command that is not compiled, execute with legacy code. */ static char_u * compile_exec(char_u *line, exarg_T *eap, cctx_T *cctx) { char_u *p; int has_expr = FALSE; char_u *nextcmd = (char_u *)""; if (cctx->ctx_skip == SKIP_YES) goto theend; if (eap->cmdidx >= 0 && eap->cmdidx < CMD_SIZE) { long argt = excmd_get_argt(eap->cmdidx); int usefilter = FALSE; has_expr = argt & (EX_XFILE | EX_EXPAND); // If the command can be followed by a bar, find the bar and truncate // it, so that the following command can be compiled. // The '|' is overwritten with a NUL, it is put back below. if ((eap->cmdidx == CMD_write || eap->cmdidx == CMD_read) && *eap->arg == '!') // :w !filter or :r !filter or :r! filter usefilter = TRUE; if ((argt & EX_TRLBAR) && !usefilter) { separate_nextcmd(eap); if (eap->nextcmd != NULL) nextcmd = eap->nextcmd; } } if (eap->cmdidx == CMD_syntax && STRNCMP(eap->arg, "include ", 8) == 0) { // expand filename in "syntax include [@group] filename" has_expr = TRUE; eap->arg = skipwhite(eap->arg + 7); if (*eap->arg == '@') eap->arg = skiptowhite(eap->arg); } if (has_expr && (p = (char_u *)strstr((char *)eap->arg, "`=")) != NULL) { int count = 0; char_u *start = skipwhite(line); // :cmd xxx`=expr1`yyy`=expr2`zzz // PUSHS ":cmd xxx" // eval expr1 // PUSHS "yyy" // eval expr2 // PUSHS "zzz" // EXECCONCAT 5 for (;;) { if (p > start) { generate_PUSHS(cctx, vim_strnsave(start, p - start)); ++count; } p += 2; if (compile_expr0(&p, cctx) == FAIL) return NULL; may_generate_2STRING(-1, cctx); ++count; p = skipwhite(p); if (*p != '`') { emsg(_("E1083: missing backtick")); return NULL; } start = p + 1; p = (char_u *)strstr((char *)start, "`="); if (p == NULL) { if (*skipwhite(start) != NUL) { generate_PUSHS(cctx, vim_strsave(start)); ++count; } break; } } generate_EXECCONCAT(cctx, count); } else generate_EXEC(cctx, line); theend: if (*nextcmd != NUL) { // the parser expects a pointer to the bar, put it back --nextcmd; *nextcmd = '|'; } return nextcmd; } /* * Add a function to the list of :def functions. * This sets "ufunc->uf_dfunc_idx" but the function isn't compiled yet. */ static int add_def_function(ufunc_T *ufunc) { dfunc_T *dfunc; if (def_functions.ga_len == 0) { // The first position is not used, so that a zero uf_dfunc_idx means it // wasn't set. if (ga_grow(&def_functions, 1) == FAIL) return FAIL; ++def_functions.ga_len; } // Add the function to "def_functions". if (ga_grow(&def_functions, 1) == FAIL) return FAIL; dfunc = ((dfunc_T *)def_functions.ga_data) + def_functions.ga_len; CLEAR_POINTER(dfunc); dfunc->df_idx = def_functions.ga_len; ufunc->uf_dfunc_idx = dfunc->df_idx; dfunc->df_ufunc = ufunc; ++def_functions.ga_len; return OK; } /* * After ex_function() has collected all the function lines: parse and compile * the lines into instructions. * Adds the function to "def_functions". * When "set_return_type" is set then set ufunc->uf_ret_type to the type of the * return statement (used for lambda). * "outer_cctx" is set for a nested function. * This can be used recursively through compile_lambda(), which may reallocate * "def_functions". * Returns OK or FAIL. */ int compile_def_function(ufunc_T *ufunc, int