/* vi:set ts=8 sts=4 sw=4: * * Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub() * * NOTICE: * * This is NOT the original regular expression code as written by Henry * Spencer. This code has been modified specifically for use with the VIM * editor, and should not be used separately from Vim. If you want a good * regular expression library, get the original code. The copyright notice * that follows is from the original. * * END NOTICE * * Copyright (c) 1986 by University of Toronto. * Written by Henry Spencer. Not derived from licensed software. * * Permission is granted to anyone to use this software for any * purpose on any computer system, and to redistribute it freely, * subject to the following restrictions: * * 1. The author is not responsible for the consequences of use of * this software, no matter how awful, even if they arise * from defects in it. * * 2. The origin of this software must not be misrepresented, either * by explicit claim or by omission. * * 3. Altered versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * Beware that some of this code is subtly aware of the way operator * precedence is structured in regular expressions. Serious changes in * regular-expression syntax might require a total rethink. * * Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert * Webb, Ciaran McCreesh and Bram Moolenaar. * Named character class support added by Walter Briscoe (1998 Jul 01) */ #include "vim.h" #undef DEBUG /* * The "internal use only" fields in regexp.h are present to pass info from * compile to execute that permits the execute phase to run lots faster on * simple cases. They are: * * regstart char that must begin a match; NUL if none obvious; Can be a * multi-byte character. * reganch is the match anchored (at beginning-of-line only)? * regmust string (pointer into program) that match must include, or NULL * regmlen length of regmust string * regflags RF_ values or'ed together * * Regstart and reganch permit very fast decisions on suitable starting points * for a match, cutting down the work a lot. Regmust permits fast rejection * of lines that cannot possibly match. The regmust tests are costly enough * that vim_regcomp() supplies a regmust only if the r.e. contains something * potentially expensive (at present, the only such thing detected is * or + * at the start of the r.e., which can involve a lot of backup). Regmlen is * supplied because the test in vim_regexec() needs it and vim_regcomp() is * computing it anyway. */ /* * Structure for regexp "program". This is essentially a linear encoding * of a nondeterministic finite-state machine (aka syntax charts or * "railroad normal form" in parsing technology). Each node is an opcode * plus a "next" pointer, possibly plus an operand. "Next" pointers of * all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next" * pointer with a BRANCH on both ends of it is connecting two alternatives. * (Here we have one of the subtle syntax dependencies: an individual BRANCH * (as opposed to a collection of them) is never concatenated with anything * because of operator precedence). The "next" pointer of a BRACES_COMPLEX * node points to the node after the stuff to be repeated. * The operand of some types of node is a literal string; for others, it is a * node leading into a sub-FSM. In particular, the operand of a BRANCH node * is the first node of the branch. * (NB this is *not* a tree structure: the tail of the branch connects to the * thing following the set of BRANCHes.) * * pattern is coded like: * * +-----------------+ * | V * \| BRANCH BRANCH --> END * | ^ | ^ * +------+ +----------+ * * * +------------------+ * V | * * BRANCH BRANCH --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +---------------+ | * +---------------------------------------------+ * * * +----------------------+ * V | * \+ BRANCH --> BRANCH --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +-----------+ | * +--------------------------------------------------+ * * * +-------------------------+ * V | * \{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX --> BACK END * | | ^ * | +----------------+ * +-----------------------------------------------+ * * * \@! BRANCH NOMATCH --> END --> END * | | ^ ^ * | +----------------+ | * +--------------------------------+ * * +---------+ * | V * \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END * | | | | ^ ^ * | | | +-----+ | * | | +----------------+ | * | +---------------------------+ | * +------------------------------------------------------+ * * They all start with a BRANCH for "\|" alternatives, even when there is only * one alternative. */ /* * The opcodes are: */ /* definition number opnd? meaning */ #define END 0 /* End of program or NOMATCH operand. */ #define BOL 1 /* Match "" at beginning of line. */ #define EOL 2 /* Match "" at end of line. */ #define BRANCH 3 /* node Match this alternative, or the * next... */ #define BACK 4 /* Match "", "next" ptr points backward. */ #define EXACTLY 5 /* str Match this string. */ #define NOTHING 6 /* Match empty string. */ #define STAR 7 /* node Match this (simple) thing 0 or more * times. */ #define PLUS 8 /* node Match this (simple) thing 1 or more * times. */ #define MATCH 9 /* node match the operand zero-width */ #define NOMATCH 10 /* node check for no match with operand */ #define BEHIND 11 /* node look behind for a match with operand */ #define NOBEHIND 12 /* node look behind for no match with operand */ #define SUBPAT 13 /* node match the operand here */ #define BRACE_SIMPLE 14 /* node Match this (simple) thing between m and * n times (\{m,n\}). */ #define BOW 15 /* Match "" after [^a-zA-Z0-9_] */ #define EOW 16 /* Match "" at [^a-zA-Z0-9_] */ #define BRACE_LIMITS 17 /* nr nr define the min & max for BRACE_SIMPLE * and BRACE_COMPLEX. */ #define NEWL 18 /* Match line-break */ #define BHPOS 19 /* End position for BEHIND or NOBEHIND */ /* character classes: 20-48 normal, 50-78 include a line-break */ #define ADD_NL 30 #define FIRST_NL ANY + ADD_NL #define ANY 20 /* Match any one character. */ #define ANYOF 21 /* str Match any character in this string. */ #define ANYBUT 22 /* str Match any character not in this * string. */ #define IDENT 23 /* Match identifier char */ #define SIDENT 24 /* Match identifier char but no digit */ #define KWORD 25 /* Match keyword char */ #define SKWORD 26 /* Match word char but no digit */ #define FNAME 27 /* Match file name char */ #define SFNAME 28 /* Match file name char but no digit */ #define PRINT 29 /* Match printable char */ #define SPRINT 30 /* Match printable char but no digit */ #define WHITE 31 /* Match whitespace char */ #define NWHITE 32 /* Match non-whitespace char */ #define DIGIT 33 /* Match digit char */ #define NDIGIT 34 /* Match non-digit char */ #define HEX 35 /* Match hex char */ #define NHEX 36 /* Match non-hex char */ #define OCTAL 37 /* Match octal char */ #define NOCTAL 38 /* Match non-octal char */ #define WORD 39 /* Match word char */ #define NWORD 40 /* Match non-word char */ #define HEAD 41 /* Match