/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. */ /* * undo.c: multi level undo facility * * The saved lines are stored in a list of lists (one for each buffer): * * b_u_oldhead------------------------------------------------+ * | * V * +--------------+ +--------------+ +--------------+ * b_u_newhead--->| u_header | | u_header | | u_header | * | uh_next------>| uh_next------>| uh_next---->NULL * NULL<--------uh_prev |<---------uh_prev |<---------uh_prev | * | uh_entry | | uh_entry | | uh_entry | * +--------|-----+ +--------|-----+ +--------|-----+ * | | | * V V V * +--------------+ +--------------+ +--------------+ * | u_entry | | u_entry | | u_entry | * | ue_next | | ue_next | | ue_next | * +--------|-----+ +--------|-----+ +--------|-----+ * | | | * V V V * +--------------+ NULL NULL * | u_entry | * | ue_next | * +--------|-----+ * | * V * etc. * * Each u_entry list contains the information for one undo or redo. * curbuf->b_u_curhead points to the header of the last undo (the next redo), * or is NULL if nothing has been undone (end of the branch). * * For keeping alternate undo/redo branches the uh_alt field is used. Thus at * each point in the list a branch may appear for an alternate to redo. The * uh_seq field is numbered sequentially to be able to find a newer or older * branch. * * +---------------+ +---------------+ * b_u_oldhead --->| u_header | | u_header | * | uh_alt_next ---->| uh_alt_next ----> NULL * NULL <----- uh_alt_prev |<------ uh_alt_prev | * | uh_prev | | uh_prev | * +-----|---------+ +-----|---------+ * | | * V V * +---------------+ +---------------+ * | u_header | | u_header | * | uh_alt_next | | uh_alt_next | * b_u_newhead --->| uh_alt_prev | | uh_alt_prev | * | uh_prev | | uh_prev | * +-----|---------+ +-----|---------+ * | | * V V * NULL +---------------+ +---------------+ * | u_header | | u_header | * | uh_alt_next ---->| uh_alt_next | * | uh_alt_prev |<------ uh_alt_prev | * | uh_prev | | uh_prev | * +-----|---------+ +-----|---------+ * | | * etc. etc. * * * All data is allocated and will all be freed when the buffer is unloaded. */ // Uncomment the next line for including the u_check() function. This warns // for errors in the debug information. // #define U_DEBUG 1 #define UH_MAGIC 0x18dade // value for uh_magic when in use #define UE_MAGIC 0xabc123 // value for ue_magic when in use // Size of buffer used for encryption. #define CRYPT_BUF_SIZE 8192 #include "vim.h" // Structure passed around between functions. // Avoids passing cryptstate_T when encryption not available. typedef struct { buf_T *bi_buf; FILE *bi_fp; #ifdef FEAT_CRYPT cryptstate_T *bi_state; char_u *bi_buffer; // CRYPT_BUF_SIZE, NULL when not buffering size_t bi_used; // bytes written to/read from bi_buffer size_t bi_avail; // bytes available in bi_buffer #endif } bufinfo_T; static void u_unch_branch(u_header_T *uhp); static u_entry_T *u_get_headentry(void); static void u_getbot(void); static void u_doit(int count); static void u_undoredo(int undo); static void u_undo_end(int did_undo, int absolute); static void u_freeheader(buf_T *buf, u_header_T *uhp, u_header_T **uhpp); static void u_freebranch(buf_T *buf, u_header_T *uhp, u_header_T **uhpp); static void u_freeentries(buf_T *buf, u_header_T *uhp, u_header_T **uhpp); static void u_freeentry(u_entry_T *, long); #ifdef FEAT_PERSISTENT_UNDO # ifdef FEAT_CRYPT static int undo_flush(bufinfo_T *bi); # endif static int undo_read(bufinfo_T *bi, char_u *buffer, size_t size); static int serialize_uep(bufinfo_T *bi, u_entry_T *uep); static u_entry_T *unserialize_uep(bufinfo_T *bi, int *error, char_u *file_name); static void serialize_pos(bufinfo_T *bi, pos_T pos); static void unserialize_pos(bufinfo_T *bi, pos_T *pos); static void serialize_visualinfo(bufinfo_T *bi, visualinfo_T *info); static void unserialize_visualinfo(bufinfo_T *bi, visualinfo_T *info); #endif static void u_saveline(linenr_T lnum); #define U_ALLOC_LINE(size) lalloc(size, FALSE) // used in undo_end() to report number of added and deleted lines static long u_newcount, u_oldcount; /* * When 'u' flag included in 'cpoptions', we behave like vi. Need to remember * the action that "u" should do. */ static int undo_undoes = FALSE; static int lastmark = 0; #if defined(U_DEBUG) || defined(PROTO) /* * Check the undo structures for being valid. Print a warning when something * looks wrong. */ static int seen_b_u_curhead; static int seen_b_u_newhead; static int header_count; static void u_check_tree(u_header_T *uhp, u_header_T *exp_uh_next, u_header_T *exp_uh_alt_prev) { u_entry_T *uep; if (uhp == NULL) return; ++header_count; if (uhp == curbuf->b_u_curhead && ++seen_b_u_curhead > 1) { emsg("b_u_curhead found twice (looping?)"); return; } if (uhp == curbuf->b_u_newhead && ++seen_b_u_newhead > 1) { emsg("b_u_newhead found twice (looping?)"); return; } if (uhp->uh_magic != UH_MAGIC) emsg("uh_magic wrong (may be using freed memory)"); else { // Check pointers back are correct. if (uhp->uh_next.ptr != exp_uh_next) { emsg("uh_next wrong"); smsg("expected: 0x%x, actual: 0x%x", exp_uh_next, uhp->uh_next.ptr); } if (uhp->uh_alt_prev.ptr != exp_uh_alt_prev) { emsg("uh_alt_prev wrong"); smsg("expected: 0x%x, actual: 0x%x", exp_uh_alt_prev, uhp->uh_alt_prev.ptr); } // Check the undo tree at this header. for (uep = uhp->uh_entry; uep != NULL; uep = uep->ue_next) { if (uep->ue_magic != UE_MAGIC) { emsg("ue_magic wrong (may be using freed memory)"); break; } } // Check the next alt tree. u_check_tree(uhp->uh_alt_next.ptr, uhp->uh_next.ptr, uhp); // Check the next header in this branch. u_check_tree(uhp->uh_prev.ptr, uhp, NULL); } } static void u_check(int newhead_may_be_NULL) { seen_b_u_newhead = 0; seen_b_u_curhead = 0; header_count = 0; u_check_tree(curbuf->b_u_oldhead, NULL, NULL); if (seen_b_u_newhead == 0 && curbuf->b_u_oldhead != NULL && !(newhead_may_be_NULL && curbuf->b_u_newhead == NULL)) semsg("b_u_newhead invalid: 0x%x", curbuf->b_u_newhead); if (curbuf->b_u_curhead != NULL && seen_b_u_curhead == 0) semsg("b_u_curhead invalid: 0x%x", curbuf->b_u_curhead); if (header_count != curbuf->b_u_numhead) { emsg("b_u_numhead invalid"); smsg("expected: %ld, actual: %ld", (long)header_count, (long)curbuf->b_u_numhead); } } #endif /* * Save the current line for both the "u" and "U" command. * Careful: may trigger autocommands that reload the buffer. * Returns OK or FAIL. */ int u_save_cursor(void) { return (u_save((linenr_T)(curwin->w_cursor.lnum - 1), (linenr_T)(curwin->w_cursor.lnum + 1))); } /* * Save the lines between "top" and "bot" for both the "u" and "U" command. * "top" may be 0 and bot may be curbuf->b_ml.ml_line_count + 1. * Careful: may trigger autocommands that reload the buffer. * Returns FAIL when lines could not be saved, OK otherwise. */ int u_save(linenr_T top, linenr_T bot) { if (undo_off) return OK; if (top >= bot || bot > curbuf->b_ml.ml_line_count + 1) return FAIL; // rely on caller to give an error message if (top + 2 == bot) u_saveline((linenr_T)(top + 1)); return (u_savecommon(top, bot, (linenr_T)0, FALSE)); } /* * Save the line "lnum" (used by ":s" and "~" command). * The line is replaced, so the new bottom line is lnum + 1. * Careful: may trigger autocommands that reload the buffer. * Returns FAIL when lines could not be saved, OK otherwise. */ int u_savesub(linenr_T lnum) { if (undo_off) return OK; return (u_savecommon(lnum - 1, lnum + 1, lnum + 1, FALSE)); } /* * A new line is inserted before line "lnum" (used by :s command). * The line is inserted, so the new bottom line is lnum + 1. * Careful: may trigger autocommands that reload the buffer. * Returns FAIL when lines could not be saved, OK otherwise. */ int u_inssub(linenr_T lnum) { if (undo_off) return OK; return (u_savecommon(lnum - 1, lnum, lnum + 1, FALSE)); } /* * Save the lines "lnum" - "lnum" + nlines (used by delete command). * The lines are deleted, so the new bottom line is lnum, unless the buffer * becomes empty. * Careful: may trigger autocommands that reload the buffer. * Returns FAIL when lines could not be saved, OK otherwise. */ int u_savedel(linenr_T lnum, long nlines) { if (undo_off) return OK; return (u_savecommon(lnum - 1, lnum + nlines, nlines == curbuf->b_ml.ml_line_count ? 2 : lnum, FALSE)); } /* * Return TRUE when undo is allowed. Otherwise give an error message and * return FALSE. */ int undo_allowed(void) { // Don't allow changes when 'modifiable' is off. if (!curbuf->b_p_ma) { emsg(_(e_modifiable)); return FALSE; } #ifdef HAVE_SANDBOX // In the sandbox it's not allowed to change the text. if (sandbox != 0) { emsg(_(e_sandbox)); return FALSE; } #endif // Don't allow changes in the buffer while editing the cmdline. The // caller of getcmdline() may get confused. if (textwinlock != 0 || textlock != 0) { emsg(_(e_textlock)); return FALSE; } return TRUE; } /* * Get the undolevel value for the current buffer. */ static long get_undolevel(void) { if (curbuf->b_p_ul == NO_LOCAL_UNDOLEVEL) return p_ul; return curbuf->b_p_ul; } /* * u_save_line(): save an allocated copy of line "lnum" into "ul". * Returns FAIL when out of memory. */ static int u_save_line(undoline_T *ul, linenr_T lnum) { char_u *line = ml_get(lnum); if (curbuf->b_ml.ml_line_len == 0) { ul->ul_len = 1; ul->ul_line = vim_strsave((char_u *)""); } else { // This uses the length in the memline, thus text properties are // included. ul->ul_len = curbuf->b_ml.ml_line_len; ul->ul_line = vim_memsave(line, ul->ul_len); } return ul->ul_line == NULL ? FAIL : OK; } /* * Common code for various ways to save text before a change. * "top" is the line above the first changed line. * "bot" is the line below the last changed line. * "newbot" is the new bottom line. Use zero when not known. * "reload" is TRUE when saving for a buffer reload. * Careful: may trigger autocommands that reload the buffer. * Returns FAIL when lines could not be saved, OK otherwise. */ int u_savecommon( linenr_T top, linenr_T bot, linenr_T newbot, int reload) { linenr_T lnum; long i; u_header_T *uhp; u_header_T *old_curhead; u_entry_T *uep; u_entry_T *prev_uep; long size; if (!reload) { // When making changes is not allowed return FAIL. It's a crude way // to make all change commands