set_return_type, cctx_T *outer_cctx) { char_u *line = NULL; char_u *p; char *errormsg = NULL; // error message cctx_T cctx; garray_T *instr; int called_emsg_before = called_emsg; int ret = FAIL; sctx_T save_current_sctx = current_sctx; int do_estack_push; int emsg_before = called_emsg; // When using a function that was compiled before: Free old instructions. // Otherwise add a new entry in "def_functions". if (ufunc->uf_dfunc_idx > 0) { dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx; delete_def_function_contents(dfunc); } else if (add_def_function(ufunc) == FAIL) return FAIL; ufunc->uf_def_status = UF_COMPILING; CLEAR_FIELD(cctx); cctx.ctx_ufunc = ufunc; cctx.ctx_lnum = -1; cctx.ctx_outer = outer_cctx; ga_init2(&cctx.ctx_locals, sizeof(lvar_T), 10); ga_init2(&cctx.ctx_type_stack, sizeof(type_T *), 50); ga_init2(&cctx.ctx_imports, sizeof(imported_T), 10); cctx.ctx_type_list = &ufunc->uf_type_list; ga_init2(&cctx.ctx_instr, sizeof(isn_T), 50); instr = &cctx.ctx_instr; // Set the context to the function, it may be compiled when called from // another script. Set the script version to the most modern one. // The line number will be set in next_line_from_context(). current_sctx = ufunc->uf_script_ctx; current_sctx.sc_version = SCRIPT_VERSION_VIM9; // Make sure error messages are OK. do_estack_push = !estack_top_is_ufunc(ufunc, 1); if (do_estack_push) estack_push_ufunc(ufunc, 1); if (ufunc->uf_def_args.ga_len > 0) { int count = ufunc->uf_def_args.ga_len; int first_def_arg = ufunc->uf_args.ga_len - count; int i; char_u *arg; int off = STACK_FRAME_SIZE + (ufunc->uf_va_name != NULL ? 1 : 0); // Produce instructions for the default values of optional arguments. // Store the instruction index in uf_def_arg_idx[] so that we know // where to start when the function is called, depending on the number // of arguments. ufunc->uf_def_arg_idx = ALLOC_CLEAR_MULT(int, count + 1); if (ufunc->uf_def_arg_idx == NULL) goto erret; for (i = 0; i < count; ++i) { garray_T *stack = &cctx.ctx_type_stack; type_T *val_type; int arg_idx = first_def_arg + i; ufunc->uf_def_arg_idx[i] = instr->ga_len; arg = ((char_u **)(ufunc->uf_def_args.ga_data))[i]; if (compile_expr0(&arg, &cctx) == FAIL) goto erret; // If no type specified use the type of the default value. // Otherwise check that the default value type matches the // specified type. val_type = ((type_T **)stack->ga_data)[stack->ga_len - 1]; if (ufunc->uf_arg_types[arg_idx] == &t_unknown) ufunc->uf_arg_types[arg_idx] = val_type; else if (check_type(ufunc->uf_arg_types[arg_idx], val_type, FALSE) == FAIL) { arg_type_mismatch(ufunc->uf_arg_types[arg_idx], val_type, arg_idx + 1); goto erret; } if (generate_STORE(&cctx, ISN_STORE, i - count - off, NULL) == FAIL) goto erret; } ufunc->uf_def_arg_idx[count] = instr->ga_len; } /* * Loop over all the lines of the function and generate instructions. */ for (;;) { exarg_T ea; int starts_with_colon = FALSE; char_u *cmd; int save_msg_scroll = msg_scroll; // Bail out on the first error to avoid a flood of errors and report // the right line number when inside try/catch. if (emsg_before != called_emsg) goto erret; if (line != NULL && *line == '|') // the line continues after a '|' ++line; else if (line != NULL && *skipwhite(line) != NUL && !