head char */ #define NHEAD 42 /* Match non-head char */ #define ALPHA 43 /* Match alpha char */ #define NALPHA 44 /* Match non-alpha char */ #define LOWER 45 /* Match lowercase char */ #define NLOWER 46 /* Match non-lowercase char */ #define UPPER 47 /* Match uppercase char */ #define NUPPER 48 /* Match non-uppercase char */ #define LAST_NL NUPPER + ADD_NL #define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL) #define MOPEN 80 /* -89 Mark this point in input as start of * \( subexpr. MOPEN + 0 marks start of * match. */ #define MCLOSE 90 /* -99 Analogous to MOPEN. MCLOSE + 0 marks * end of match. */ #define BACKREF 100 /* -109 node Match same string again \1-\9 */ #ifdef FEAT_SYN_HL # define ZOPEN 110 /* -119 Mark this point in input as start of * \z( subexpr. */ # define ZCLOSE 120 /* -129 Analogous to ZOPEN. */ # define ZREF 130 /* -139 node Match external submatch \z1-\z9 */ #endif #define BRACE_COMPLEX 140 /* -149 node Match nodes between m & n times */ #define NOPEN 150 /* Mark this point in input as start of \%( subexpr. */ #define NCLOSE 151 /* Analogous to NOPEN. */ #define MULTIBYTECODE 200 /* mbc Match one multi-byte character */ #define RE_BOF 201 /* Match "" at beginning of file. */ #define RE_EOF 202 /* Match "" at end of file. */ #define CURSOR 203 /* Match location of cursor. */ #define RE_LNUM 204 /* nr cmp Match line number */ #define RE_COL 205 /* nr cmp Match column number */ #define RE_VCOL 206 /* nr cmp Match virtual column number */ #define RE_MARK 207 /* mark cmp Match mark position */ #define RE_VISUAL 208 /* Match Visual area */ /* * Magic characters have a special meaning, they don't match literally. * Magic characters are negative. This separates them from literal characters * (possibly multi-byte). Only ASCII characters can be Magic. */ #define Magic(x) ((int)(x) - 256) #define un_Magic(x) ((x) + 256) #define is_Magic(x) ((x) < 0) static int no_Magic __ARGS((int x)); static int toggle_Magic __ARGS((int x)); static int no_Magic(x) int x; { if (is_Magic(x)) return un_Magic(x); return x; } static int toggle_Magic(x) int x; { if (is_Magic(x)) return un_Magic(x); return Magic(x); } /* * The first byte of the regexp internal "program" is actually this magic * number; the start node begins in the second byte. It's used to catch the * most severe mutilation of the program by the caller. */ #define REGMAGIC 0234 /* * Opcode notes: * * BRANCH The set of branches constituting a single choice are hooked * together with their "next" pointers, since precedence prevents * anything being concatenated to any individual branch. The * "next" pointer of the last BRANCH in a choice points to the * thing following the whole choice. This is also where the * final "next" pointer of each individual branch points; each * branch starts with the operand node of a BRANCH node. * * BACK Normal "next" pointers all implicitly point forward; BACK * exists to make loop structures possible. * * STAR,PLUS '=', and complex '*' and '+', are implemented as circular * BRANCH structures using BACK. Simple cases (one character * per match) are implemented with STAR and PLUS for speed * and to minimize recursive plunges. * * BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX * node, and defines the min and max limits to be used for that * node. * * MOPEN,MCLOSE ...are numbered at compile time. * ZOPEN,ZCLOSE ...ditto */ /* * A node is one char of opcode followed by two chars of "next" pointer. * "Next" pointers are stored as two 8-bit bytes, high order first. The * value is a positive offset from the opcode of the node containing it. * An operand, if any, simply follows the node. (Note that much of the * code generation knows about this implicit relationship.) * * Using two bytes for the "next" pointer is vast overkill for most things, * but allows patterns to get big without disasters. */ #define OP(p) ((int)*(p)) #define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377)) #define OPERAND(p) ((p) + 3) /* Obtain an operand that was stored as four bytes, MSB first. */ #define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \ + ((long)(p)[5] << 8) + (long)(p)[6]) /* Obtain a second operand stored as four bytes. */ #define OPERAND_MAX(p) OPERAND_MIN((p) + 4) /* Obtain a second single-byte operand stored after a four bytes operand. */ #define OPERAND_CMP(p) (p)[7] /* * Utility definitions. */ #define UCHARAT(p) ((int)*(char_u *)(p)) /* Used for an error (down from) vim_regcomp(): give the error message, set * rc_did_emsg and return NULL */ #define EMSG_RET_NULL(m) return (EMSG(m), rc_did_emsg = TRUE, (void *)NULL) #define EMSG_M_RET_NULL(m, c) return (EMSG2((m), (c) ? "" : "\\"), rc_did_emsg = TRUE, (void *)NULL) #define EMSG_RET_FAIL(m) return (EMSG(m), rc_did_emsg = TRUE, FAIL) #define EMSG_ONE_RET_NULL EMSG_M_RET_NULL(_("E369: invalid item in %s%%[]"), reg_magic == MAGIC_ALL) #define MAX_LIMIT (32767L << 16L) static int re_multi_type __ARGS((int)); static int cstrncmp __ARGS((char_u *s1, char_u *s2, int *n)); static char_u *cstrchr __ARGS((char_u *, int)); #ifdef DEBUG static void regdump __ARGS((char_u *, regprog_T *)); static char_u *regprop __ARGS((char_u *)); #endif #define NOT_MULTI 0 #define MULTI_ONE 1 #define MULTI_MULT 2 /* * Return NOT_MULTI if c is not a "multi" operator. * Return MULTI_ONE if c is a single "multi" operator. * Return MULTI_MULT if c is a multi "multi" operator. */ static int re_multi_type(c) int c; { if (c == Magic('@') || c == Magic('=') || c == Magic('?')) return MULTI_ONE; if (c == Magic('*') || c == Magic('+') || c == Magic('{')) return MULTI_MULT; return NOT_MULTI; } /* * Flags to be passed up and down. */ #define HASWIDTH 0x1 /* Known never to match null string. */ #define SIMPLE 0x2 /* Simple enough to be STAR/PLUS operand. */ #define SPSTART 0x4 /* Starts with * or +. */ #define HASNL 0x8 /* Contains some \n. */ #define HASLOOKBH 0x10 /* Contains "\@<=" or "\@= '0' && i <= '7') class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD; else if (i >= '8' && i <= '9') class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD; else if (i >= 'a' && i <= 'f') class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; #ifdef EBCDIC else if ((i >= 'g' && i <= 'i') || (i >= 'j' && i <= 'r') || (i >= 's' && i <= 'z')) #else else if (i >= 'g' && i <= 'z') #endif class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; else if (i >= 'A' && i <= 'F') class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; #ifdef EBCDIC else if ((i >= 'G' && i <= 'I') || ( i >= 'J' && i <= 'R') || (i >= 'S' && i <= 'Z')) #else else if (i >= 'G' && i <= 'Z') #endif class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; else if (i == '_') class_tab[i] = RI_WORD + RI_HEAD; else class_tab[i] = 0; } class_tab[' '] |= RI_WHITE; class_tab['\t'] |= RI_WHITE; done = TRUE; } #ifdef FEAT_MBYTE # define ri_digit(c) (c < 0x100 && (class_tab[c] & RI_DIGIT)) # define ri_hex(c) (c < 0x100 && (class_tab[c] & RI_HEX)) # define ri_octal(c) (c < 0x100 && (class_tab[c] & RI_OCTAL)) # define ri_word(c) (c < 0x100 && (class_tab[c] & RI_WORD)) # define ri_head(c) (c < 0x100 && (class_tab[c] & RI_HEAD)) # define ri_alpha(c) (c < 0x100 && (class_tab[c] & RI_ALPHA)) # define ri_lower(c) (c < 0x100 && (class_tab[c] & RI_LOWER)) # define ri_upper(c) (c < 0x100 && (class_tab[c] & RI_UPPER)) # define ri_white(c) (c < 0x100 && (class_tab[c] & RI_WHITE)) #else # define ri_digit(c) (class_tab[c] & RI_DIGIT) # define ri_hex(c) (class_tab[c] & RI_HEX) # define ri_octal(c) (class_tab[c] & RI_OCTAL) # define ri_word(c) (class_tab[c] & RI_WORD) # define ri_head(c) (class_tab[c] & RI_HEAD) # define ri_alpha(c) (class_tab[c] & RI_ALPHA) # define ri_lower(c) (class_tab[c] & RI_LOWER) # define ri_upper(c) (class_tab[c] & RI_UPPER) # define ri_white(c) (class_tab[c] & RI_WHITE) #endif /* flags for regflags */ #define RF_ICASE 1 /* ignore case */ #define RF_NOICASE 2 /* don't ignore case */ #define RF_HASNL 4 /* can match a NL */ #define RF_ICOMBINE 8 /* ignore combining characters */ #define RF_LOOKBH 16 /* uses "\@<=" or "\@?