fail. if (!undo_allowed()) return FAIL; #ifdef FEAT_NETBEANS_INTG /* * Netbeans defines areas that cannot be modified. Bail out here when * trying to change text in a guarded area. */ if (netbeans_active()) { if (netbeans_is_guarded(top, bot)) { emsg(_(e_guarded)); return FAIL; } if (curbuf->b_p_ro) { emsg(_(e_nbreadonly)); return FAIL; } } #endif #ifdef FEAT_TERMINAL // A change in a terminal buffer removes the highlighting. term_change_in_curbuf(); #endif /* * Saving text for undo means we are going to make a change. Give a * warning for a read-only file before making the change, so that the * FileChangedRO event can replace the buffer with a read-write version * (e.g., obtained from a source control system). */ change_warning(0); if (bot > curbuf->b_ml.ml_line_count + 1) { // This happens when the FileChangedRO autocommand changes the // file in a way it becomes shorter. emsg(_("E881: Line count changed unexpectedly")); return FAIL; } } #ifdef U_DEBUG u_check(FALSE); #endif size = bot - top - 1; /* * If curbuf->b_u_synced == TRUE make a new header. */ if (curbuf->b_u_synced) { #ifdef FEAT_JUMPLIST // Need to create new entry in b_changelist. curbuf->b_new_change = TRUE; #endif if (get_undolevel() >= 0) { /* * Make a new header entry. Do this first so that we don't mess * up the undo info when out of memory. */ uhp = U_ALLOC_LINE(sizeof(u_header_T)); if (uhp == NULL) goto nomem; #ifdef U_DEBUG uhp->uh_magic = UH_MAGIC; #endif } else uhp = NULL; /* * If we undid more than we redid, move the entry lists before and * including curbuf->b_u_curhead to an alternate branch. */ old_curhead = curbuf->b_u_curhead; if (old_curhead != NULL) { curbuf->b_u_newhead = old_curhead->uh_next.ptr; curbuf->b_u_curhead = NULL; } /* * free headers to keep the size right */ while (curbuf->b_u_numhead > get_undolevel() && curbuf->b_u_oldhead != NULL) { u_header_T *uhfree = curbuf->b_u_oldhead; if (uhfree == old_curhead) // Can't reconnect the branch, delete all of it. u_freebranch(curbuf, uhfree, &old_curhead); else if (uhfree->uh_alt_next.ptr == NULL) // There is no branch, only free one header. u_freeheader(curbuf, uhfree, &old_curhead); else { // Free the oldest alternate branch as a whole. while (uhfree->uh_alt_next.ptr != NULL) uhfree = uhfree->uh_alt_next.ptr; u_freebranch(curbuf, uhfree, &old_curhead); } #ifdef U_DEBUG u_check(TRUE); #endif } if (uhp == NULL) // no undo at all { if (old_curhead != NULL) u_freebranch(curbuf, old_curhead, NULL); curbuf->b_u_synced = FALSE; return OK; } uhp->uh_prev.ptr = NULL; uhp->uh_next.ptr = curbuf->b_u_newhead; uhp->uh_alt_next.ptr = old_curhead; if (old_curhead != NULL) { uhp->uh_alt_prev.ptr = old_curhead->uh_alt_prev.ptr; if (uhp->uh_alt_prev.ptr != NULL) uhp->uh_alt_prev.ptr->uh_alt_next.ptr = uhp; old_curhead->uh_alt_prev.ptr = uhp; if (curbuf->b_u_oldhead == old_curhead) curbuf->b_u_oldhead = uhp; } else uhp->uh_alt_prev.ptr = NULL; if (curbuf->b_u_newhead != NULL) curbuf->b_u_newhead->uh_prev.ptr = uhp; uhp->uh_seq = ++curbuf->b_u_seq_last; curbuf->b_u_seq_cur = uhp->uh_seq; uhp->uh_time = vim_time(); uhp->uh_save_nr = 0; curbuf->b_u_time_cur = uhp->uh_time + 1; uhp->uh_walk = 0; uhp->uh_entry = NULL; uhp->uh_getbot_entry = NULL; uhp->uh_cursor = curwin->w_cursor; // save cursor pos. for undo if (virtual_active() && curwin->w_cursor.coladd > 0) uhp->uh_cursor_vcol = getviscol(); else uhp->uh_cursor_vcol = -1; // save changed and buffer empty flag for undo uhp->uh_flags = (curbuf->b_changed ? UH_CHANGED : 0) + ((curbuf->b_ml.ml_flags & ML_EMPTY) ? UH_EMPTYBUF : 0); // save named marks and Visual marks for undo mch_memmove(uhp->uh_namedm, curbuf->b_namedm, sizeof(pos_T) * NMARKS); uhp->uh_visual = curbuf->b_visual; curbuf->b_u_newhead = uhp; if (curbuf->b_u_oldhead == NULL) curbuf->b_u_oldhead = uhp; ++curbuf->b_u_numhead; } else { if (get_undolevel() < 0) // no undo at all return OK; /* * When saving a single line, and it has been saved just before, it * doesn't make sense saving it again. Saves a lot of memory when * making lots of changes inside the same line. * This is only possible if the previous change didn't increase or * decrease the number of lines. * Check the ten last changes. More doesn't make sense and takes too * long. */ if (size == 1) { uep = u_get_headentry(); prev_uep = NULL; for (i = 0; i < 10; ++i) { if (uep == NULL) break; // If lines have been inserted/deleted we give up. // Also when the line was included in a multi-line save. if ((curbuf->b_u_newhead->uh_getbot_entry != uep ? (uep->ue_top + uep->ue_size + 1 != (uep->ue_bot == 0 ? curbuf->b_ml.ml_line_count + 1 : uep->ue_bot)) : uep->ue_lcount != curbuf->b_ml.ml_line_count) || (uep->ue_size > 1 && top >= uep->ue_top && top + 2 <= uep->ue_top + uep->ue_size + 1)) break; // If it's the same line we can skip saving it again. if (uep->ue_size == 1 && uep->ue_top == top) { if (i > 0) { // It's not the last entry: get ue_bot for the last // entry now. Following deleted/inserted lines go to // the re-used entry. u_getbot(); curbuf->b_u_synced = FALSE; // Move the found entry to become the last entry. The // order of undo/redo doesn't matter for the entries // we move it over, since they don't change the line // count and don't include this line. It does matter // for the found entry if the line count is changed by // the executed command. prev_uep->ue_next = uep->ue_next; uep->ue_next = curbuf->b_u_newhead->uh_entry; curbuf->b_u_newhead->uh_entry = uep; } // The executed command may change the line count. if (newbot != 0) uep->ue_bot = newbot; else if (bot > curbuf->b_ml.ml_line_count) uep->ue_bot = 0; else { uep->ue_lcount = curbuf->b_ml.ml_line_count; curbuf->b_u_newhead->uh_getbot_entry = uep; } return OK; } prev_uep = uep; uep = uep->ue_next; } } // find line number for ue_bot for previous u_save() u_getbot(); } #if !defined(UNIX) && !defined(MSWIN) /* * With Amiga we can't handle big undo's, because * then u_alloc_line would have to allocate a block larger than 32K */ if (size >= 8000) goto nomem; #endif /* * add lines in front of entry list */ uep = U_ALLOC_LINE(sizeof(u_entry_T)); if (uep == NULL) goto nomem; CLEAR_POINTER(uep); #ifdef U_DEBUG uep->ue_magic = UE_MAGIC; #endif uep->ue_size = size; uep->ue_top = top; if (newbot != 0) uep->ue_bot = newbot; /* * Use 0 for ue_bot if bot is below last line. * Otherwise we have to compute ue_bot later. */ else if (bot > curbuf->b_ml.ml_line_count) uep->ue_bot = 0; else { uep->ue_lcount = curbuf->b_ml.ml_line_count; curbuf->b_u_newhead->uh_getbot_entry = uep; } if (size > 0) { if ((uep->ue_array = U_ALLOC_LINE(sizeof(undoline_T) * size)) == NULL) { u_freeentry(uep, 0L); goto nomem; } for (i = 0, lnum = top + 1; i < size; ++i) { fast_breakcheck(); if (got_int) { u_freeentry(uep, i); return FAIL; } if (u_save_line(&uep->ue_array[i], lnum++) == FAIL) { u_freeentry(uep, i); goto nomem; } } } else uep->ue_array = NULL; uep->ue_next = curbuf->b_u_newhead->uh_entry; curbuf->b_u_newhead->uh_entry = uep; curbuf->b_u_synced = FALSE; undo_undoes = FALSE; #ifdef U_DEBUG u_check(FALSE); #endif return OK; nomem: msg_silent = 0; // must display the prompt if (ask_yesno((char_u *)_("No undo possible; continue anyway"), TRUE) == 'y') { undo_off = TRUE; // will be reset when character typed return OK; } do_outofmem_msg((long_u)0); return FAIL; } #if defined(FEAT_PERSISTENT_UNDO) || defined(PROTO) # define UF_START_MAGIC "Vim\237UnDo\345" // magic at start of undofile # define UF_START_MAGIC_LEN 9 # define UF_HEADER_MAGIC 0x5fd0 // magic at start of header # define UF_HEADER_END_MAGIC 0xe7aa // magic after last header # define UF_ENTRY_MAGIC 0xf518 // magic at start of entry # define UF_ENTRY_END_MAGIC 0x3581 // magic after last entry # define UF_VERSION 2 // 2-byte undofile version number # define UF_VERSION_CRYPT 0x8002 // idem, encrypted // extra fields for header # define UF_LAST_SAVE_NR 1 // extra fields for uhp # define UHP_SAVE_NR 1 static char_u e_not_open[] = N_("E828: Cannot open undo file for writing: %s"); /* * Compute the hash for the current buffer text into hash[UNDO_HASH_SIZE]. */ void u_compute_hash(char_u *hash) { context_sha256_T ctx; linenr_T lnum; char_u *p; sha256_start(&ctx); for (lnum = 1; lnum <= curbuf->b_ml.ml_line_count; ++lnum) { p = ml_get(lnum); sha256_update(&ctx, p, (UINT32_T)(STRLEN(p) + 1)); } sha256_finish(&ctx, hash); } /* * Return an allocated string of the full path of the target undofile. * When "reading" is TRUE find the file to read, go over all directories in * 'undodir'. * When "reading" is FALSE use the first name where the directory exists. * Returns NULL when there is no place to write or no file to read. */ static char_u * u_get_undo_file_name(char_u *buf_ffname, int reading) { char_u *dirp; char_u dir_name[IOSIZE + 1]; char_u *munged_name = NULL; char_u *undo_file_name = NULL; int dir_len; char_u *p; stat_T st; char_u *ffname = buf_ffname; #ifdef HAVE_READLINK char_u fname_buf[MAXPATHL]; #endif if (ffname == NULL) return NULL; #ifdef HAVE_READLINK // Expand symlink in the file name, so that we put the undo file with the // actual file instead of with the symlink. if (resolve_symlink(ffname, fname_buf) == OK) ffname = fname_buf; #endif // Loop over 'undodir'. When reading find the first file that exists. // When not reading use the first directory that exists or ".". dirp = p_udir; while (*dirp != NUL) { dir_len = copy_option_part(&dirp, dir_name, IOSIZE, ","); if (dir_len == 1 && dir_name[0] == '.') { // Use same directory as the ffname, // "dir/name" -> "dir/.name.un~" undo_file_name = vim_strnsave(ffname, (int)(STRLEN(ffname) + 5)); if (undo_file_name == NULL) break; p = gettail(undo_file_name); #ifdef VMS // VMS can not handle more than one dot in the filenames // use "dir/name" -> "dir/_un_name" - add _un_ // at the beginning to keep the extension mch_memmove(p + 4, p, STRLEN(p) + 1); mch_memmove(p, "_un_", 4); #else // Use same directory as the ffname, // "dir/name" -> "dir/.name.un~" mch_memmove(p + 1, p, STRLEN(p) + 1); *p = '.'; STRCAT(p, ".un~"); #endif } else { dir_name[dir_len] = NUL; if (mch_isdir(dir_name)) { if (munged_name == NULL) { munged_name = vim_strsave(ffname); if (munged_name == NULL) return