(*line == '#' && (line == cctx.ctx_line_start || VIM_ISWHITE(line[-1])))) { semsg(_("E488: Trailing characters: %s"), line); goto erret; } else { line = next_line_from_context(&cctx, FALSE); if (cctx.ctx_lnum >= ufunc->uf_lines.ga_len) // beyond the last line break; } emsg_before = called_emsg; CLEAR_FIELD(ea); ea.cmdlinep = &line; ea.cmd = skipwhite(line); // Some things can be recognized by the first character. switch (*ea.cmd) { case '#': // "#" starts a comment, but "#{" does not. if (ea.cmd[1] != '{') { line = (char_u *)""; continue; } break; case '}': { // "}" ends a block scope scopetype_T stype = cctx.ctx_scope == NULL ? NO_SCOPE : cctx.ctx_scope->se_type; if (stype == BLOCK_SCOPE) { compile_endblock(&cctx); line = ea.cmd; } else { emsg(_("E1025: using } outside of a block scope")); goto erret; } if (line != NULL) line = skipwhite(ea.cmd + 1); continue; } case '{': // "{" starts a block scope // "{'a': 1}->func() is something else if (ends_excmd(*skipwhite(ea.cmd + 1))) { line = compile_block(ea.cmd, &cctx); continue; } break; case ':': starts_with_colon = TRUE; break; } /* * COMMAND MODIFIERS */ if (parse_command_modifiers(&ea, &errormsg, FALSE) == FAIL) { if (errormsg != NULL) goto erret; // empty line or comment line = (char_u *)""; continue; } // TODO: use modifiers in the command undo_cmdmod(&ea, save_msg_scroll); CLEAR_FIELD(cmdmod); // Skip ":call" to get to the function name. if (checkforcmd(&ea.cmd, "call", 3)) ea.cmd = skipwhite(ea.cmd); if (!starts_with_colon) { char_u *pskip; // Assuming the command starts with a variable or function name, // find what follows. // Skip over "var.member", "var[idx]" and the like. // Also "&opt = val", "$ENV = val" and "@r = val". pskip = (*ea.cmd == '&' || *ea.cmd == '$' || *ea.cmd == '@') ? ea.cmd + 1 : ea.cmd; p = to_name_end(pskip, TRUE); if (p > ea.cmd && *p != NUL) { char_u *var_end; int oplen; int heredoc; var_end = find_name_end(pskip, NULL, NULL, FNE_CHECK_START | FNE_INCL_BR); oplen = assignment_len(skipwhite(var_end), &heredoc); if (oplen > 0) { size_t len = p - ea.cmd; // Recognize an assignment if we recognize the variable // name: // "g:var = expr" // "local = expr" where "local" is a local var. // "script = expr" where "script" is a script-local var. // "import = expr" where "import" is an imported var // "&opt = expr" // "$ENV = expr" // "@r = expr" if (*ea.cmd == '&' || *ea.cmd == '$' || *ea.cmd == '@' || ((len) > 2 && ea.cmd[1] == ':') || lookup_local(ea.cmd, len, &cctx) != NULL || lookup_arg(ea.cmd, len, NULL, NULL, NULL, &cctx) == OK || lookup_script(ea.cmd, len) == OK || find_imported(ea.cmd, len, &cctx) != NULL) { line = compile_assignment(ea.cmd, &ea, CMD_SIZE, &cctx); if (line == NULL || line == ea.cmd) goto erret; continue; } } } if (*ea.cmd == '[') { // [var, var] = expr line = compile_assignment(ea.cmd, &ea, CMD_SIZE, &cctx); if (line == NULL) goto erret; if (line != ea.cmd) continue; } } /* * COMMAND after range * 'text'->func() should not be confused with 'a mark */ cmd = ea.cmd; if (*cmd != '\'') { ea.cmd = skip_range(ea.cmd, NULL); if (ea.cmd > cmd && !starts_with_colon) { emsg(_(e_colon_required)); goto erret; } } p = find_ex_command(&ea, NULL, starts_with_colon ? NULL : (void *(*)(char_u *, size_t, cctx_T *))lookup_local, &cctx); if (p == ea.cmd && ea.cmdidx != CMD_SIZE) { if (cctx.ctx_skip == SKIP_YES) { line += STRLEN(line); continue; } // Expression or function call. if (ea.cmdidx != CMD_eval) { // CMD_let cannot happen, compile_assignment() above is used iemsg("Command from find_ex_command() not handled"); goto erret; } } p = skipwhite(p); if (cctx.ctx_skip == SKIP_YES && ea.cmdidx != CMD_if && ea.cmdidx != CMD_elseif && ea.cmdidx != CMD_else && ea.cmdidx != CMD_endif) { line = (char_u *)""; continue; } if (ea.cmdidx != CMD_elseif && ea.cmdidx != CMD_else && ea.cmdidx != CMD_endif && ea.cmdidx != CMD_endfor && ea.cmdidx != CMD_endwhile && ea.cmdidx != CMD_catch && ea.cmdidx != CMD_finally && ea.cmdidx != CMD_endtry) { if (cctx.ctx_had_return) { emsg(_("E1095: Unreachable code after :return")); goto erret; } } switch (ea.cmdidx) { case CMD_def: ea.arg = p; line = compile_nested_function(&ea, &cctx); break; case CMD_function: emsg(_("E1086: Cannot use :function inside :def")); goto erret; case CMD_return: line = compile_return(p, set_return_type, &cctx); cctx.ctx_had_return = TRUE; break; case CMD_let: case CMD_const: line = compile_assignment(p, &ea, ea.cmdidx, &cctx); if (line == p) line = NULL; break; case CMD_unlet: case CMD_unlockvar: case CMD_lockvar: line = compile_unletlock(p, &ea, &cctx); break; case CMD_import: line = compile_import(p, &cctx); break; case CMD_if: line = compile_if(p, &cctx); break; case CMD_elseif: line = compile_elseif(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_else: line = compile_else(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_endif: line = compile_endif(p, &cctx); break; case CMD_while: line = compile_while(p, &cctx); break; case CMD_endwhile: line = compile_endwhile(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_for: line = compile_for(p, &cctx); break; case CMD_endfor: line = compile_endfor(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_continue: line = compile_continue(p, &cctx); break; case CMD_break: line = compile_break(p, &cctx); break; case CMD_try: line = compile_try(p, &cctx); break; case CMD_catch: line = compile_catch(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_finally: line = compile_finally(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_endtry: line = compile_endtry(p, &cctx); cctx.ctx_had_return = FALSE; break; case CMD_throw: line = compile_throw(p, &cctx); break; case CMD_eval: if (compile_expr0(&p, &cctx) == FAIL) goto erret; // drop the return value generate_instr_drop(&cctx, ISN_DROP, 1); line = skipwhite(p); break; case CMD_echo: case CMD_echon: case CMD_execute: case CMD_echomsg: case CMD_echoerr: line = compile_mult_expr(p, ea.cmdidx, &cctx); break; // TODO: other commands with an expression argument case CMD_SIZE: semsg(_("E476: Invalid command: %s"), ea.cmd); goto erret; default: // Not recognized, execute with do_cmdline_cmd(). ea.arg = p; line = compile_exec(line, &ea, &cctx); break; } if (line == NULL) goto erret; line = skipwhite(line); if (cctx.ctx_type_stack.ga_len < 0) { iemsg("Type stack underflow"); goto erret; } } if (cctx.ctx_scope != NULL) { if (cctx.ctx_scope->se_type == IF_SCOPE) emsg(_(e_endif)); else if (cctx.ctx_scope->se_type == WHILE_SCOPE) emsg(_(e_endwhile)); else if (cctx.ctx_scope->se_type == FOR_SCOPE) emsg(_(e_endfor)); else emsg(_("E1026: Missing }")); goto erret; } if (!cctx.ctx_had_return) { if (ufunc->uf_ret_type->tt_type != VAR_VOID) { emsg(_("E1027: Missing return statement")); goto erret; } // Return zero if there is no return at the end. generate_PUSHNR(&cctx, 0); generate_instr(&cctx, ISN_RETURN); } { dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx; dfunc->df_deleted = FALSE; dfunc->df_instr = instr->ga_data; dfunc->df_instr_count = instr->ga_len; dfunc->df_varcount = cctx.ctx_locals_count; dfunc->df_closure_count = cctx.ctx_closure_count; if (cctx.ctx_outer_used) ufunc->uf_flags |= FC_CLOSURE; ufunc->uf_def_status = UF_COMPILED; } ret = OK; erret: if (ret == FAIL) { int idx; dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx; for (idx = 0; idx < instr->ga_len; ++idx) delete_instr(((isn_T *)instr->ga_data) + idx); ga_clear(instr); // if using the last entry in the table we might as well remove it if (!dfunc->df_deleted && ufunc->uf_dfunc_idx == def_functions.ga_len - 1) --def_functions.ga_len; ufunc->uf_def_status = UF_NOT_COMPILED; while (cctx.ctx_scope != NULL) drop_scope(&cctx); // Don't execute this function body. ga_clear_strings(&ufunc->uf_lines); if (errormsg != NULL) emsg(errormsg); else if (called_emsg == called_emsg_before) emsg(_("E1028: compile_def_function failed")); } current_sctx = save_current_sctx; if (do_estack_push) estack_pop(); free_imported(&cctx); free_locals(&cctx); ga_clear(&cctx.ctx_type_stack); return ret; } void set_function_type(ufunc_T *ufunc) { int varargs = ufunc->uf_va_name != NULL; int argcount = ufunc->uf_args.ga_len; // Create a type for the function, with the return type and any // argument types. // A vararg is included in uf_args.ga_len but not in uf_arg_types. // The type is included in "tt_args". if (argcount > 0 || varargs) { ufunc->uf_func_type = alloc_func_type(ufunc->uf_ret_type, argcount, &ufunc->uf_type_list); // Add argument types to the function type. if (func_type_add_arg_types(ufunc->uf_func_type, argcount + varargs, &ufunc->uf_type_list) == FAIL) return; ufunc->uf_func_type->tt_argcount = argcount + varargs; ufunc->uf_func_type->tt_min_argcount = argcount - ufunc->uf_def_args.ga_len; if (ufunc->uf_arg_types == NULL) { int i; // lambda does not have argument types. for (i = 0; i < argcount; ++i) ufunc->uf_func_type->tt_args[i] = &t_any; } else mch_memmove(ufunc->uf_func_type->tt_args, ufunc->uf_arg_types, sizeof(type_T *) * argcount); if (varargs) { ufunc->uf_func_type->tt_args[argcount] = ufunc->uf_va_type == NULL ? &t_any : ufunc->uf_va_type; ufunc->uf_func_type->tt_flags = TTFLAG_VARARGS; } } else // No arguments, can use a predefined type. ufunc->uf_func_type = get_func_type(ufunc->uf_ret_type, argcount, &ufunc->uf_type_list); } /* * Delete an instruction, free what it contains. */ void delete_instr(isn_T *isn) { switch (isn->isn_type) { case ISN_EXEC: case ISN_LOADENV: case