@ACDFHIKLMOPSUVWX[_acdfhiklmnopsuvwxz{|~"; #else /* META[] is used often enough to justify turning it into a table. */ static char_u META_flags[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* % & ( ) * + . */ 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, /* 1 2 3 4 5 6 7 8 9 < = > ? */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, /* @ A C D F H I K L M O */ 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, /* P S U V W X Z [ _ */ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, /* a c d f h i k l m n o */ 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, /* p s u v w x z { | ~ */ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1 }; #endif static int curchr; /* arguments for reg() */ #define REG_NOPAREN 0 /* toplevel reg() */ #define REG_PAREN 1 /* \(\) */ #define REG_ZPAREN 2 /* \z(\) */ #define REG_NPAREN 3 /* \%(\) */ /* * Forward declarations for vim_regcomp()'s friends. */ static void initchr __ARGS((char_u *)); static int getchr __ARGS((void)); static void skipchr_keepstart __ARGS((void)); static int peekchr __ARGS((void)); static void skipchr __ARGS((void)); static void ungetchr __ARGS((void)); static int gethexchrs __ARGS((int maxinputlen)); static int getoctchrs __ARGS((void)); static int getdecchrs __ARGS((void)); static int coll_get_char __ARGS((void)); static void regcomp_start __ARGS((char_u *expr, int flags)); static char_u *reg __ARGS((int, int *)); static char_u *regbranch __ARGS((int *flagp)); static char_u *regconcat __ARGS((int *flagp)); static char_u *regpiece __ARGS((int *)); static char_u *regatom __ARGS((int *)); static char_u *regnode __ARGS((int)); #ifdef FEAT_MBYTE static int use_multibytecode __ARGS((int c)); #endif static int prog_magic_wrong __ARGS((void)); static char_u *regnext __ARGS((char_u *)); static void regc __ARGS((int b)); #ifdef FEAT_MBYTE static void regmbc __ARGS((int c)); #else # define regmbc(c) regc(c) #endif static void reginsert __ARGS((int, char_u *)); static void reginsert_limits __ARGS((int, long, long, char_u *)); static char_u *re_put_long __ARGS((char_u *pr, long_u val)); static int read_limits __ARGS((long *, long *)); static void regtail __ARGS((char_u *, char_u *)); static void regoptail __ARGS((char_u *, char_u *)); /* * Return TRUE if compiled regular expression "prog" can match a line break. */ int re_multiline(prog) regprog_T *prog; { return (prog->regflags & RF_HASNL); } /* * Return TRUE if compiled regular expression "prog" looks before the start * position (pattern contains "\@<=" or "\@regflags & RF_LOOKBH); } /* * Check for an equivalence class name "[=a=]". "pp" points to the '['. * Returns a character representing the class. Zero means that no item was * recognized. Otherwise "pp" is advanced to after the item. */ static int get_equi_class(pp) char_u **pp; { int c; int l = 1; char_u *p = *pp; if (p[1] == '=') { #ifdef FEAT_MBYTE if (has_mbyte) l = (*mb_ptr2len)(p + 2); #endif if (p[l + 2] == '=' && p[l + 3] == ']') { #ifdef FEAT_MBYTE if (has_mbyte) c = mb_ptr2char(p + 2); else #endif c = p[2]; *pp += l + 4; return c; } } return 0; } #ifdef EBCDIC /* * Table for equivalence class "c". (IBM-1047) */ char *EQUIVAL_CLASS_C[16] = { "A\x62\x63\x64\x65\x66\x67", "C\x68", "E\x71\x72\x73\x74", "I\x75\x76\x77\x78", "N\x69", "O\xEB\xEC\xED\xEE\xEF", "U\xFB\xFC\xFD\xFE", "Y\xBA", "a\x42\x43\x44\x45\x46\x47", "c\x48", "e\x51\x52\x53\x54", "i\x55\x56\x57\x58", "n\x49", "o\xCB\xCC\xCD\xCE\xCF", "u\xDB\xDC\xDD\xDE", "y\x8D\xDF", }; #endif /* * Produce the bytes for equivalence class "c". * Currently only handles latin1, latin9 and utf-8. */ static void reg_equi_class(c) int c; { #ifdef FEAT_MBYTE if (enc_utf8 || STRCMP(p_enc, "latin1") == 0 || STRCMP(p_enc, "iso-8859-15") == 0) #endif { #ifdef EBCDIC int i; /* This might be slower than switch/case below. */ for (i = 0; i < 16; i++) { if (vim_strchr(EQUIVAL_CLASS_C[i], c) != NULL) { char *p = EQUIVAL_CLASS_C[i]; while (*p != 0) regmbc(*p++); return; } } #else switch (c) { case 'A': case '\300': case '\301': case '\302': case '\303': case '\304': case '\305': regmbc('A'); regmbc('\300'); regmbc('\301'); regmbc('\302'); regmbc('\303'); regmbc('\304'); regmbc('\305'); return; case 'C': case '\307': regmbc('C'); regmbc('\307'); return; case 'E': case '\310': case '\311': case '\312': case '\313': regmbc('E'); regmbc('\310'); regmbc('\311'); regmbc('\312'); regmbc('\313'); return; case 'I': case '\314': case '\315': case '\316': case '\317': regmbc('I'); regmbc('\314'); regmbc('\315'); regmbc('\316'); regmbc('\317'); return; case 'N': case '\321': regmbc('N'); regmbc('\321'); return; case 'O': case '\322': case '\323': case '\324': case '\325': case '\326': regmbc('O'); regmbc('\322'); regmbc('\323'); regmbc('\324'); regmbc('\325'); regmbc('\326'); return; case 'U': case '\331': case '\332': case '\333': case '\334': regmbc('U'); regmbc('\331'); regmbc('\332'); regmbc('\333'); regmbc('\334'); return; case 'Y': case '\335': regmbc('Y'); regmbc('\335'); return; case 'a': case '\340': case '\341': case '\342': case '\343': case '\344': case '\345': regmbc('a'); regmbc('\340'); regmbc('\341'); regmbc('\342'); regmbc('\343'); regmbc('\344'); regmbc('\345'); return; case 'c': case '\347': regmbc('c'); regmbc('\347'); return; case 'e': case '\350': case '\351': case '\352': case '\353': regmbc('e'); regmbc('\350'); regmbc('\351'); regmbc('\352'); regmbc('\353'); return; case 'i': case '\354': case '\355': case '\356': case '\357': regmbc('i'); regmbc('\354'); regmbc('\355'); regmbc('\356'); regmbc('\357'); return; case 'n': case '\361': regmbc('n'); regmbc('\361'); return; case 'o': case '\362': case '\363': case '\364': case '\365': case '\366': regmbc('o'); regmbc('\362'); regmbc('\363'); regmbc('\364'); regmbc('\365'); regmbc('\366'); return; case 'u': case '\371': case '\372': case '\373': case '\374': regmbc('u'); regmbc('\371'); regmbc('\372'); regmbc('\373'); regmbc('\374'); return; case 'y': case '\375': case '\377': regmbc('y'); regmbc('\375'); regmbc('\377'); return; } #endif } regmbc(c); } /* * Check for a collating element "[.a.]". "pp" points to the '['. * Returns a character. Zero means that no item was recognized. Otherwise * "pp" is advanced to after the item. * Currently only single characters are recognized! */ static int get_coll_element(pp) char_u **pp; { int c; int l = 1; char_u *p = *pp; if (p[1] == '.') { #ifdef FEAT_MBYTE if (has_mbyte) l = (*mb_ptr2len)(p + 2); #endif if (p[l + 2] == '.' && p[l + 3] == ']') { #ifdef FEAT_MBYTE if (has_mbyte) c = mb_ptr2char(p + 2); else #endif c = p[2]; *pp += l + 4; return c; } } return 0; } /* * Skip over a "[]" range. * "p" must point to the character after the '['. * The returned pointer is on the matching ']', or the terminating NUL. */ static char_u * skip_anyof(p) char_u *p; { int cpo_lit; /* 'cpoptions' contains 'l' flag */ int cpo_bsl; /* 'cpoptions' contains '\' flag */ #ifdef FEAT_MBYTE int l; #endif cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL; cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL; if (*p == '^') /* Complement of range. */ ++p; if (*p == ']' || *p == '-') ++p; while (*p != NUL && *p != ']') { #ifdef FEAT_MBYTE if (has_mbyte && (l = (*mb_ptr2len)(p)) > 1) p += l; else #endif if (*p == '-') { ++p; if (*p != ']' && *p != NUL) mb_ptr_adv(p); } else if (*p == '\\' && !cpo_bsl && (vim_strchr(REGEXP_INRANGE, p[1]) != NULL || (!cpo_lit && vim_strchr(REGEXP_ABBR, p[1]) != NULL))) p += 2; else if (*p == '[') { if (get_char_class(&p) == CLASS_NONE && get_equi_class(&p) == 0 && get_coll_element(&p) == 0) ++p; /* It was not a class name */ } else ++p; } return p; } /* * Skip past regular expression. * Stop at end of "startp" or where "dirc" is found ('/', '?', etc). * Take care of characters with a backslash in front of it. * Skip strings inside [ and ]. * When "newp" is not NULL and "dirc" is '?', make an allocated copy of the * expression and change "\?" to "?". If "*newp" is not NULL the expression * is changed in-place. */ char_u * skip_regexp(startp, dirc, magic, newp) char_u *startp; int dirc; int magic; char_u **newp; { int mymagic; char_u *p = startp; if (magic) mymagic = MAGIC_ON; else mymagic = MAGIC_OFF; for (; p[0] != NUL; mb_ptr_adv(p)) { if (p[0] == dirc) /* found end of regexp */ break; if ((p[0] == '[' && mymagic >= MAGIC_ON) || (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) { p = skip_anyof(p + 1); if (p[0] == NUL) break; } else if (p[0] == '\\' && p[1] != NUL) { if (dirc == '?' && newp != NULL && p[1] == '?') { /* change "\?" to "?", make a copy first. */ if (*newp == NULL) { *newp = vim_strsave(startp); if (*newp != NULL) p = *newp + (p - startp); } if (*newp != NULL) STRMOVE(p, p + 1); else ++p; } else ++p; /* skip next character */ if (*p == 'v') mymagic = MAGIC_ALL; else if (*p == 'V') mymagic = MAGIC_NONE; } } return p; } /* * vim_regcomp() - compile a regular expression into internal code * Returns the program in allocated space. Returns NULL for an error. * * We can't allocate space until we know how big the compiled form will be, * but we can't compile it (and thus know how big it is) until we've got a * place to put the code. So we cheat: we compile it twice, once with code * generation turned off and size counting turned on, and once "for real". * This also means that we don't allocate space until we are sure that the * thing really will compile successfully, and we never have to move the * code and thus invalidate pointers into it. (Note that it has to be in * one piece because vim_free() must be able to free it all.) * * Whether upper/lower case is to be ignored is decided when executing the * program, it does not matter here. * * Beware that the optimization-preparation code in here knows about some * of the structure of the compiled regexp. * "re_flags": RE_MAGIC and/or RE_STRING. */ regprog_T * vim_regcomp(expr, re_flags) char_u *expr; int re_flags; { regprog_T *r; char_u *scan; char_u *longest; int len; int flags; if (expr == NULL) EMSG_RET_NULL(_(e_null)); init_class_tab(); /* * First pass: determine size, legality. */ regcomp_start(expr, re_flags); regcode = JUST_CALC_SIZE; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL) return NULL; /* Small enough for pointer-storage convention? */ #ifdef SMALL_MALLOC /* 16 bit storage allocation */ if (regsize >= 65536L - 256L) EMSG_RET_NULL(_("E339: Pattern too long")); #endif /* Allocate space. */ r = (regprog_T *)lalloc(sizeof(regprog_T) + regsize, TRUE); if (r == NULL) return NULL; /* * Second pass: emit code. */ regcomp_start(expr, re_flags); regcode = r->program; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) { vim_free(r); if (reg_toolong) EMSG_RET_NULL(_("E339: Pattern too long")); return NULL; } /* Dig out information for optimizations. */ r->regstart = NUL; /* Worst-case defaults. */ r->reganch = 0; r->regmust = NULL; r->regmlen = 0; r->regflags = regflags; if (flags & HASNL) r->regflags |= RF_HASNL; if (flags & HASLOOKBH) r->regflags |= RF_LOOKBH; #ifdef FEAT_SYN_HL /* Remember whether this pattern has any \z specials in it. */ r->reghasz = re_has_z; #endif scan = r->program + 1; /* First BRANCH. */ if (OP(regnext(scan)) == END) /* Only one top-level choice. */ { scan = OPERAND(scan); /* Starting-point info. */ if (OP(scan) == BOL || OP(scan) == RE_BOF) { r->reganch++; scan = regnext(scan); } if (OP(scan) == EXACTLY) { #ifdef FEAT_MBYTE if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(scan)); else #endif r->regstart = *OPERAND(scan); } else if ((OP(scan) == BOW || OP(scan) == EOW || OP(scan) == NOTHING || OP(scan) == MOPEN + 0 || OP(scan) == NOPEN || OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) && OP(regnext(scan)) == EXACTLY) { #ifdef FEAT_MBYTE if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(regnext(scan))); else #endif r->regstart = *OPERAND(regnext(scan)); } /* * If there's something expensive in the r.e., find the longest * literal string that must appear and make it the regmust. Resolve * ties in favor of later strings, since the regstart check works * with the beginning of the r.e. and avoiding duplication * strengthens checking. Not a strong reason, but sufficient in the * absence of others. */ /* * When the r.e. starts with BOW, it is faster to look for a regmust * first. Used a lot for "#" and "*" commands. (Added by mool). */ if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW) && !