NULL; for (p = munged_name; *p != NUL; MB_PTR_ADV(p)) if (vim_ispathsep(*p)) *p = '%'; } undo_file_name = concat_fnames(dir_name, munged_name, TRUE); } } // When reading check if the file exists. if (undo_file_name != NULL && (!reading || mch_stat((char *)undo_file_name, &st) >= 0)) break; VIM_CLEAR(undo_file_name); } vim_free(munged_name); return undo_file_name; } static void corruption_error(char *mesg, char_u *file_name) { semsg(_("E825: Corrupted undo file (%s): %s"), mesg, file_name); } static void u_free_uhp(u_header_T *uhp) { u_entry_T *nuep; u_entry_T *uep; uep = uhp->uh_entry; while (uep != NULL) { nuep = uep->ue_next; u_freeentry(uep, uep->ue_size); uep = nuep; } vim_free(uhp); } /* * Write a sequence of bytes to the undo file. * Buffers and encrypts as needed. * Returns OK or FAIL. */ static int undo_write(bufinfo_T *bi, char_u *ptr, size_t len) { #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { size_t len_todo = len; char_u *p = ptr; while (bi->bi_used + len_todo >= CRYPT_BUF_SIZE) { size_t n = CRYPT_BUF_SIZE - bi->bi_used; mch_memmove(bi->bi_buffer + bi->bi_used, p, n); len_todo -= n; p += n; bi->bi_used = CRYPT_BUF_SIZE; if (undo_flush(bi) == FAIL) return FAIL; } if (len_todo > 0) { mch_memmove(bi->bi_buffer + bi->bi_used, p, len_todo); bi->bi_used += len_todo; } return OK; } #endif if (fwrite(ptr, len, (size_t)1, bi->bi_fp) != 1) return FAIL; return OK; } #ifdef FEAT_CRYPT static int undo_flush(bufinfo_T *bi) { if (bi->bi_buffer != NULL && bi->bi_state != NULL && bi->bi_used > 0) { crypt_encode_inplace(bi->bi_state, bi->bi_buffer, bi->bi_used); if (fwrite(bi->bi_buffer, bi->bi_used, (size_t)1, bi->bi_fp) != 1) return FAIL; bi->bi_used = 0; } return OK; } #endif /* * Write "ptr[len]" and crypt the bytes when needed. * Returns OK or FAIL. */ static int fwrite_crypt(bufinfo_T *bi, char_u *ptr, size_t len) { #ifdef FEAT_CRYPT char_u *copy; char_u small_buf[100]; size_t i; if (bi->bi_state != NULL && bi->bi_buffer == NULL) { // crypting every piece of text separately if (len < 100) copy = small_buf; // no malloc()/free() for short strings else { copy = lalloc(len, FALSE); if (copy == NULL) return 0; } crypt_encode(bi->bi_state, ptr, len, copy); i = fwrite(copy, len, (size_t)1, bi->bi_fp); if (copy != small_buf) vim_free(copy); return i == 1 ? OK : FAIL; } #endif return undo_write(bi, ptr, len); } /* * Write a number, MSB first, in "len" bytes. * Must match with undo_read_?c() functions. * Returns OK or FAIL. */ static int undo_write_bytes(bufinfo_T *bi, long_u nr, int len) { char_u buf[8]; int i; int bufi = 0; for (i = len - 1; i >= 0; --i) buf[bufi++] = (char_u)(nr >> (i * 8)); return undo_write(bi, buf, (size_t)len); } /* * Write the pointer to an undo header. Instead of writing the pointer itself * we use the sequence number of the header. This is converted back to * pointers when reading. */ static void put_header_ptr(bufinfo_T *bi, u_header_T *uhp) { undo_write_bytes(bi, (long_u)(uhp != NULL ? uhp->uh_seq : 0), 4); } static int undo_read_4c(bufinfo_T *bi) { #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { char_u buf[4]; int n; undo_read(bi, buf, (size_t)4); n = ((unsigned)buf[0] << 24) + (buf[1] << 16) + (buf[2] << 8) + buf[3]; return n; } #endif return get4c(bi->bi_fp); } static int undo_read_2c(bufinfo_T *bi) { #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { char_u buf[2]; int n; undo_read(bi, buf, (size_t)2); n = (buf[0] << 8) + buf[1]; return n; } #endif return get2c(bi->bi_fp); } static int undo_read_byte(bufinfo_T *bi) { #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { char_u buf[1]; undo_read(bi, buf, (size_t)1); return buf[0]; } #endif return getc(bi->bi_fp); } static time_t undo_read_time(bufinfo_T *bi) { #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { char_u buf[8]; time_t n = 0; int i; undo_read(bi, buf, (size_t)8); for (i = 0; i < 8; ++i) n = (n << 8) + buf[i]; return n; } #endif return get8ctime(bi->bi_fp); } /* * Read "buffer[size]" from the undo file. * Return OK or FAIL. */ static int undo_read(bufinfo_T *bi, char_u *buffer, size_t size) { int retval = OK; #ifdef FEAT_CRYPT if (bi->bi_buffer != NULL) { int size_todo = (int)size; char_u *p = buffer; while (size_todo > 0) { size_t n; if (bi->bi_used >= bi->bi_avail) { n = fread(bi->bi_buffer, 1, (size_t)CRYPT_BUF_SIZE, bi->bi_fp); if (n == 0) { retval = FAIL; break; } bi->bi_avail = n; bi->bi_used = 0; crypt_decode_inplace(bi->bi_state, bi->bi_buffer, bi->bi_avail); } n = size_todo; if (n > bi->bi_avail - bi->bi_used) n = bi->bi_avail - bi->bi_used; mch_memmove(p, bi->bi_buffer + bi->bi_used, n); bi->bi_used += n; size_todo -= (int)n; p += n; } } else #endif if (fread(buffer, (size_t)size, 1, bi->bi_fp) != 1) retval = FAIL; if (retval == FAIL) // Error may be checked for only later. Fill with zeros, // so that the reader won't use garbage. vim_memset(buffer, 0, size); return retval; } /* * Read a string of length "len" from "bi->bi_fd". * "len" can be zero to allocate an empty line. * Decrypt the bytes if needed. * Append a NUL. * Returns a pointer to allocated memory or NULL for failure. */ static char_u * read_string_decrypt(bufinfo_T *bi, int len) { char_u *ptr = alloc(len + 1); if (ptr != NULL) { if (len > 0 && undo_read(bi, ptr, len) == FAIL) { vim_free(ptr); return NULL; } // In case there are text properties there already is a NUL, but // checking for that is more expensive than just adding a dummy byte. ptr[len] = NUL; #ifdef FEAT_CRYPT if (bi->bi_state != NULL && bi->bi_buffer == NULL) crypt_decode_inplace(bi->bi_state, ptr, len); #endif } return ptr; } /* * Writes the (not encrypted) header and initializes encryption if needed. */ static int serialize_header(bufinfo_T *bi, char_u *hash) { long len; buf_T *buf = bi->bi_buf; FILE *fp = bi->bi_fp; char_u time_buf[8]; // Start writing, first the magic marker and undo info version. if (fwrite(UF_START_MAGIC, (size_t)UF_START_MAGIC_LEN, (size_t)1, fp) != 1) return FAIL; // If the buffer is encrypted then all text bytes following will be // encrypted. Numbers and other info is not crypted. #ifdef FEAT_CRYPT if (*buf->b_p_key != NUL) { char_u *header; int header_len; undo_write_bytes(bi, (long_u)UF_VERSION_CRYPT, 2); bi->bi_state = crypt_create_for_writing(crypt_get_method_nr(buf), buf->b_p_key, &header, &header_len); if (bi->bi_state == NULL) return FAIL; len = (long)fwrite(header, (size_t)header_len, (size_t)1, fp); vim_free(header); if (len != 1) { crypt_free_state(bi->bi_state); bi->bi_state = NULL; return FAIL; } if (crypt_whole_undofile(crypt_get_method_nr(buf))) { bi->bi_buffer = alloc(CRYPT_BUF_SIZE); if (bi->bi_buffer == NULL) { crypt_free_state(bi->bi_state); bi->bi_state = NULL; return FAIL; } bi->bi_used = 0; } } else #endif undo_write_bytes(bi, (long_u)UF_VERSION, 2); // Write a hash of the buffer text, so that we can verify it is still the // same when reading the buffer text. if (undo_write(bi, hash, (size_t)UNDO_HASH_SIZE) == FAIL) return FAIL; // buffer-specific data undo_write_bytes(bi, (long_u)buf->b_ml.ml_line_count, 4); len = buf->b_u_line_ptr.ul_line == NULL ? 0L : (long)STRLEN(buf->b_u_line_ptr.ul_line); undo_write_bytes(bi, (long_u)len, 4); if (len > 0 && fwrite_crypt(bi, buf->b_u_line_ptr.ul_line, (size_t)len) == FAIL) return FAIL; undo_write_bytes(bi, (long_u)buf->b_u_line_lnum, 4); undo_write_bytes(bi, (long_u)buf->b_u_line_colnr, 4); // Undo structures header data put_header_ptr(bi, buf->b_u_oldhead); put_header_ptr(bi, buf->b_u_newhead); put_header_ptr(bi, buf->b_u_curhead); undo_write_bytes(bi, (long_u)buf->b_u_numhead, 4); undo_write_bytes(bi, (long_u)buf->b_u_seq_last, 4); undo_write_bytes(bi, (long_u)buf->b_u_seq_cur, 4); time_to_bytes(buf->b_u_time_cur, time_buf); undo_write(bi, time_buf, 8); // Optional fields. undo_write_bytes(bi, 4, 1); undo_write_bytes(bi, UF_LAST_SAVE_NR, 1); undo_write_bytes(bi, (long_u)buf->b_u_save_nr_last, 4); undo_write_bytes(bi, 0, 1); // end marker return OK; } static int serialize_uhp(bufinfo_T *bi, u_header_T *uhp) { int i; u_entry_T *uep; char_u time_buf[8]; if (undo_write_bytes(bi, (long_u)UF_HEADER_MAGIC, 2) == FAIL) return FAIL; put_header_ptr(bi, uhp->uh_next.ptr); put_header_ptr(bi, uhp->uh_prev.ptr); put_header_ptr(bi, uhp->uh_alt_next.ptr); put_header_ptr(bi, uhp->uh_alt_prev.ptr); undo_write_bytes(bi, uhp->uh_seq, 4); serialize_pos(bi, uhp->uh_cursor); undo_write_bytes(bi, (long_u)uhp->uh_cursor_vcol, 4); undo_write_bytes(bi, (long_u)uhp->uh_flags, 2); // Assume NMARKS will stay the same. for (i = 0; i < NMARKS; ++i) serialize_pos(bi, uhp->uh_namedm[i]); serialize_visualinfo(bi, &uhp->uh_visual); time_to_bytes(uhp->uh_time, time_buf); undo_write(bi, time_buf, 8); // Optional fields. undo_write_bytes(bi, 4, 1); undo_write_bytes(bi, UHP_SAVE_NR, 1); undo_write_bytes(bi, (long_u)uhp->uh_save_nr, 4); undo_write_bytes(bi, 0, 1); // end marker // Write all the entries. for (uep = uhp->uh_entry; uep != NULL; uep = uep->ue_next) { undo_write_bytes(bi, (long_u)UF_ENTRY_MAGIC, 2); if (serialize_uep(bi, uep) == FAIL) return FAIL; } undo_write_bytes(bi, (long_u)UF_ENTRY_END_MAGIC, 2); return OK; } static u_header_T * unserialize_uhp(bufinfo_T *bi, char_u *file_name) { u_header_T *uhp; int i; u_entry_T *uep, *last_uep; int c; int error; uhp = U_ALLOC_LINE(sizeof(u_header_T)); if (uhp == NULL) return NULL; CLEAR_POINTER(uhp); #ifdef U_DEBUG uhp->uh_magic = UH_MAGIC; #endif uhp->uh_next.seq = undo_read_4c(bi); uhp->uh_prev.seq = undo_read_4c(bi); uhp->uh_alt_next.seq = undo_read_4c(bi); uhp->uh_alt_prev.seq = undo_read_4c(bi); uhp->uh_seq = undo_read_4c(bi); if (uhp->uh_seq <= 0) { corruption_error("uh_seq", file_name); vim_free(uhp); return NULL; } unserialize_pos(bi, &uhp->uh_cursor); uhp->uh_cursor_vcol = undo_read_4c(bi); uhp->uh_flags = undo_read_2c(bi); for (i = 0; i < NMARKS; ++i) unserialize_pos(bi, &uhp->uh_namedm[i]); unserialize_visualinfo(bi, &uhp->uh_visual); uhp->uh_time = undo_read_time(bi); // Optional fields. for (;;) { int len = undo_read_byte(bi); int what; if (len == EOF) { corruption_error("truncated", file_name); u_free_uhp(uhp); return NULL; } if (len == 0) break; what = undo_read_byte(bi); switch (what) { case UHP_SAVE_NR: uhp->uh_save_nr = undo_read_4c(bi); break; default: // field not supported, skip while (--len >= 0) (void)undo_read_byte(bi); } } // Unserialize the uep list. last_uep = NULL; while ((c = undo_read_2c(bi)) == UF_ENTRY_MAGIC) { error = FALSE; uep = unserialize_uep(bi, &error, file_name); if (last_uep == NULL) uhp->uh_entry = uep; else last_uep->ue_next = uep; last_uep = uep; if (uep == NULL || error) { u_free_uhp(uhp); return NULL; } } if (c != UF_ENTRY_END_MAGIC) { corruption_error("entry end", file_name); u_free_uhp(uhp); return NULL; } return uhp; } /* * Serialize "uep". */ static int serialize_uep( bufinfo_T *bi, u_entry_T *uep) { int i; size_t len; undo_write_bytes(bi, (long_u)uep->ue_top, 4); undo_write_bytes(bi, (long_u)uep->ue_bot, 4); undo_write_bytes(bi, (long_u)uep->ue_lcount, 4); undo_write_bytes(bi, (long_u)uep->ue_size, 4); for (i = 0; i < uep->ue_size; ++i) { // Text is written without the text properties, since we cannot restore // the text property types. len = STRLEN(uep->ue_array[i].ul_line); if (undo_write_bytes(bi, (long_u)len, 4) == FAIL) return FAIL; if (len > 0 && fwrite_crypt(bi, uep->ue_array[i].ul_line, len) == FAIL) return FAIL; } return OK; } static u_entry_T * unserialize_uep(bufinfo_T *bi, int *error, char_u *file_name) { int i; u_entry_T *uep; undoline_T *array = NULL; char_u *line; int line_len; uep = U_ALLOC_LINE(sizeof(u_entry_T)); if (uep == NULL) return NULL; CLEAR_POINTER(uep); #ifdef U_DEBUG uep->ue_magic = UE_MAGIC; #endif uep->ue_top = undo_read_4c(bi); uep->ue_bot = undo_read_4c(bi); uep->ue_lcount = undo_read_4c(bi); uep->ue_size = undo_read_4c(bi); if (uep->ue_size > 0) { if (uep->ue_size < LONG_MAX / (int)sizeof(char_u *)) array = U_ALLOC_LINE(sizeof(undoline_T) * uep->ue_size); if (array == NULL) { *error = TRUE; return uep; } vim_memset(array, 0, sizeof(undoline_T) * uep->ue_size); } uep->ue_array = array; for (i = 0; i < uep->ue_size; ++i) { line_len = undo_read_4c(bi); if (line_len >= 0) line = read_string_decrypt(bi, line_len); else { line = NULL; corruption_error("line length", file_name); } if (line == NULL) { *error = TRUE; return uep; } array[i].ul_line = line; array[i].ul_len = line_len + 1; } return uep; } /* * Serialize "pos". */ static void serialize_pos(bufinfo_T *bi, pos_T pos) { undo_write_bytes(bi, (long_u)pos.lnum, 4); undo_write_bytes(bi, (long_u)pos.col, 4); undo_write_bytes(bi, (long_u)pos.coladd, 4); } /* * Unserialize the pos_T at the current position. */ static void unserialize_pos(bufinfo_T *bi, pos_T *pos) { pos->lnum = undo_read_4c(bi); if (pos->lnum < 0) pos->lnum = 0; pos->col = undo_read_4c(bi); if (pos->col < 0) pos->col = 0; pos->coladd = undo_read_4c(bi); if (pos->coladd < 0) pos->coladd = 0; } /* * Serialize "info". */ static void serialize_visualinfo(bufinfo_T *bi, visualinfo_T *info) { serialize_pos(bi, info->vi_start); serialize_pos(bi, info->vi_end); undo_write_bytes(bi, (long_u)info->vi_mode, 4); undo_write_bytes(bi, (long_u)info->vi_curswant, 4); } /* * Unserialize the visualinfo_T at the current position. */ static void unserialize_visualinfo(bufinfo_T *bi, visualinfo_T *info) { unserialize_pos(bi, &info->vi_start); unserialize_pos(bi, &info->vi_end); info->vi_mode = undo_read_4c(bi); info->vi_curswant = undo_read_4c(bi); } /* * Write the undo tree in an undo file. * When "name" is not NULL, use it as the name of the undo file. * Otherwise use buf->b_ffname to generate the undo file name. * "buf" must never be null, buf->b_ffname is used to obtain the original file * permissions. * "forceit" is TRUE for ":wundo!", FALSE otherwise. * "hash[UNDO_HASH_SIZE]" must be the hash value of the buffer text. */ void u_write_undo( char_u *name, int forceit, buf_T *buf, char_u *hash) { u_header_T *uhp; char_u *file_name; int mark; #ifdef U_DEBUG int headers_written = 0; #endif int fd; FILE *fp = NULL; int perm; int write_ok = FALSE; #ifdef UNIX int st_old_valid = FALSE; stat_T st_old; stat_T st_new; #endif bufinfo_T bi; CLEAR_FIELD(bi); if (name == NULL) { file_name = u_get_undo_file_name(buf->b_ffname, FALSE); if (file_name == NULL) { if (p_verbose > 0) { verbose_enter(); smsg( _("Cannot write undo file in any directory in 'undodir'")); verbose_leave(); } return; } } else file_name = name; /* * Decide about the permission to use for the undo file. If the buffer * has a name use the permission of the original file. Otherwise only * allow the user to access the undo file. */ perm = 0600; if (buf->b_ffname != NULL) { #ifdef UNIX if (mch_stat((char *)buf->b_ffname, &st_old) >= 0) { perm = st_old.st_mode; st_old_valid = TRUE; } #else perm = mch_getperm(buf->b_ffname); if (perm < 0) perm = 0600; #endif } // strip any s-bit and executable bit perm = perm & 0666; // If the undo file already exists, verify that it actually is an undo // file, and delete it. if (mch_getperm(file_name) >= 0) { if (name == NULL || !forceit) { // Check we can read it and it's an undo file. fd = mch_open((char *)file_name, O_RDONLY|O_EXTRA, 0); if (fd < 0) { if (name != NULL || p_verbose > 0) { if (name == NULL) verbose_enter(); smsg( _("Will not overwrite with undo file, cannot read: %s"), file_name); if (name == NULL) verbose_leave(); } goto theend; } else { char_u mbuf[UF_START_MAGIC_LEN]; int len; len = read_eintr(fd, mbuf, UF_START_MAGIC_LEN); close(fd); if (len < UF_START_MAGIC_LEN || memcmp(mbuf, UF_START_MAGIC, UF_START_MAGIC_LEN) != 0) { if (name != NULL || p_verbose > 0) { if (name == NULL) verbose_enter(); smsg( _("Will not overwrite, this is not an undo file: %s"), file_name); if (name == NULL) verbose_leave(); } goto theend; } } } mch_remove(file_name); } // If there is no undo information at all, quit here after deleting any // existing undo file. if (buf->b_u_numhead == 0 && buf->b_u_line_ptr.ul_line == NULL) { if (p_verbose > 0) verb_msg(_("Skipping undo file write, nothing to undo")); goto theend; } fd = mch_open((char *)file_name, O_CREAT|O_EXTRA|O_WRONLY|O_EXCL|O_NOFOLLOW, perm); if (fd < 0) { semsg(_(e_not_open), file_name); goto theend; } (void)mch_setperm(file_name, perm); if (p_verbose > 0) { verbose_enter(); smsg(_("Writing undo file: %s"), file_name); verbose_leave(); } #ifdef U_DEBUG // Check there is no problem in undo info before writing. u_check(FALSE); #endif #ifdef UNIX /* * Try to set the group of the undo file same as the original file. If * this fails, set the protection bits for the group same as the * protection bits for others. */ if (st_old_valid && mch_stat((char *)file_name, &st_new) >= 0 && st_new.st_gid != st_old.st_gid # ifdef HAVE_FCHOWN // sequent-ptx lacks fchown() && fchown(fd, (uid_t)-1, st_old.st_gid) != 0 # endif ) mch_setperm(file_name, (perm & 0707) | ((perm & 07) << 3)); # if defined(HAVE_SELINUX) || defined(HAVE_SMACK) if (buf->b_ffname != NULL) mch_copy_sec(buf->b_ffname, file_name); # endif #endif fp = fdopen(fd, "w"); if (fp == NULL) { semsg(_(e_not_open), file_name); close(fd); mch_remove(file_name); goto theend; } // Undo must be synced. u_sync(TRUE); /* * Write the header. Initializes encryption, if enabled. */ bi.bi_buf = buf; bi.bi_fp = fp; if (serialize_header(&bi, hash) == FAIL) goto write_error; /* * Iteratively serialize UHPs and their UEPs from the top down. */ mark = ++lastmark; uhp = buf->b_u_oldhead; while (uhp != NULL) { // Serialize current UHP if we haven't seen it if (uhp->uh_walk != mark) { uhp->uh_walk = mark; #ifdef U_DEBUG ++headers_written; #endif if (serialize_uhp(&bi, uhp) == FAIL) goto write_error; } // Now walk through the tree - algorithm from undo_time(). if (uhp->uh_prev.ptr != NULL && uhp->uh_prev.ptr->uh_walk != mark) uhp = uhp->uh_prev.ptr; else if (uhp->uh_alt_next.ptr != NULL && uhp->uh_alt_next.ptr->uh_walk != mark) uhp = uhp->uh_alt_next.ptr; else if (uhp->uh_next.ptr != NULL && uhp->uh_alt_prev.ptr == NULL && uhp->uh_next.ptr->uh_walk != mark) uhp = uhp->uh_next.ptr; else if (uhp->uh_alt_prev.ptr != NULL) uhp = uhp->uh_alt_prev.ptr; else uhp = uhp->uh_next.ptr; } if (undo_write_bytes(&bi, (long_u)UF_HEADER_END_MAGIC, 2) == OK) write_ok = TRUE; #ifdef U_DEBUG if (headers_written != buf->b_u_numhead) { semsg("Written %ld headers, ...", headers_written); semsg("... but numhead is %ld", buf->b_u_numhead); } #endif #ifdef FEAT_CRYPT if (bi.bi_state != NULL && undo_flush(&bi) == FAIL) write_ok = FALSE; #endif write_error: fclose(fp); if (!write_ok) semsg(_("E829: write error in undo file: %s"), file_name); #if defined(MSWIN) // Copy file attributes; for systems where this can only be done after // closing the file. if (buf->b_ffname != NULL) (void)mch_copy_file_attribute(buf->b_ffname, file_name); #endif #ifdef HAVE_ACL if (buf->b_ffname != NULL) { vim_acl_T acl; // For systems that support ACL: get the ACL from the original file. acl = mch_get_acl(buf->b_ffname); mch_set_acl(file_name, acl); mch_free_acl(acl); } #endif theend: #ifdef FEAT_CRYPT if (bi.bi_state != NULL) crypt_free_state(bi.bi_state); vim_free(bi.bi_buffer); #endif if (file_name != name) vim_free(file_name); } /* * Load the undo tree from an undo file. * If "name" is not NULL use it as the undo file name. This also means being * a bit more verbose. * Otherwise use curbuf->b_ffname to generate the undo file name. * "hash[UNDO_HASH_SIZE]" must be the hash value of the buffer text. */ void u_read_undo(char_u *name, char_u *hash, char_u *orig_name UNUSED) { char_u *file_name; FILE *fp; long version, str_len; undoline_T line_ptr; linenr_T line_lnum; colnr_T line_colnr; linenr_T line_count; long num_head = 0; long old_header_seq, new_header_seq, cur_header_seq; long seq_last, seq_cur; long last_save_nr = 0; short old_idx = -1, new_idx = -1, cur_idx = -1; long num_read_uhps = 0; time_t seq_time; int i, j; int c; u_header_T *uhp; u_header_T **uhp_table = NULL; char_u read_hash[UNDO_HASH_SIZE]; char_u magic_buf[UF_START_MAGIC_LEN]; #ifdef U_DEBUG int *uhp_table_used; #endif #ifdef UNIX stat_T st_orig; stat_T st_undo; #endif bufinfo_T bi; CLEAR_FIELD(bi); line_ptr.ul_len = 0; line_ptr.ul_line = NULL; if (name == NULL) { file_name = u_get_undo_file_name(curbuf->b_ffname, TRUE); if (file_name == NULL) return; #ifdef UNIX // For safety we only read an undo file if the owner is equal to the // owner of the text file or equal