ISN_LOADG: case ISN_LOADB: case ISN_LOADW: case ISN_LOADT: case ISN_LOADOPT: case ISN_STRINGMEMBER: case ISN_PUSHEXC: case ISN_PUSHS: case ISN_STOREENV: case ISN_STOREG: case ISN_STOREB: case ISN_STOREW: case ISN_STORET: case ISN_PUSHFUNC: vim_free(isn->isn_arg.string); break; case ISN_LOADS: case ISN_STORES: vim_free(isn->isn_arg.loadstore.ls_name); break; case ISN_UNLET: case ISN_UNLETENV: vim_free(isn->isn_arg.unlet.ul_name); break; case ISN_STOREOPT: vim_free(isn->isn_arg.storeopt.so_name); break; case ISN_PUSHBLOB: // push blob isn_arg.blob blob_unref(isn->isn_arg.blob); break; case ISN_PUSHJOB: #ifdef FEAT_JOB_CHANNEL job_unref(isn->isn_arg.job); #endif break; case ISN_PUSHCHANNEL: #ifdef FEAT_JOB_CHANNEL channel_unref(isn->isn_arg.channel); #endif break; case ISN_UCALL: vim_free(isn->isn_arg.ufunc.cuf_name); break; case ISN_FUNCREF: { dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + isn->isn_arg.funcref.fr_func; func_ptr_unref(dfunc->df_ufunc); } break; case ISN_2BOOL: case ISN_2STRING: case ISN_ADDBLOB: case ISN_ADDLIST: case ISN_BCALL: case ISN_CATCH: case ISN_CHECKNR: case ISN_CHECKTYPE: case ISN_CHECKLEN: case ISN_COMPAREANY: case ISN_COMPAREBLOB: case ISN_COMPAREBOOL: case ISN_COMPAREDICT: case ISN_COMPAREFLOAT: case ISN_COMPAREFUNC: case ISN_COMPARELIST: case ISN_COMPARENR: case ISN_COMPARESPECIAL: case ISN_COMPARESTRING: case ISN_CONCAT: case ISN_DCALL: case ISN_SHUFFLE: case ISN_DROP: case ISN_ECHO: case ISN_ECHOERR: case ISN_ECHOMSG: case ISN_ENDTRY: case ISN_EXECCONCAT: case ISN_EXECUTE: case ISN_FOR: case ISN_INDEX: case ISN_GETITEM: case ISN_SLICE: case ISN_MEMBER: case ISN_JUMP: case ISN_LOAD: case ISN_LOADOUTER: case ISN_LOADSCRIPT: case ISN_LOADREG: case ISN_LOADV: case ISN_NEGATENR: case ISN_NEWDICT: case ISN_NEWLIST: case ISN_OPNR: case ISN_OPFLOAT: case ISN_OPANY: case ISN_PCALL: case ISN_PCALL_END: case ISN_PUSHF: case ISN_PUSHNR: case ISN_PUSHBOOL: case ISN_PUSHSPEC: case ISN_RETURN: case ISN_STORE: case ISN_STOREOUTER: case ISN_STOREV: case ISN_STORENR: case ISN_STOREREG: case ISN_STORESCRIPT: case ISN_STOREDICT: case ISN_STORELIST: case ISN_THROW: case ISN_TRY: // nothing allocated break; } } /* * Free all instructions for "dfunc". */ static void delete_def_function_contents(dfunc_T *dfunc) { int idx; ga_clear(&dfunc->df_def_args_isn); if (dfunc->df_instr != NULL) { for (idx = 0; idx < dfunc->df_instr_count; ++idx) delete_instr(dfunc->df_instr + idx); VIM_CLEAR(dfunc->df_instr); } dfunc->df_deleted = TRUE; } /* * When a user function is deleted, clear the contents of any associated def * function. The position in def_functions can be re-used. */ void clear_def_function(ufunc_T *ufunc) { if (ufunc->uf_dfunc_idx > 0) { dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx; delete_def_function_contents(dfunc); ufunc->uf_def_status = UF_NOT_COMPILED; } } #if defined(EXITFREE) || defined(PROTO) /* * Free all functions defined with ":def". */ void free_def_functions(void) { int idx; for (idx = 0; idx < def_functions.ga_len; ++idx) { dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + idx; delete_def_function_contents(dfunc); } ga_clear(&def_functions); } #endif #endif // FEAT_EVAL