(flags & HASNL)) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len) { longest = OPERAND(scan); len = (int)STRLEN(OPERAND(scan)); } r->regmust = longest; r->regmlen = len; } } #ifdef DEBUG regdump(expr, r); #endif return r; } /* * Setup to parse the regexp. Used once to get the length and once to do it. */ static void regcomp_start(expr, re_flags) char_u *expr; int re_flags; /* see vim_regcomp() */ { initchr(expr); if (re_flags & RE_MAGIC) reg_magic = MAGIC_ON; else reg_magic = MAGIC_OFF; reg_string = (re_flags & RE_STRING); reg_strict = (re_flags & RE_STRICT); num_complex_braces = 0; regnpar = 1; vim_memset(had_endbrace, 0, sizeof(had_endbrace)); #ifdef FEAT_SYN_HL regnzpar = 1; re_has_z = 0; #endif regsize = 0L; reg_toolong = FALSE; regflags = 0; #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = FALSE; #endif } #if defined(FEAT_SYN_HL) || defined(PROTO) /* * Check if during the previous call to vim_regcomp the EOL item "$" has been * found. This is messy, but it works fine. */ int vim_regcomp_had_eol() { return had_eol; } #endif /* * reg - regular expression, i.e. main body or parenthesized thing * * Caller must absorb opening parenthesis. * * Combining parenthesis handling with the base level of regular expression * is a trifle forced, but the need to tie the tails of the branches to what * follows makes it hard to avoid. */ static char_u * reg(paren, flagp) int paren; /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */ int *flagp; { char_u *ret; char_u *br; char_u *ender; int parno = 0; int flags; *flagp = HASWIDTH; /* Tentatively. */ #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) { /* Make a ZOPEN node. */ if (regnzpar >= NSUBEXP) EMSG_RET_NULL(_("E50: Too many \\z(")); parno = regnzpar; regnzpar++; ret = regnode(ZOPEN + parno); } else #endif if (paren == REG_PAREN) { /* Make a MOPEN node. */ if (regnpar >= NSUBEXP) EMSG_M_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL); parno = regnpar; ++regnpar; ret = regnode(MOPEN + parno); } else if (paren == REG_NPAREN) { /* Make a NOPEN node. */ ret = regnode(NOPEN); } else ret = NULL; /* Pick up the branches, linking them together. */ br = regbranch(&flags); if (br == NULL) return NULL; if (ret != NULL) regtail(ret, br); /* [MZ]OPEN -> first. */ else ret = br; /* If one of the branches can be zero-width, the whole thing can. * If one of the branches has * at start or matches a line-break, the * whole thing can. */ if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); while (peekchr() == Magic('|')) { skipchr(); br = regbranch(&flags); if (br == NULL || reg_toolong) return NULL; regtail(ret, br); /* BRANCH -> BRANCH. */ if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); } /* Make a closing node, and hook it on the end. */ ender = regnode( #ifdef FEAT_SYN_HL paren == REG_ZPAREN ? ZCLOSE + parno : #endif paren == REG_PAREN ? MCLOSE + parno : paren == REG_NPAREN ? NCLOSE : END); regtail(ret, ender); /* Hook the tails of the branches to the closing node. */ for (br = ret; br != NULL; br = regnext(br)) regoptail(br, ender); /* Check for proper termination. */ if (paren != REG_NOPAREN && getchr() != Magic(')')) { #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) EMSG_RET_NULL(_("E52: Unmatched \\z(")); else #endif if (paren == REG_NPAREN) EMSG_M_RET_NULL(_("E53: Unmatched %s%%("), reg_magic == MAGIC_ALL); else EMSG_M_RET_NULL(_("E54: Unmatched %s("), reg_magic == MAGIC_ALL); } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (curchr == Magic(')')) EMSG_M_RET_NULL(_("E55: Unmatched %s)"), reg_magic == MAGIC_ALL); else EMSG_RET_NULL(_(e_trailing)); /* "Can't happen". */ /* NOTREACHED */ } /* * Here we set the flag allowing back references to this set of * parentheses. */ if (paren == REG_PAREN) had_endbrace[parno] = TRUE; /* have seen the close paren */ return ret; } /* * Handle one alternative of an | operator. * Implements the & operator. */ static char_u * regbranch(flagp) int *flagp; { char_u *ret; char_u *chain = NULL; char_u *latest; int flags; *flagp = WORST | HASNL; /* Tentatively. */ ret = regnode(BRANCH); for (;;) { latest = regconcat(&flags); if (latest == NULL) return NULL; /* If one of the branches has width, the whole thing has. If one of * the branches anchors at start-of-line, the whole thing does. * If one of the branches uses look-behind, the whole thing does. */ *flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH); /* If one of the branches doesn't match a line-break, the whole thing * doesn't. */ *flagp &= ~HASNL | (flags & HASNL); if (chain != NULL) regtail(chain, latest); if (peekchr() != Magic('&')) break; skipchr(); regtail(latest, regnode(END)); /* operand ends */ if (reg_toolong) break; reginsert(MATCH, latest); chain = latest; } return ret; } /* * Handle one alternative of an | or & operator. * Implements the concatenation operator. */ static char_u * regconcat(flagp) int *flagp; { char_u *first = NULL; char_u *chain = NULL; char_u *latest; int flags; int cont = TRUE; *flagp = WORST; /* Tentatively. */ while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = FALSE; break; case Magic('Z'): #ifdef FEAT_MBYTE regflags |= RF_ICOMBINE; #endif skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: latest = regpiece(&flags); if (latest == NULL || reg_toolong) return NULL; *flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH); if (chain == NULL) /* First piece. */ *flagp |= flags & SPSTART; else regtail(chain, latest); chain = latest; if (first == NULL) first = latest; break; } } if (first == NULL) /* Loop ran zero times. */ first = regnode(NOTHING); return first; } /* * regpiece - something followed by possible [*+=] * * Note that the branching code sequences used for = and the general cases * of * and + are somewhat optimized: they use the same NOTHING node as * both the endmarker for their branch list and the body of the last branch. * It might seem that this node could be dispensed with entirely, but the * endmarker role is not redundant. */ static char_u * regpiece(flagp) int *flagp; { char_u *ret; int op; char_u *next; int flags; long minval; long maxval; ret = regatom(&flags); if (ret == NULL) return NULL; op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { *flagp = flags; return ret; } /* default flags */ *flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH))); skipchr(); switch (op) { case Magic('*'): if (flags & SIMPLE) reginsert(STAR, ret); else { /* Emit x* as (x&|), where & means "self". */ reginsert(BRANCH, ret); /* Either x */ regoptail(ret, regnode(BACK)); /* and loop */ regoptail(ret, ret); /* back */ regtail(ret, regnode(BRANCH)); /* or */ regtail(ret, regnode(NOTHING)); /* null. */ } break; case Magic('+'): if (flags & SIMPLE) reginsert(PLUS, ret); else { /* Emit x+ as x(&|), where & means "self". */ next = regnode(BRANCH); /* Either */ regtail(ret, next); regtail(regnode(BACK), ret); /* loop back */ regtail(next, regnode(BRANCH)); /* or */ regtail(ret, regnode(NOTHING)); /* null. */ } *flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; case Magic('@'): { int lop = END; switch (no_Magic(getchr())) { case '=': lop = MATCH; break; /* \@= */ case '!': lop = NOMATCH; break; /* \@! */ case '>': lop = SUBPAT; break; /* \@> */ case '<': switch (no_Magic(getchr())) { case '=': lop = BEHIND; break; /* \@<= */ case '!': lop = NOBEHIND; break; /* \@= 10) EMSG_M_RET_NULL(_("E60: Too many complex %s{...