to the current user. if (mch_stat((char *)orig_name, &st_orig) >= 0 && mch_stat((char *)file_name, &st_undo) >= 0 && st_orig.st_uid != st_undo.st_uid && st_undo.st_uid != getuid()) { if (p_verbose > 0) { verbose_enter(); smsg(_("Not reading undo file, owner differs: %s"), file_name); verbose_leave(); } return; } #endif } else file_name = name; if (p_verbose > 0) { verbose_enter(); smsg(_("Reading undo file: %s"), file_name); verbose_leave(); } fp = mch_fopen((char *)file_name, "r"); if (fp == NULL) { if (name != NULL || p_verbose > 0) semsg(_("E822: Cannot open undo file for reading: %s"), file_name); goto error; } bi.bi_buf = curbuf; bi.bi_fp = fp; /* * Read the undo file header. */ if (fread(magic_buf, UF_START_MAGIC_LEN, 1, fp) != 1 || memcmp(magic_buf, UF_START_MAGIC, UF_START_MAGIC_LEN) != 0) { semsg(_("E823: Not an undo file: %s"), file_name); goto error; } version = get2c(fp); if (version == UF_VERSION_CRYPT) { #ifdef FEAT_CRYPT if (*curbuf->b_p_key == NUL) { semsg(_("E832: Non-encrypted file has encrypted undo file: %s"), file_name); goto error; } bi.bi_state = crypt_create_from_file(fp, curbuf->b_p_key); if (bi.bi_state == NULL) { semsg(_("E826: Undo file decryption failed: %s"), file_name); goto error; } if (crypt_whole_undofile(bi.bi_state->method_nr)) { bi.bi_buffer = alloc(CRYPT_BUF_SIZE); if (bi.bi_buffer == NULL) { crypt_free_state(bi.bi_state); bi.bi_state = NULL; goto error; } bi.bi_avail = 0; bi.bi_used = 0; } #else semsg(_("E827: Undo file is encrypted: %s"), file_name); goto error; #endif } else if (version != UF_VERSION) { semsg(_("E824: Incompatible undo file: %s"), file_name); goto error; } if (undo_read(&bi, read_hash, (size_t)UNDO_HASH_SIZE) == FAIL) { corruption_error("hash", file_name); goto error; } line_count = (linenr_T)undo_read_4c(&bi); if (memcmp(hash, read_hash, UNDO_HASH_SIZE) != 0 || line_count != curbuf->b_ml.ml_line_count) { if (p_verbose > 0 || name != NULL) { if (name == NULL) verbose_enter(); give_warning((char_u *) _("File contents changed, cannot use undo info"), TRUE); if (name == NULL) verbose_leave(); } goto error; } // Read undo data for "U" command. str_len = undo_read_4c(&bi); if (str_len < 0) goto error; if (str_len > 0) { line_ptr.ul_line = read_string_decrypt(&bi, str_len); line_ptr.ul_len = str_len + 1; } line_lnum = (linenr_T)undo_read_4c(&bi); line_colnr = (colnr_T)undo_read_4c(&bi); if (line_lnum < 0 || line_colnr < 0) { corruption_error("line lnum/col", file_name); goto error; } // Begin general undo data old_header_seq = undo_read_4c(&bi); new_header_seq = undo_read_4c(&bi); cur_header_seq = undo_read_4c(&bi); num_head = undo_read_4c(&bi); seq_last = undo_read_4c(&bi); seq_cur = undo_read_4c(&bi); seq_time = undo_read_time(&bi); // Optional header fields. for (;;) { int len = undo_read_byte(&bi); int what; if (len == 0 || len == EOF) break; what = undo_read_byte(&bi); switch (what) { case UF_LAST_SAVE_NR: last_save_nr = undo_read_4c(&bi); break; default: // field not supported, skip while (--len >= 0) (void)undo_read_byte(&bi); } } // uhp_table will store the freshly created undo headers we allocate // until we insert them into curbuf. The table remains sorted by the // sequence numbers of the headers. // When there are no headers uhp_table is NULL. if (num_head > 0) { if (num_head < LONG_MAX / (long)sizeof(u_header_T *)) uhp_table = U_ALLOC_LINE(num_head * sizeof(u_header_T *)); if (uhp_table == NULL) goto error; } while ((c = undo_read_2c(&bi)) == UF_HEADER_MAGIC) { if (num_read_uhps >= num_head) { corruption_error("num_head too small", file_name); goto error; } uhp = unserialize_uhp(&bi, file_name); if (uhp == NULL) goto error; uhp_table[num_read_uhps++] = uhp; } if (num_read_uhps != num_head) { corruption_error("num_head", file_name); goto error; } if (c != UF_HEADER_END_MAGIC) { corruption_error("end marker", file_name); goto error; } #ifdef U_DEBUG uhp_table_used = alloc_clear(sizeof(int) * num_head + 1); # define SET_FLAG(j) ++uhp_table_used[j] #else # define SET_FLAG(j) #endif // We have put all of the headers into a table. Now we iterate through the // table and swizzle each sequence number we have stored in uh_*_seq into // a pointer corresponding to the header with that sequence number. for (i = 0; i < num_head; i++) { uhp = uhp_table[i]; if (uhp == NULL) continue; for (j = 0; j < num_head; j++) if (uhp_table[j] != NULL && i != j && uhp_table[i]->uh_seq == uhp_table[j]->uh_seq) { corruption_error("duplicate uh_seq", file_name); goto error; } for (j = 0; j < num_head; j++) if (uhp_table[j] != NULL && uhp_table[j]->uh_seq == uhp->uh_next.seq) { uhp->uh_next.ptr = uhp_table[j]; SET_FLAG(j); break; } for (j = 0; j < num_head; j++) if (uhp_table[j] != NULL && uhp_table[j]->uh_seq == uhp->uh_prev.seq) { uhp->uh_prev.ptr = uhp_table[j]; SET_FLAG(j); break; } for (j = 0; j < num_head; j++) if (uhp_table[j] != NULL && uhp_table[j]->uh_seq == uhp->uh_alt_next.seq) { uhp->uh_alt_next.ptr = uhp_table[j]; SET_FLAG(j); break; } for (j = 0; j < num_head; j++) if (uhp_table[j] != NULL && uhp_table[j]->uh_seq == uhp->uh_alt_prev.seq) { uhp->uh_alt_prev.ptr = uhp_table[j]; SET_FLAG(j); break; } if (old_header_seq > 0 && old_idx < 0 && uhp->uh_seq == old_header_seq) { old_idx = i; SET_FLAG(i); } if (new_header_seq > 0 && new_idx < 0 && uhp->uh_seq == new_header_seq) { new_idx = i; SET_FLAG(i); } if (cur_header_seq > 0 && cur_idx < 0 && uhp->uh_seq == cur_header_seq) { cur_idx = i; SET_FLAG(i); } } // Now that we have read the undo info successfully, free the current undo // info and use the info from the file. u_blockfree(curbuf); curbuf->b_u_oldhead = old_idx < 0 ? NULL : uhp_table[old_idx]; curbuf->b_u_newhead = new_idx < 0 ? NULL : uhp_table[new_idx]; curbuf->b_u_curhead = cur_idx < 0 ? NULL : uhp_table[cur_idx]; curbuf->b_u_line_ptr = line_ptr; curbuf->b_u_line_lnum = line_lnum; curbuf->b_u_line_colnr = line_colnr; curbuf->b_u_numhead = num_head; curbuf->b_u_seq_last = seq_last; curbuf->b_u_seq_cur = seq_cur; curbuf->b_u_time_cur = seq_time; curbuf->b_u_save_nr_last = last_save_nr; curbuf->b_u_save_nr_cur = last_save_nr; curbuf->b_u_synced = TRUE; vim_free(uhp_table); #ifdef U_DEBUG for (i = 0; i < num_head; ++i) if (uhp_table_used[i] == 0) semsg("uhp_table entry %ld not used, leaking memory", i); vim_free(uhp_table_used); u_check(TRUE); #endif if (name != NULL) smsg(_("Finished reading undo file %s"), file_name); goto theend; error: vim_free(line_ptr.ul_line); if (uhp_table != NULL) { for (i = 0; i < num_read_uhps; i++) if (uhp_table[i] != NULL) u_free_uhp(uhp_table[i]); vim_free(uhp_table); } theend: #ifdef FEAT_CRYPT if (bi.bi_state != NULL) crypt_free_state(bi.bi_state); vim_free(bi.bi_buffer); #endif if (fp != NULL) fclose(fp); if (file_name != name) vim_free(file_name); return; } #endif // FEAT_PERSISTENT_UNDO /* * If 'cpoptions' contains 'u': Undo the previous undo or redo (vi compatible). * If 'cpoptions' does not contain 'u': Always undo. */ void u_undo(int count) { /* * If we get an undo command while executing a macro, we behave like the * original vi. If this happens twice in one macro the result will not * be compatible. */ if (curbuf->b_u_synced == FALSE) { u_sync(TRUE); count = 1; } if (vim_strchr(p_cpo, CPO_UNDO) == NULL) undo_undoes = TRUE; else undo_undoes = !undo_undoes; u_doit(count); } /* * If 'cpoptions' contains 'u': Repeat the previous undo or redo. * If 'cpoptions' does not contain 'u': Always redo. */ void u_redo(int count) { if (vim_strchr(p_cpo, CPO_UNDO) == NULL) undo_undoes = FALSE; u_doit(count); } /* * Undo or redo, depending on 'undo_undoes', 'count' times. */ static void u_doit(int startcount) { int count = startcount; if (!undo_allowed()) return; u_newcount = 0; u_oldcount = 0; if (curbuf->b_ml.ml_flags & ML_EMPTY) u_oldcount = -1; while (count--) { // Do the change warning now, so that it triggers FileChangedRO when // needed. This may cause the file to be reloaded, that must happen // before we do anything, because it may change curbuf->b_u_curhead // and more. change_warning(0); if (undo_undoes) { if (curbuf->b_u_curhead == NULL) // first undo curbuf->b_u_curhead = curbuf->b_u_newhead; else if (get_undolevel() > 0) // multi level undo // get next undo curbuf->b_u_curhead = curbuf->b_u_curhead->uh_next.ptr; // nothing to undo if (curbuf->b_u_numhead == 0 || curbuf->b_u_curhead == NULL) { // stick curbuf->b_u_curhead at end curbuf->b_u_curhead = curbuf->b_u_oldhead; beep_flush(); if (count == startcount - 1) { msg(_("Already at oldest change")); return; } break; } u_undoredo(TRUE); } else { if (curbuf->b_u_curhead == NULL || get_undolevel() <= 0) { beep_flush(); // nothing to redo if (count == startcount - 1) { msg(_("Already at newest change")); return; } break; } u_undoredo(FALSE); // Advance for next redo. Set "newhead" when at the end of the // redoable changes. if (curbuf->b_u_curhead->uh_prev.ptr == NULL) curbuf->b_u_newhead = curbuf->b_u_curhead; curbuf->b_u_curhead = curbuf->b_u_curhead->uh_prev.ptr; } } u_undo_end(undo_undoes, FALSE); } /* * Undo or redo over the timeline. * When "step" is negative go back in time, otherwise goes forward in time. * When "sec" is FALSE make "step" steps, when "sec" is TRUE use "step" as * seconds. * When "file" is TRUE use "step" as a number of file writes. * When "absolute" is TRUE use "step" as the sequence number to jump to. * "sec" must be FALSE then. */ void undo_time( long step, int sec, int file, int absolute) { long target; long closest; long closest_start; long closest_seq = 0; long val; u_header_T *uhp = NULL; u_header_T *last; int mark; int nomark = 0; // shut up compiler int round; int dosec = sec; int dofile = file; int above = FALSE; int did_undo = TRUE; // First make sure the current undoable change is synced. if (curbuf->b_u_synced == FALSE) u_sync(TRUE); u_newcount = 0; u_oldcount = 0; if (curbuf->b_ml.ml_flags & ML_EMPTY) u_oldcount = -1; // "target" is the node below which we want to be. // Init "closest" to a value we can't reach. if (absolute) { target = step; closest = -1; } else { if (dosec) target = (long)(curbuf->b_u_time_cur) + step; else if (dofile) { if (step < 0) { // Going back to a previous write. If there were changes after // the last write, count that as moving one file-write, so // that ":earlier 1f" undoes all changes since the last save. uhp = curbuf->b_u_curhead; if (uhp != NULL) uhp = uhp->uh_next.ptr; else uhp = curbuf->b_u_newhead; if (uhp != NULL && uhp->uh_save_nr != 0) // "uh_save_nr" was set in the last block, that means // there were no changes since the last write target = curbuf->b_u_save_nr_cur + step; else // count the changes since the last write as one step target = curbuf->b_u_save_nr_cur + step + 1; if (target <= 0) // Go to before first write: before the oldest change. Use // the sequence number for that. dofile = FALSE; } else { // Moving forward to a newer write. target = curbuf->b_u_save_nr_cur + step; if (target > curbuf->b_u_save_nr_last) { // Go to after last write: after the latest change. Use // the sequence number for that. target = curbuf->b_u_seq_last + 1; dofile = FALSE; } } } else target = curbuf->b_u_seq_cur + step; if (step < 0) { if (target < 0) target = 0; closest = -1; } else { if (dosec) closest = (long)(vim_time() + 1); else if (dofile) closest = curbuf->b_u_save_nr_last + 2; else closest = curbuf->b_u_seq_last + 2; if (target >= closest) target = closest - 1; } } closest_start = closest; closest_seq = curbuf->b_u_seq_cur; // When "target" is 0; Back to origin. if (target == 0) { mark = lastmark; // avoid that GCC complains goto target_zero; } /* * May do this twice: * 1. Search for "target", update "closest" to the best match found. * 2. If "target" not found search for "closest". * * When using the closest time we use the sequence number in the second * round, because there may be several entries with the same time. */ for (round = 1; round <= 2; ++round) { // Find the path from the current state to where we want to go. The // desired state can be anywhere in the undo tree, need to go all over // it. We put "nomark" in uh_walk where we have been without success, // "mark" where it could possibly be. mark = ++lastmark; nomark = ++lastmark; if (curbuf->b_u_curhead == NULL) // at leaf of the tree uhp = curbuf->b_u_newhead; else uhp = curbuf->b_u_curhead; while (uhp != NULL) { uhp->uh_walk = mark; if (dosec) val = (long)(uhp->uh_time); else if (dofile) val = uhp->uh_save_nr; else val = uhp->uh_seq; if (round == 1 && !(dofile && val == 0)) { // Remember the header that is closest to the target. // It must be at least in the right direction (checked with // "b_u_seq_cur"). When the timestamp is equal find the // highest/lowest sequence number. if ((step < 0 ? uhp->uh_seq <= curbuf->b_u_seq_cur : uhp->uh_seq > curbuf->b_u_seq_cur) && ((dosec && val == closest) ? (step < 0 ? uhp->uh_seq < closest_seq : uhp->uh_seq > closest_seq) : closest == closest_start || (val > target ? (closest > target ? val - target <= closest - target : val - target <= target - closest) : (closest > target ? target - val <= closest - target : target - val <= target - closest)))) { closest = val; closest_seq = uhp->uh_seq; } } // Quit searching when we found a match. But when searching for a // time we need to continue looking for the best uh_seq. if (target == val && !dosec) { target = uhp->uh_seq; break; } // go down in the tree if we haven't been there if (uhp->uh_prev.ptr != NULL && uhp->uh_prev.ptr->uh_walk != nomark && uhp->uh_prev.ptr->uh_walk != mark) uhp = uhp->uh_prev.ptr; // go to alternate branch if we haven't been there else if (uhp->uh_alt_next.ptr != NULL && uhp->uh_alt_next.ptr->uh_walk != nomark && uhp->uh_alt_next.ptr->uh_walk != mark) uhp = uhp->uh_alt_next.ptr; // go up in the tree if we haven't been there and we are at the // start of alternate branches else if (uhp->uh_next.ptr != NULL && uhp->uh_alt_prev.ptr == NULL && uhp->uh_next.ptr->uh_walk != nomark && uhp->uh_next.ptr->uh_walk != mark) { // If still at the start we don't go through this change. if (uhp == curbuf->b_u_curhead) uhp->uh_walk = nomark; uhp = uhp->uh_next.ptr; } else { // need to backtrack; mark this node as useless uhp->uh_walk = nomark; if (uhp->uh_alt_prev.ptr != NULL) uhp = uhp->uh_alt_prev.ptr; else uhp = uhp->uh_next.ptr; } } if (uhp != NULL) // found it break; if (absolute) { semsg(_("E830: Undo number %ld not found"), step); return; } if (closest == closest_start) { if (step < 0) msg(_("Already at oldest change")); else msg(_("Already at newest change")); return; } target = closest_seq; dosec = FALSE; dofile = FALSE; if (step < 0) above = TRUE; // stop above the header } target_zero: // If we found it: Follow the path to go to where we want to be. if (uhp != NULL || target == 0) { /* * First go up the tree as much as needed. */ while (!got_int) { // Do the change warning now, for the same reason as above. change_warning(0); uhp = curbuf->b_u_curhead; if (uhp == NULL) uhp = curbuf->b_u_newhead; else uhp = uhp->uh_next.ptr; if (uhp == NULL || (target > 0 && uhp->uh_walk != mark) || (uhp->uh_seq == target && !above)) break; curbuf->b_u_curhead = uhp; u_undoredo(TRUE); if (target > 0) uhp->uh_walk = nomark; // don't go back down here } // When back to origin, redo is not needed. if (target > 0) { /* * And now go down the tree (redo), branching off where needed. */ while (!got_int) { // Do the change warning now, for the same reason as above. change_warning(0); uhp = curbuf->b_u_curhead; if (uhp == NULL) break; // Go back to the first branch with a mark. while (uhp->uh_alt_prev.ptr != NULL && uhp->uh_alt_prev.ptr->uh_walk == mark) uhp = uhp->uh_alt_prev.ptr; // Find the last branch with a mark, that's the one. last = uhp; while (last->uh_alt_next.ptr != NULL && last->uh_alt_next.ptr->uh_walk == mark) last = last->uh_alt_next.ptr; if (last != uhp) { // Make the used branch the first entry in the list of // alternatives to make "u" and CTRL-R take this branch. while (uhp->uh_alt_prev.ptr != NULL) uhp = uhp->uh_alt_prev.ptr; if (last->uh_alt_next.ptr != NULL) last->uh_alt_next.ptr->uh_alt_prev.ptr = last->uh_alt_prev.ptr; last->uh_alt_prev.ptr->uh_alt_next.ptr = last->uh_alt_next.ptr; last->uh_alt_prev.ptr = NULL; last->uh_alt_next.ptr = uhp; uhp->uh_alt_prev.ptr = last; if (curbuf->b_u_oldhead == uhp) curbuf->b_u_oldhead = last; uhp = last; if (uhp->uh_next.ptr != NULL) uhp->uh_next.ptr->uh_prev.ptr = uhp; } curbuf->b_u_curhead = uhp; if (uhp->uh_walk != mark) break; // must have reached the target // Stop when going backwards in time and didn't find the exact // header we were looking for. if (uhp->uh_seq == target && above) { curbuf->b_u_seq_cur = target - 1; break; } u_undoredo(FALSE); // Advance "curhead" to below the header we last used. If it // becomes NULL then we need to set "newhead" to this leaf. if (uhp->uh_prev.ptr == NULL) curbuf->b_u_newhead = uhp; curbuf->b_u_curhead = uhp->uh_prev.ptr; did_undo = FALSE; if (uhp->uh_seq == target) // found it! break; uhp = uhp->uh_prev.ptr; if (uhp == NULL || uhp->uh_walk != mark) { // Need to redo more but can't find it... internal_error("undo_time()"); break; } } } } u_undo_end(did_undo, absolute); } /* * u_undoredo: common code for undo and redo * * The lines in the file are replaced by the lines in the entry list at * curbuf->b_u_curhead. The replaced lines in the file are saved in the entry * list for the next undo/redo. * * When "undo" is TRUE we go up in the tree, when FALSE we go down. */ static void u_undoredo(int undo) { undoline_T *newarray = NULL; linenr_T oldsize; linenr_T newsize; linenr_T top, bot; linenr_T lnum; linenr_T newlnum = MAXLNUM; pos_T new_curpos = curwin->w_cursor; long i; u_entry_T *uep, *nuep; u_entry_T *newlist = NULL; int old_flags; int new_flags; pos_T namedm[NMARKS]; visualinfo_T visualinfo; int empty_buffer; // buffer became empty u_header_T *curhead = curbuf->b_u_curhead; // Don't want autocommands using the undo structures here, they are // invalid till the end. block_autocmds(); #ifdef U_DEBUG u_check(FALSE); #endif old_flags = curhead->uh_flags; new_flags = (curbuf->b_changed ? UH_CHANGED : 0) + ((curbuf->b_ml.ml_flags & ML_EMPTY) ? UH_EMPTYBUF : 0); setpcmark(); /* * save marks before undo/redo */ mch_memmove(namedm, curbuf->b_namedm, sizeof(pos_T) * NMARKS); visualinfo = curbuf->b_visual; curbuf->b_op_start.lnum = curbuf->b_ml.ml_line_count; curbuf->b_op_start.col = 0; curbuf->b_op_end.lnum = 0; curbuf->b_op_end.col = 0; for (uep = curhead->uh_entry; uep != NULL; uep = nuep) { top = uep->ue_top; bot = uep->ue_bot; if (bot == 0) bot = curbuf->b_ml.ml_line_count + 1; if (top > curbuf->b_ml.ml_line_count || top >= bot || bot > curbuf->b_ml.ml_line_count + 1) { unblock_autocmds(); iemsg(_("E438: u_undo: line numbers wrong")); changed(); // don't want UNCHANGED now return; } oldsize = bot - top - 1; // number of lines before undo newsize = uep->ue_size; // number of lines after undo // Decide about the cursor position, depending on what text changed. // Don't set it yet, it may be invalid if lines are going to be added. if (top < newlnum) { // If the saved cursor is somewhere in this undo block, move it to // the remembered position. Makes "gwap" put the cursor back // where it was. lnum = curhead->uh_cursor.lnum; if (lnum >= top && lnum <= top + newsize + 1) { new_curpos = curhead->uh_cursor; newlnum = new_curpos.lnum - 1; } else { // Use the first line that actually changed. Avoids that // undoing auto-formatting puts the cursor in the previous // line. for (i = 0; i < newsize && i < oldsize; ++i) { char_u *p = ml_get(top + 1 + i); if (curbuf->b_ml.ml_line_len != uep->ue_array[i].ul_len || memcmp(uep->ue_array[i].ul_line, p, curbuf->b_ml.ml_line_len) != 0) break; } if (i == newsize && newlnum == MAXLNUM && uep->ue_next == NULL) { newlnum = top; new_curpos.lnum = newlnum + 1; } else if (i < newsize) { newlnum = top + i; new_curpos.lnum = newlnum + 1; } } } empty_buffer = FALSE; /* * Delete the lines between top and bot and save them in newarray. */ if (oldsize > 0) { if ((newarray = U_ALLOC_LINE(sizeof(undoline_T) * oldsize)) == NULL) { do_outofmem_msg((long_u)(sizeof(undoline_T) * oldsize)); // We have messed up the entry list, repair is impossible. // we have to free the rest of the list. while (uep != NULL) { nuep = uep->ue_next; u_freeentry(uep, uep->ue_size); uep = nuep; } break; } // delete backwards, it goes faster in most cases for (lnum = bot - 1, i = oldsize; --i >= 0; --lnum) { // what can we do when we run out of memory? if (u_save_line(&newarray[i], lnum) == FAIL) do_outofmem_msg((long_u)0); // remember we deleted the last line in the buffer, and a // dummy empty line will be inserted if (curbuf->b_ml.ml_line_count == 1) empty_buffer = TRUE; ml_delete(lnum, FALSE); } } else newarray = NULL; // make sure the cursor is on a valid line after the deletions check_cursor_lnum(); /* * Insert the lines in u_array between top and bot. */ if (newsize) { for (lnum = top, i = 0; i < newsize; ++i, ++lnum) { // If the file is empty, there is an empty line 1 that we // should get rid of, by replacing it with the new line. if (empty_buffer && lnum == 0) ml_replace_len((linenr_T)1, uep->ue_array[i].ul_line, uep->ue_array[i].ul_len, TRUE, TRUE); else ml_append(lnum, uep->ue_array[i].ul_line, (colnr_T)uep->ue_array[i].ul_len, FALSE); vim_free(uep->ue_array[i].ul_line); } vim_free((char_u *)uep->ue_array); } // adjust marks if (oldsize != newsize) { mark_adjust(top + 1, top + oldsize, (long)MAXLNUM, (long)newsize - (long)oldsize); if (curbuf->b_op_start.lnum > top + oldsize) curbuf->b_op_start.lnum += newsize - oldsize; if (curbuf->b_op_end.lnum > top + oldsize) curbuf->b_op_end.lnum += newsize - oldsize; } changed_lines(top + 1, 0, bot, newsize - oldsize); // set '[ and '] mark if (top + 1 < curbuf->b_op_start.lnum) curbuf->b_op_start.lnum = top + 1; if (newsize == 0 && top + 1 > curbuf->b_op_end.lnum) curbuf->b_op_end.lnum = top + 1; else if (top + newsize > curbuf->b_op_end.lnum) curbuf->b_op_end.lnum = top + newsize; u_newcount += newsize; u_oldcount += oldsize; uep->ue_size = oldsize; uep->ue_array = newarray; uep->ue_bot = top + newsize + 1; /* * insert this entry in front of the new entry list */ nuep = uep->ue_next; uep->ue_next = newlist; newlist = uep; } // Set the cursor to the desired position. Check that the line is valid. curwin->w_cursor = new_curpos; check_cursor_lnum(); curhead->uh_entry = newlist; curhead->uh_flags = new_flags; if ((old_flags & UH_EMPTYBUF) && BUFEMPTY()) curbuf->b_ml.ml_flags |= ML_EMPTY; if (old_flags & UH_CHANGED) changed(); else #ifdef FEAT_NETBEANS_INTG // per netbeans undo rules, keep it as modified if (!isNetbeansModified(curbuf)) #endif unchanged(curbuf, FALSE, TRUE); /* * restore marks from before undo/redo */ for (i = 0; i < NMARKS; ++i) { if (curhead->uh_namedm[i].lnum != 0) curbuf->b_namedm[i] = curhead->uh_namedm[i]; if (namedm[i].lnum != 0) curhead->uh_namedm[i] = namedm[i]; else curhead->uh_namedm[i].lnum = 0; } if (curhead->uh_visual.vi_start.lnum != 0) { curbuf->b_visual = curhead->uh_visual; curhead->uh_visual = visualinfo; } /* * If the cursor is only off by one line, put it at the same position as * before starting the change (for the "o" command). * Otherwise the cursor should go to the first undone line. */ if (curhead->uh_cursor.lnum + 1 == curwin->w_cursor.lnum && curwin->w_cursor.lnum > 1) --curwin->w_cursor.lnum; if (curwin->w_cursor.lnum <= curbuf->b_ml.ml_line_count) { if (curhead->uh_cursor.lnum == curwin->w_cursor.lnum) { curwin->w_cursor.col = curhead->uh_cursor.col; if (virtual_active() && curhead->uh_cursor_vcol >= 0) coladvance((colnr_T)curhead->uh_cursor_vcol); else curwin->w_cursor.coladd = 0; } else beginline(BL_SOL | BL_FIX); } else { // We get here with the current cursor line being past the end (eg // after adding lines at the end of the file, and then undoing it). // check_cursor() will move the cursor to the last line. Move it to // the first column here. curwin->w_cursor.col = 0; curwin->w_cursor.coladd = 0; } // Make sure the cursor is on an existing line and column. check_cursor(); // Remember where we are for "g-" and ":earlier 10s". curbuf->b_u_seq_cur = curhead->uh_seq; if (undo) { // We are below the previous undo. However, to make ":earlier 1s" // work we compute this as being just above the just undone change. if (curhead->uh_next.ptr != NULL) curbuf->b_u_seq_cur = curhead->uh_next.ptr->uh_seq; else curbuf->b_u_seq_cur = 0; } // Remember where we are for ":earlier 1f" and ":later 1f". if (curhead->uh_save_nr != 0) { if (undo) curbuf->b_u_save_nr_cur = curhead->uh_save_nr - 1; else curbuf->b_u_save_nr_cur = curhead->uh_save_nr; } // The timestamp can be the same for multiple changes, just use the one of // the undone/redone change. curbuf->b_u_time_cur = curhead->uh_time; unblock_autocmds(); #ifdef U_DEBUG u_check(FALSE); #endif } /* * If we deleted or added lines, report the number of less/more lines. * Otherwise, report the number of changes (this may be incorrect * in some cases, but it's better than nothing). */ static void u_undo_end( int did_undo, // just did an undo int absolute) // used ":undo N" { char *msgstr; u_header_T *uhp; char_u msgbuf[80]; #ifdef FEAT_FOLDING if ((fdo_flags & FDO_UNDO) && KeyTyped) foldOpenCursor(); #endif if (global_busy // no messages now, wait until global is finished || !messaging()) // 'lazyredraw' set, don't do messages now return; if (curbuf->b_ml.ml_flags & ML_EMPTY) --u_newcount; u_oldcount -= u_newcount; if (u_oldcount == -1) msgstr = N_("more line"); else if (u_oldcount < 0) msgstr = N_("more lines"); else if (u_oldcount == 1) msgstr = N_("line less"); else if (u_oldcount > 1) msgstr = N_("fewer lines"); else { u_oldcount = u_newcount; if (u_newcount == 1) msgstr = N_("change"); else msgstr = N_("changes"); } if (curbuf->b_u_curhead != NULL) { // For ":undo N" we prefer a "after #N" message. if (absolute && curbuf->b_u_curhead->uh_next.ptr != NULL) { uhp = curbuf->b_u_curhead->uh_next.ptr; did_undo = FALSE; } else if (did_undo) uhp = curbuf->b_u_curhead; else uhp = curbuf->b_u_curhead->uh_next.ptr; } else uhp = curbuf->b_u_newhead; if (uhp == NULL) *msgbuf = NUL; else add_time(msgbuf, sizeof(msgbuf), uhp->uh_time); #ifdef FEAT_CONCEAL { win_T *wp; FOR_ALL_WINDOWS(wp) { if (wp->w_buffer == curbuf && wp->w_p_cole > 0) redraw_win_later(wp, NOT_VALID); } } #endif smsg_attr_keep(0, _("%ld %s; %s #%ld %s"), u_oldcount < 0 ? -u_oldcount : u_oldcount, _(msgstr), did_undo ? _("before") : _("after"), uhp == NULL ? 0L : uhp->uh_seq, msgbuf); } /* * u_sync: stop adding to the current entry list */ void u_sync( int force) // Also sync when no_u_sync is set. { // Skip it when already synced or syncing is disabled. if (curbuf->b_u_synced || (!force && no_u_sync > 0)) return; #if defined(FEAT_XIM) && defined(FEAT_GUI_GTK) if (p_imst == IM_ON_THE_SPOT && im_is_preediting()) return; // XIM is busy, don't break an undo sequence #endif if (get_undolevel() < 0) curbuf->b_u_synced = TRUE; // no entries, nothing to do else { u_getbot(); // compute ue_bot of previous u_save curbuf->b_u_curhead = NULL; } } /* * ":undolist": List the leafs of the undo tree */ void ex_undolist(exarg_T *eap UNUSED) { garray_T ga; u_header_T *uhp; int mark; int nomark; int changes = 1; int i; /* * 1: walk the tree to find all leafs, put the info in "ga". * 2: sort the lines * 3: display the list */ mark = ++lastmark; nomark = ++lastmark; ga_init2(&ga, (int)sizeof(char *), 20); uhp = curbuf->b_u_oldhead; while (uhp != NULL) { if (uhp->uh_prev.ptr == NULL && uhp->uh_walk != nomark && uhp->uh_walk != mark) { if (ga_grow(&ga, 1) == FAIL) break; vim_snprintf((char *)IObuff, IOSIZE, "%6ld %7d ", uhp->uh_seq, changes); add_time(IObuff + STRLEN(IObuff), IOSIZE - STRLEN(IObuff), uhp->uh_time); if (uhp->uh_save_nr > 0) { while (STRLEN(IObuff) < 33) STRCAT(IObuff, " "); vim_snprintf_add((char *)IObuff, IOSIZE, " %3ld", uhp->uh_save_nr); } ((char_u **)(ga.ga_data))[ga.ga_len++] = vim_strsave(IObuff); } uhp->uh_walk = mark; // go down in the tree if we haven't been there if (uhp->uh_prev.ptr != NULL && uhp->uh_prev.ptr->uh_walk != nomark && uhp->uh_prev.ptr->uh_walk != mark) { uhp = uhp->uh_prev.ptr; ++changes; } // go to alternate branch if we haven't been there else if (uhp->uh_alt_next.ptr != NULL && uhp->uh_alt_next.ptr->uh_walk != nomark && uhp->uh_alt_next.ptr->uh_walk != mark) uhp = uhp->uh_alt_next.ptr; // go up in the tree if we haven't been there and we are at the // start of alternate branches else if (uhp->uh_next.ptr != NULL && uhp->uh_alt_prev.ptr == NULL && uhp->uh_next.ptr->uh_walk != nomark && uhp->uh_next.ptr->uh_walk != mark) { uhp = uhp->uh_next.ptr; --changes; } else { // need to backtrack; mark this node as done uhp->uh_walk = nomark; if (uhp->uh_alt_prev.ptr != NULL) uhp = uhp->uh_alt_prev.ptr; else { uhp = uhp->uh_next.ptr; --changes; } } } if (ga.ga_len == 0) msg(_("Nothing to undo")); else { sort_strings((char_u **)ga.ga_data, ga.ga_len); msg_start(); msg_puts_attr(_("number changes when saved"), HL_ATTR(HLF_T)); for (i = 0; i < ga.ga_len && !got_int; ++i) { msg_putchar('\n'); if (got_int) break; msg_puts(((char **)ga.ga_data)[i]); } msg_end(); ga_clear_strings(&ga); } } /* * ":undojoin": continue adding to the last entry list */ void ex_undojoin(exarg_T *eap UNUSED) { if (curbuf->b_u_newhead == NULL) return; // nothing changed before if (curbuf->b_u_curhead != NULL) { emsg(_("E790: undojoin is not allowed after undo")); return; } if (!curbuf->b_u_synced) return; // already unsynced if (get_undolevel() < 0) return; // no entries, nothing to do else // Append next change to the last entry curbuf->b_u_synced = FALSE; } /* * Called after writing or reloading the file and setting b_changed to FALSE. * Now an undo means that the buffer is modified. */ void u_unchanged(buf_T *buf) { u_unch_branch(buf->b_u_oldhead); buf->b_did_warn = FALSE; } /* * After reloading a buffer which was saved for 'undoreload': Find the first * line that was changed and set the cursor there. */ void u_find_first_changed(void) { u_header_T *uhp = curbuf->b_u_newhead; u_entry_T *uep; linenr_T lnum; if (curbuf->b_u_curhead != NULL || uhp == NULL) return; // undid something in an autocmd? // Check that the last undo block was for the whole file. uep = uhp->uh_entry; if (uep->ue_top != 0 || uep->ue_bot != 0) return; for (lnum = 1; lnum < curbuf->b_ml.ml_line_count && lnum <= uep->ue_size; ++lnum) { char_u *p = ml_get_buf(curbuf, lnum, FALSE); if (uep->ue_array[lnum - 1].ul_len != curbuf->b_ml.ml_line_len || memcmp(p, uep->ue_array[lnum - 1].ul_line, uep->ue_array[lnum - 1].ul_len) != 0) { CLEAR_POS(&(uhp->uh_cursor)); uhp->uh_cursor.lnum = lnum; return; } } if (curbuf->b_ml.ml_line_count != uep->ue_size) { // lines added or deleted at the end, put the cursor there CLEAR_POS(&(uhp->uh_cursor)); uhp->uh_cursor.lnum = lnum; } } /* * Increase the write count, store it in the last undo header, what would be * used for "u". */ void u_update_save_nr(buf_T *buf) { u_header_T *uhp; ++buf->b_u_save_nr_last; buf->b_u_save_nr_cur = buf->b_u_save_nr_last; uhp = buf->b_u_curhead; if (uhp != NULL) uhp = uhp->uh_next.ptr; else uhp = buf->b_u_newhead; if (uhp != NULL) uhp->uh_save_nr = buf->b_u_save_nr_last; } static void u_unch_branch(u_header_T *uhp) { u_header_T *uh; for (uh = uhp; uh != NULL; uh = uh->uh_prev.ptr) { uh->uh_flags |= UH_CHANGED; if (uh->uh_alt_next.ptr != NULL) u_unch_branch(uh->uh_alt_next.ptr); // recursive } } /* * Get pointer to last added entry. * If it's not valid, give an error message and return NULL. */ static u_entry_T * u_get_headentry(void) { if (curbuf->b_u_newhead == NULL || curbuf->b_u_newhead->uh_entry == NULL) { iemsg(_("E439: undo list corrupt")); return NULL; } return curbuf->b_u_newhead->uh_entry; } /* * u_getbot(): compute the line number of the previous u_save * It is called only when b_u_synced is FALSE. */ static void u_getbot(void) { u_entry_T *uep; linenr_T extra; uep = u_get_headentry(); // check for corrupt undo list if (uep == NULL) return; uep = curbuf->b_u_newhead->uh_getbot_entry; if (uep != NULL) { /* * the new ue_bot is computed from the number of lines that has been * inserted (0 - deleted) since calling u_save. This is equal to the * old line count subtracted from the current line count. */ extra = curbuf->b_ml.ml_line_count - uep->ue_lcount; uep->ue_bot = uep->ue_top + uep->ue_size + 1 + extra; if (uep->ue_bot < 1 || uep->ue_bot > curbuf->b_ml.ml_line_count) { iemsg(_("E440: undo line missing")); uep->ue_bot = uep->ue_top + 1; // assume all lines deleted, will // get all the old lines back // without deleting the current // ones } curbuf->b_u_newhead->uh_getbot_entry = NULL; } curbuf->b_u_synced = TRUE; } /* * Free one header "uhp" and its entry list and adjust the pointers. */ static void u_freeheader( buf_T *buf, u_header_T *uhp, u_header_T **uhpp) // if not NULL reset when freeing this header { u_header_T *uhap; // When there is an alternate redo list free that branch completely, // because we can never go there. if (uhp->uh_alt_next.ptr != NULL) u_freebranch(buf, uhp->uh_alt_next.ptr, uhpp); if (uhp->uh_alt_prev.ptr != NULL) uhp->uh_alt_prev.ptr->uh_alt_next.ptr = NULL; // Update the links in the list to remove the header. if (uhp->uh_next.ptr == NULL) buf->b_u_oldhead = uhp->uh_prev.ptr; else uhp->uh_next.ptr->uh_prev.ptr = uhp->uh_prev.ptr; if (uhp->uh_prev.ptr == NULL) buf->b_u_newhead = uhp->uh_next.ptr; else for (uhap = uhp->uh_prev.ptr; uhap != NULL; uhap = uhap->uh_alt_next.ptr) uhap->uh_next.ptr = uhp->uh_next.ptr; u_freeentries(buf, uhp, uhpp); } /* * Free an alternate branch and any following alternate branches. */ static void u_freebranch( buf_T *buf, u_header_T *uhp, u_header_T **uhpp) // if not NULL reset when freeing this header { u_header_T *tofree, *next; // If this is the top branch we may need to use u_freeheader() to update // all the pointers. if (uhp == buf->b_u_oldhead) { while (buf->b_u_oldhead != NULL) u_freeheader(buf, buf->b_u_oldhead, uhpp); return; } if (uhp->uh_alt_prev.ptr != NULL) uhp->uh_alt_prev.ptr->uh_alt_next.ptr = NULL; next = uhp; while (next != NULL) { tofree = next; if (tofree->uh_alt_next.ptr != NULL) u_freebranch(buf, tofree->uh_alt_next.ptr, uhpp); // recursive next = tofree->uh_prev.ptr; u_freeentries(buf, tofree, uhpp); } } /* * Free all the undo entries for one header and the header itself. * This means that "uhp" is invalid when returning. */ static void u_freeentries( buf_T *buf, u_header_T *uhp, u_header_T **uhpp) // if not NULL reset when freeing this header { u_entry_T *uep, *nuep; // Check for pointers to the header that become invalid now. if (buf->b_u_curhead == uhp) buf->b_u_curhead = NULL; if (buf->b_u_newhead == uhp) buf->b_u_newhead = NULL; // freeing the newest entry if (uhpp != NULL && uhp == *uhpp) *uhpp = NULL; for (uep = uhp->uh_entry; uep != NULL; uep = nuep) { nuep = uep->ue_next; u_freeentry(uep, uep->ue_size); } #ifdef U_DEBUG uhp->uh_magic = 0; #endif vim_free((char_u *)uhp); --buf->b_u_numhead; } /* * free entry 'uep' and 'n' lines in uep->ue_array[] */ static void u_freeentry(u_entry_T *uep, long n) { while (n > 0) vim_free(uep->ue_array[--n].ul_line); vim_free((char_u *)uep->ue_array); #ifdef U_DEBUG uep->ue_magic = 0; #endif vim_free((char_u *)uep); } /* * invalidate the undo buffer; called when storage has already been released */ void u_clearall(buf_T *buf) { buf->b_u_newhead = buf->b_u_oldhead = buf->b_u_curhead = NULL; buf->b_u_synced = TRUE; buf->b_u_numhead = 0; buf->b_u_line_ptr.ul_line = NULL; buf->b_u_line_ptr.ul_len = 0; buf->b_u_line_lnum = 0; } /* * Save the line "lnum" for the "U" command. */ static void u_saveline(linenr_T lnum) { if (lnum == curbuf->b_u_line_lnum) // line is already saved return; if (lnum < 1 || lnum > curbuf->b_ml.ml_line_count) // should never happen return; u_clearline(); curbuf->b_u_line_lnum = lnum; if (curwin->w_cursor.lnum == lnum) curbuf->b_u_line_colnr = curwin->w_cursor.col; else curbuf->b_u_line_colnr = 0; if (u_save_line(&curbuf->b_u_line_ptr, lnum) == FAIL) do_outofmem_msg((long_u)0); } /* * clear the line saved for the "U" command * (this is used externally for crossing a line while in insert mode) */ void u_clearline(void) { if (curbuf->b_u_line_ptr.ul_line != NULL) { VIM_CLEAR(curbuf->b_u_line_ptr.ul_line); curbuf->b_u_line_ptr.ul_len = 0; curbuf->b_u_line_lnum = 0; } } /* * Implementation of the "U" command. * Differentiation from vi: "U" can be undone with the next "U". * We also allow the cursor to be in another line. * Careful: may trigger autocommands that reload the buffer. */ void u_undoline(void) { colnr_T t; undoline_T oldp; if (undo_off) return; if (curbuf->b_u_line_ptr.ul_line == NULL || curbuf->b_u_line_lnum > curbuf->b_ml.ml_line_count) { beep_flush(); return; } // first save the line for the 'u' command if (u_savecommon(curbuf->b_u_line_lnum - 1, curbuf->b_u_line_lnum + 1, (linenr_T)0, FALSE) == FAIL) return; if (u_save_line(&oldp, curbuf->b_u_line_lnum) == FAIL) { do_outofmem_msg((long_u)0); return; } ml_replace_len(curbuf->b_u_line_lnum, curbuf->b_u_line_ptr.ul_line, curbuf->b_u_line_ptr.ul_len, TRUE, FALSE); changed_bytes(curbuf->b_u_line_lnum, 0); curbuf->b_u_line_ptr = oldp; t = curbuf->b_u_line_colnr; if (curwin->w_cursor.lnum == curbuf->b_u_line_lnum) curbuf->b_u_line_colnr = curwin->w_cursor.col; curwin->w_cursor.col = t; curwin->w_cursor.lnum = curbuf->b_u_line_lnum; check_cursor_col(); } /* * Free all allocated memory blocks for the buffer 'buf'. */ void u_blockfree(buf_T *buf) { while (buf->b_u_oldhead != NULL) u_freeheader(buf, buf->b_u_oldhead, NULL); vim_free(buf->b_u_line_ptr.ul_line); } /* * Check if the 'modified' flag is set, or 'ff' has changed (only need to * check the first character, because it can only be "dos", "unix" or "mac"). * "nofile" and "scratch" type buffers are considered to always be unchanged. * Also considers a buffer changed when a terminal window contains a running * job. */ int bufIsChanged(buf_T *buf) { #ifdef FEAT_TERMINAL if (term_job_running(buf->b_term)) return TRUE; #endif return bufIsChangedNotTerm(buf); } /* * Return TRUE if any buffer has changes. Also buffers that are not written. */ int anyBufIsChanged(void) { buf_T *buf; FOR_ALL_BUFFERS(buf) if (bufIsChanged(buf)) return TRUE; return FALSE; } /* * Like bufIsChanged() but ignoring a terminal window. */ int bufIsChangedNotTerm(buf_T *buf) { // In a "prompt" buffer we do respect 'modified', so that we can control // closing the window by setting or resetting that option. return (!bt_dontwrite(buf) || bt_prompt(buf)) && (buf->b_changed || file_ff_differs(buf, TRUE)); } int curbufIsChanged(void) { return bufIsChanged(curbuf); } #if defined(FEAT_EVAL) || defined(PROTO) /* * For undotree(): Append the list of undo blocks at "first_uhp" to "list". * Recursive. */ static void u_eval_tree(u_header_T *first_uhp, list_T *list) { u_header_T *uhp = first_uhp; dict_T *dict; while (uhp != NULL) { dict = dict_alloc(); if (dict == NULL) return; dict_add_number(dict, "seq", uhp->uh_seq); dict_add_number(dict, "time", (long)uhp->uh_time); if (uhp == curbuf->b_u_newhead) dict_add_number(dict, "newhead", 1); if (uhp == curbuf->b_u_curhead) dict_add_number(dict, "curhead", 1); if (uhp->uh_save_nr > 0) dict_add_number(dict, "save", uhp->uh_save_nr); if (uhp->uh_alt_next.ptr != NULL) { list_T *alt_list = list_alloc(); if (alt_list != NULL) { // Recursive call to add alternate undo tree. u_eval_tree(uhp->uh_alt_next.ptr, alt_list); dict_add_list(dict, "alt", alt_list); } } list_append_dict(list, dict); uhp = uhp->uh_prev.ptr; } } /* * "undofile(name)" function */ void f_undofile(typval_T *argvars UNUSED, typval_T *rettv) { rettv->v_type = VAR_STRING; #ifdef FEAT_PERSISTENT_UNDO { char_u *fname = tv_get_string(&argvars[0]); if (*fname == NUL) { // If there is no file name there will be no undo file. rettv->vval.v_string = NULL; } else { char_u *ffname = FullName_save(fname, TRUE); if (ffname != NULL) rettv->vval.v_string = u_get_undo_file_name(ffname, FALSE); vim_free(ffname); } } #else rettv->vval.v_string = NULL; #endif } /* * "undotree()" function */ void f_undotree(typval_T *argvars UNUSED, typval_T *rettv) { if (rettv_dict_alloc(rettv) == OK) { dict_T *dict = rettv->vval.v_dict; list_T *list; dict_add_number(dict, "synced", (long)curbuf->b_u_synced); dict_add_number(dict, "seq_last", curbuf->b_u_seq_last); dict_add_number(dict, "save_last", (long)curbuf->b_u_save_nr_last); dict_add_number(dict, "seq_cur", curbuf->b_u_seq_cur); dict_add_number(dict, "time_cur", (long)curbuf->b_u_time_cur); dict_add_number(dict, "save_cur", (long)curbuf->b_u_save_nr_cur); list = list_alloc(); if (list != NULL) { u_eval_tree(curbuf->b_u_oldhead, list); dict_add_list(dict, "entries", list); } } } #endif