}s"), reg_magic == MAGIC_ALL); reginsert(BRACE_COMPLEX + num_complex_braces, ret); regoptail(ret, regnode(BACK)); regoptail(ret, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); ++num_complex_braces; } if (minval > 0 && maxval > 0) *flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; } if (re_multi_type(peekchr()) != NOT_MULTI) { /* Can't have a multi follow a multi. */ if (peekchr() == Magic('*')) sprintf((char *)IObuff, _("E61: Nested %s*"), reg_magic >= MAGIC_ON ? "" : "\\"); else sprintf((char *)IObuff, _("E62: Nested %s%c"), reg_magic == MAGIC_ALL ? "" : "\\", no_Magic(peekchr())); EMSG_RET_NULL(IObuff); } return ret; } /* * regatom - the lowest level * * Optimization: gobbles an entire sequence of ordinary characters so that * it can turn them into a single node, which is smaller to store and * faster to run. Don't do this when one_exactly is set. */ static char_u * regatom(flagp) int *flagp; { char_u *ret; int flags; int cpo_lit; /* 'cpoptions' contains 'l' flag */ int cpo_bsl; /* 'cpoptions' contains '\' flag */ int c; static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU"; static int classcodes[] = {ANY, IDENT, SIDENT, KWORD, SKWORD, FNAME, SFNAME, PRINT, SPRINT, WHITE, NWHITE, DIGIT, NDIGIT, HEX, NHEX, OCTAL, NOCTAL, WORD, NWORD, HEAD, NHEAD, ALPHA, NALPHA, LOWER, NLOWER, UPPER, NUPPER }; char_u *p; int extra = 0; *flagp = WORST; /* Tentatively. */ cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL; cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL; c = getchr(); switch (c) { case Magic('^'): ret = regnode(BOL); break; case Magic('$'): ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; case Magic('<'): ret = regnode(BOW); break; case Magic('>'): ret = regnode(EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == '^') /* "\_^" is start-of-line */ { ret = regnode(BOL); break; } if (c == '$') /* "\_$" is end-of-line */ { ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; } extra = ADD_NL; *flagp |= HASNL; /* "\_[" is character range plus newline */ if (c == '[') goto collection; /* "\_x" is character class plus newline */ /*FALLTHROUGH*/ /* * Character classes. */ case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = vim_strchr(classchars, no_Magic(c)); if (p == NULL) EMSG_RET_NULL(_("E63: invalid use of \\_")); #ifdef FEAT_MBYTE /* When '.' is followed by a composing char ignore the dot, so that * the composing char is matched here. */ if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) { c = getchr(); goto do_multibyte; } #endif ret = regnode(classcodes[p - classchars] + extra); *flagp |= HASWIDTH | SIMPLE; break; case Magic('n'): if (reg_string) { /* In a string "\n" matches a newline character. */ ret = regnode(EXACTLY); regc(NL); regc(NUL); *flagp |= HASWIDTH | SIMPLE; } else { /* In buffer text "\n" matches the end of a line. */ ret = regnode(NEWL); *flagp |= HASWIDTH | HASNL; } break; case Magic('('): if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_PAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; case NUL: case Magic('|'): case Magic('&'): case Magic(')'): if (one_exactly) EMSG_ONE_RET_NULL; EMSG_RET_NULL(_(e_internal)); /* Supposed to be caught earlier. */ /* NOTREACHED */ case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('{'): case Magic('*'): c = no_Magic(c); sprintf((char *)IObuff, _("E64: %s%c follows nothing"), (c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL) ? "" : "\\", c); EMSG_RET_NULL(IObuff); /* NOTREACHED */ case Magic('~'): /* previous substitute pattern */ if (reg_prev_sub != NULL) { char_u *lp; ret = regnode(EXACTLY); lp = reg_prev_sub; while (*lp != NUL) regc(*lp++); regc(NUL); if (*reg_prev_sub != NUL) { *flagp |= HASWIDTH; if ((lp - reg_prev_sub) == 1) *flagp |= SIMPLE; } } else EMSG_RET_NULL(_(e_nopresub)); break; case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum; refnum = c - Magic('0'); /* * Check if the back reference is legal. We must have seen the * close brace. * TODO: Should also check that we don't refer to something * that is repeated (+*=): what instance of the repetition * should we match? */ if (!had_endbrace[refnum]) { /* Trick: check if "@<=" or "@' || c == '\'') { long_u n = 0; int cmp; cmp = c; if (cmp == '<' || cmp == '>') c = getchr(); while (VIM_ISDIGIT(c)) { n = n * 10 + (c - '0'); c = getchr(); } if (c == '\'' && n == 0) { /* "\%'m", "\%<'m" and "\%>'m": Mark */ c = getchr(); ret = regnode(RE_MARK); if (ret == JUST_CALC_SIZE) regsize += 2; else { *regcode++ = c; *regcode++ = cmp; } break; } else if (c == 'l' || c == 'c' || c == 'v') { if (c == 'l') ret = regnode(RE_LNUM); else if (c == 'c') ret = regnode(RE_COL); else ret = regnode(RE_VCOL); if (ret == JUST_CALC_SIZE) regsize += 5; else { /* put the number and the optional * comparator after the opcode */ regcode = re_put_long(regcode, n); *regcode++ = cmp; } break; } } EMSG_M_RET_NULL(_("E71: Invalid character after %s%%"), reg_magic == MAGIC_ALL); } } break; case Magic('['): collection: { char_u *lp; /* * If there is no matching ']', we assume the '[' is a normal * character. This makes 'incsearch' and ":help [" work. */ lp = skip_anyof(regparse); if (*lp == ']') /* there is a matching ']' */ { int startc = -1; /* > 0 when next '-' is a range */ int endc; /* * In a character class, different parsing rules apply. * Not even \ is special anymore, nothing is. */ if (*regparse == '^') /* Complement of range. */ { ret = regnode(ANYBUT + extra); regparse++; } else ret = regnode(ANYOF + extra); /* At the start ']' and '-' mean the literal character. */ if (*regparse == ']' || *regparse == '-') { startc = *regparse; regc(*regparse++); } while (*regparse != NUL && *regparse != ']') { if (*regparse == '-') { ++regparse; /* The '-' is not used for a range at the end and * after or before a '\n'. */ if (*regparse == ']' || *regparse == NUL || startc == -1 || (regparse[0] == '\\' && regparse[1] == 'n')) { regc('-'); startc = '-'; /* [--x] is a range */ } else { /* Also accept "a-[.z.]" */ endc = 0; if (*regparse == '[') endc = get_coll_element(®parse); if (endc == 0) { #ifdef FEAT_MBYTE if (has_mbyte) endc = mb_ptr2char_adv(®parse); else #endif endc = *regparse++; } /* Handle \o40, \x20 and \u20AC style sequences */ if (endc == '\\' && !cpo_lit && !cpo_bsl) endc = coll_get_char(); if (startc > endc) EMSG_RET_NULL(_(e_invrange)); #ifdef FEAT_MBYTE if (has_mbyte && ((*mb_char2len)(startc) > 1 || (*mb_char2len)(endc) > 1)) { /* Limit to a range of 256 chars */ if (endc > startc + 256) EMSG_RET_NULL(_(e_invrange)); while (++startc <= endc) regmbc(startc); } else #endif { #ifdef EBCDIC int alpha_only = FALSE; /* for alphabetical range skip the gaps * 'i'-'j', 'r'-'s', 'I'-'J' and 'R'-'S'. */ if (isalpha(startc) && isalpha(endc)) alpha_only = TRUE; #endif while (++startc <= endc) #ifdef EBCDIC if (!alpha_only || isalpha(startc)) #endif regc(startc); } startc = -1; } } /* * Only "\]", "\^", "\]" and "\\" are special in Vi. Vim * accepts "\t", "\e", etc., but only when the 'l' flag in * 'cpoptions' is not included. * Posix doesn't recognize backslash at all. */ else if (*regparse == '\\' && !cpo_bsl && (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL || (!cpo_lit && vim_strchr(REGEXP_ABBR, regparse[1]) != NULL))) { regparse++; if (*regparse == 'n') { /* '\n' in range: also match NL */ if (ret != JUST_CALC_SIZE) { if (*ret == ANYBUT) *ret = ANYBUT + ADD_NL; else if (*ret == ANYOF) *ret = ANYOF + ADD_NL; /* else: must have had a \n already */ } *flagp |= HASNL; regparse++; startc = -1; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { startc = coll_get_char(); if (startc == 0) regc(0x0a); else #ifdef FEAT_MBYTE regmbc(startc); #else regc(startc); #endif } else { startc = backslash_trans(*regparse++); regc(startc); } } else if (*regparse == '[') { int c_class; int cu; c_class = get_char_class(®parse); startc = -1; /* Characters assumed to be 8 bits! */ switch (c_class) { case CLASS_NONE: c_class = get_equi_class(®parse); if (c_class != 0) { /* produce equivalence class */ reg_equi_class(c_class); } else if ((c_class = get_coll_element(®parse)) != 0) { /* produce a collating element */ regmbc(c_class); } else { /* literal '[', allow [[-x] as a range */ startc = *regparse++; regc(startc); } break; case CLASS_ALNUM: for (cu = 1; cu <= 255; cu++) if (isalnum(cu)) regc(cu); break; case CLASS_ALPHA: for (cu = 1; cu <= 255; cu++) if (isalpha(cu)) regc(cu); break; case CLASS_BLANK: regc(' '); regc('\t'); break; case CLASS_CNTRL: for (cu = 1; cu <= 255; cu++) if (iscntrl(cu)) regc(cu); break; case CLASS_DIGIT: for (cu = 1; cu <= 255; cu++) if (VIM_ISDIGIT(cu)) regc(cu); break; case CLASS_GRAPH: for (cu = 1; cu <= 255; cu++) if (isgraph(cu)) regc(cu); break; case CLASS_LOWER: for (cu = 1; cu <= 255; cu++) if (MB_ISLOWER(cu)) regc(cu); break; case CLASS_PRINT: for (cu = 1; cu <= 255; cu++) if (vim_isprintc(cu)) regc(cu); break; case CLASS_PUNCT: for (cu = 1; cu <= 255; cu++) if (ispunct(cu)) regc(cu); break; case CLASS_SPACE: for (cu = 9; cu <= 13; cu++) regc(cu); regc(' '); break; case CLASS_UPPER: for (cu = 1; cu <= 255; cu++) if (MB_ISUPPER(cu)) regc(cu); break; case CLASS_XDIGIT: for (cu = 1; cu <= 255; cu++) if (vim_isxdigit(cu)) regc(cu); break; case CLASS_TAB: regc('\t'); break; case CLASS_RETURN: regc('\r'); break; case CLASS_BACKSPACE: regc('\b'); break; case CLASS_ESCAPE: regc('\033'); break; } } else { #ifdef FEAT_MBYTE if (has_mbyte) { int len; /* produce a multibyte character, including any * following composing characters */ startc = mb_ptr2char(regparse); len = (*mb_ptr2len)(regparse); if (enc_utf8 && utf_char2len(startc) != len) startc = -1; /* composing chars */ while (--len >= 0) regc(*regparse++); } else #endif { startc = *regparse++; regc(startc); } } } regc(NUL); prevchr_len = 1; /* last char was the ']' */ if (*regparse != ']') EMSG_RET_NULL(_(e_toomsbra)); /* Cannot happen? */ skipchr(); /* let's be friends with the lexer again */ *flagp |= HASWIDTH | SIMPLE; break; } else if (reg_strict) EMSG_M_RET_NULL(_("E769: Missing ] after %s["), reg_magic > MAGIC_OFF); } /* FALLTHROUGH */ default: { int len; #ifdef FEAT_MBYTE /* A multi-byte character is handled as a separate atom if it's * before a multi and when it's a composing char. */ if (use_multibytecode(c)) { do_multibyte: ret = regnode(MULTIBYTECODE); regmbc(c); *flagp |= HASWIDTH | SIMPLE; break; } #endif ret = regnode(EXACTLY); /* * Append characters as long as: * - there is no following multi, we then need the character in * front of it as a single character operand * - not running into a Magic character * - "one_exactly" is not set * But always emit at least one character. Might be a Multi, * e.g., a "[" without matching "]". */ for (len = 0; c != NUL && (len == 0 || (re_multi_type(peekchr()) == NOT_MULTI && !one_exactly && !is_Magic(c))); ++len) { c = no_Magic(c); #ifdef FEAT_MBYTE if (has_mbyte) { regmbc(c); if (enc_utf8) { int l; /* Need to get composing character too. */ for (;;) { l = utf_ptr2len(regparse); if (!UTF_COMPOSINGLIKE(regparse, regparse + l)) break; regmbc(utf_ptr2char(regparse)); skipchr(); } } } else #endif regc(c); c = getchr(); } ungetchr(); regc(NUL); *flagp |= HASWIDTH; if (len == 1) *flagp |= SIMPLE; } break; } return ret; } #ifdef FEAT_MBYTE /* * Return TRUE if MULTIBYTECODE should be used instead of EXACTLY for * character "c". */ static int use_multibytecode(c) int c; { return has_mbyte && (*mb_char2len)(c) > 1 && (re_multi_type(peekchr()) != NOT_MULTI || (enc_utf8 && utf_iscomposing(c))); } #endif /* * emit a node * Return pointer to generated code. */ static char_u * regnode(op) int op; { char_u *ret; ret = regcode; if (ret == JUST_CALC_SIZE) regsize += 3; else { *regcode++ = op; *regcode++ = NUL; /* Null "next" pointer. */ *regcode++ = NUL; } return ret; } /* * Emit (if appropriate) a byte of code */ static void regc(b) int b; { if (regcode == JUST_CALC_SIZE) regsize++; else *regcode++ = b; } #ifdef FEAT_MBYTE /* * Emit (if appropriate) a multi-byte character of code */ static void regmbc(c) int c; { if (regcode == JUST_CALC_SIZE) regsize += (*mb_char2len)(c); else regcode += (*mb_char2bytes)(c, regcode); } #endif /* * reginsert - insert an operator in front of already-emitted operand * * Means relocating the operand. */ static void reginsert(op, opnd) int op; char_u *opnd; { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 3; return; } src = regcode; regcode += 3; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; /* Op node, where operand used to be. */ *place++ = op; *place++ = NUL; *place = NUL; } /* * reginsert_limits - insert an operator in front of already-emitted operand. * The operator has the given limit values as operands. Also set next pointer. * * Means relocating the operand. */ static void reginsert_limits(op, minval, maxval, opnd) int op; long minval; long maxval; char_u *opnd; { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 11; return; } src = regcode; regcode += 11; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; /* Op node, where operand used to be. */ *place++ = op; *place++ = NUL; *place++ = NUL; place = re_put_long(place, (long_u)minval); place = re_put_long(place, (long_u)maxval); regtail(opnd, place); } /* * Write a long as four bytes at "p" and return pointer to the next char. */ static char_u * re_put_long(p, val) char_u *p; long_u val; { *p++ = (char_u) ((val >> 24) & 0377); *p++ = (char_u) ((val >> 16) & 0377); *p++ = (char_u) ((val >> 8) & 0377); *p++ = (char_u) (val & 0377); return p; } /* * regtail - set the next-pointer at the end of a node chain */ static void regtail(p, val) char_u *p; char_u *val; { char_u *scan; char_u *temp; int offset; if (p == JUST_CALC_SIZE) return; /* Find last node. */ scan = p; for (;;) { temp = regnext(scan); if (temp == NULL) break; scan = temp; } if (OP(scan) == BACK) offset = (int)(scan - val); else offset = (int)(val - scan); /* When the offset uses more than 16 bits it can no longer fit in the two * bytes avaliable. Use a global flag to avoid having to check return * values in too many places. */ if (offset > 0xffff) reg_toolong = TRUE; else { *(scan + 1) = (char_u) (((unsigned)offset >> 8) & 0377); *(scan + 2) = (char_u) (offset & 0377); } } /* * regoptail - regtail on item after a BRANCH; nop if none */ static void regoptail(p, val) char_u *p; char_u *val; { /* When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" */ if (p == NULL || p == JUST_CALC_SIZE || (OP(p) != BRANCH && (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) return; regtail(OPERAND(p), val); } /* * getchr() - get the next character from the pattern. We know about * magic and such, so therefore we need a lexical analyzer. */ /* static int curchr; */ static int prevprevchr; static int prevchr; static int nextchr; /* used for ungetchr() */ /* * Note: prevchr is sometimes -1 when we are not at the start, * eg in /[ ^I]^ the pattern was never found even if it existed, because ^ was * taken to be magic -- webb */ static int at_start; /* True when on the first character */ static int prev_at_start; /* True when on the second character */ static void initchr(str) char_u *str; { regparse = str; prevchr_len = 0; curchr = prevprevchr = prevchr = nextchr = -1; at_start = TRUE; prev_at_start = FALSE; } static int peekchr() { static int after_slash = FALSE; if (curchr == -1) { switch (curchr = regparse[0]) { case '.': case '[': case '~': /* magic when 'magic' is on */ if (reg_magic >= MAGIC_ON) curchr = Magic(curchr); break; case '(': case ')': case '{': case '%': case '+': case '=': case '?': case '@': case '!': case '&': case '|': case '<': case '>': case '#': /* future ext. */ case '"': /* future ext. */ case '\'': /* future ext. */ case ',': /* future ext. */ case '-': /* future ext. */ case ':': /* future ext. */ case ';': /* future ext. */ case '`': /* future ext. */ case '/': /* Can't be used in / command */ /* magic only after "\v" */ if (reg_magic == MAGIC_ALL) curchr = Magic(curchr); break; case '*': /* * is not magic as the very first character, eg "?*ptr", when * after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But * "\(\*" is not magic, thus must be magic if "after_slash" */ if (reg_magic >= MAGIC_ON && !at_start && !(prev_at_start && prevchr == Magic('^')) && (after_slash || (prevchr != Magic('(') && prevchr != Magic('&') && prevchr != Magic('|')))) curchr = Magic('*'); break; case '^': /* '^' is only magic as the very first character and if it's after * "\(", "\|", "\&' or "\n" */ if (reg_magic >= MAGIC_OFF && (at_start || reg_magic == MAGIC_ALL || prevchr == Magic('(') || prevchr == Magic('|') || prevchr == Magic('&') || prevchr == Magic('n') || (no_Magic(prevchr) == '(' && prevprevchr == Magic('%')))) { curchr = Magic('^'); at_start = TRUE; prev_at_start = FALSE; } break; case '$': /* '$' is only magic as the very last char and if it's in front of * either "\|", "\)", "\&", or "\n" */ if (reg_magic >= MAGIC_OFF) { char_u *p = regparse + 1; /* ignore \c \C \m and \M after '$' */ while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C' || p[1] == 'm' || p[1] == 'M' || p[1] == 'Z')) p += 2; if (p[0] == NUL || (p[0] == '\\' && (p[1] == '|' || p[1] == '&' || p[1] == ')' || p[1] == 'n')) || reg_magic == MAGIC_ALL) curchr = Magic('$'); } break; case '\\': { int c = regparse[1]; if (c == NUL) curchr = '\\'; /* trailing '\' */ else if ( #ifdef EBCDIC vim_strchr(META, c) #else c <= '~' && META_flags[c] #endif ) { /* * META contains everything that may be magic sometimes, * except ^ and $ ("\^" and "\$" are only magic after * "\v"). We now fetch the next character and toggle its * magicness. Therefore, \ is so meta-magic that it is * not in META. */ curchr = -1; prev_at_start = at_start; at_start = FALSE; /* be able to say "/\*ptr" */ ++regparse; ++after_slash; peekchr(); --regparse; --after_slash; curchr = toggle_Magic(curchr); } else if (vim_strchr(REGEXP_ABBR, c)) { /* * Handle abbreviations, like "\t" for TAB -- webb */ curchr = backslash_trans(c); } else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) curchr = toggle_Magic(c); else { /* * Next character can never be (made) magic? * Then backslashing it won't do anything. */ #ifdef FEAT_MBYTE if (has_mbyte) curchr = (*mb_ptr2char)(regparse + 1); else #endif curchr = c; } break; } #ifdef FEAT_MBYTE default: if (has_mbyte) curchr = (*mb_ptr2char)(regparse); #endif } } return curchr; } /* * Eat one lexed character. Do this in a way that we can undo it. */ static void skipchr() { /* peekchr() eats a backslash, do the same here */ if (*regparse == '\\') prevchr_len = 1; else prevchr_len = 0; if (regparse[prevchr_len] != NUL) { #ifdef FEAT_MBYTE if (enc_utf8) /* exclude composing chars that mb_ptr2len does include */ prevchr_len += utf_ptr2len(regparse + prevchr_len); else if (has_mbyte) prevchr_len += (*mb_ptr2len)(regparse + prevchr_len); else #endif ++prevchr_len; } regparse += prevchr_len; prev_at_start = at_start; at_start = FALSE; prevprevchr = prevchr; prevchr = curchr; curchr = nextchr; /* use previously unget char, or -1 */ nextchr = -1; } /* * Skip a character while keeping the value of prev_at_start for at_start. * prevchr and prevprevchr are also kept. */ static void skipchr_keepstart() { int as = prev_at_start; int pr = prevchr; int prpr = prevprevchr; skipchr(); at_start = as; prevchr = pr; prevprevchr = prpr; } static int getchr() { int chr = peekchr(); skipchr(); return chr; } /* * put character back. Works only once! */ static void ungetchr() { nextchr = curchr; curchr = prevchr; prevchr = prevprevchr; at_start = prev_at_start; prev_at_start = FALSE; /* Backup regparse, so that it's at the same position as before the * getchr(). */ regparse -= prevchr_len; } /* * Get and return the value of the hex string at the current position. * Return -1 if there is no valid hex number. * The position is updated: * blahblah\%x20asdf * before-^ ^-after * The parameter controls the maximum number of input characters. This will be * 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence. */ static int gethexchrs(maxinputlen) int maxinputlen; { int nr = 0; int c; int i; for (i = 0; i < maxinputlen; ++i) { c = regparse[0]; if (!vim_isxdigit(c)) break; nr <<= 4; nr |= hex2nr(c); ++regparse; } if (i == 0) return -1; return nr; } /* * get and return the value of the decimal string immediately after the * current position. Return -1 for invalid. Consumes all digits. */ static int getdecchrs() { int nr = 0; int c; int i; for (i = 0; ; ++i) { c = regparse[0]; if (c < '0' || c > '9') break; nr *= 10; nr += c - '0'; ++regparse; } if (i == 0) return -1; return nr; } /* * get and return the value of the octal string immediately after the current * position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle * numbers > 377 correctly (for example, 400 is treated as 40) and doesn't * treat 8 or 9 as recognised characters. Position is updated: * blahblah\%o210asdf * before-^ ^-after */ static int getoctchrs() { int nr = 0; int c; int i; for (i = 0; i < 3 && nr < 040; ++i) { c = regparse[0]; if (c < '0' || c > '7') break; nr <<= 3; nr |= hex2nr(c); ++regparse; } if (i == 0) return -1; return nr; } /* * Get a number after a backslash that is inside []. * When nothing is recognized return a backslash. */ static int coll_get_char() { int nr = -1; switch (*regparse++) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; } if (nr < 0) { /* If getting the number fails be backwards compatible: the character * is a backslash. */ --regparse; nr = '\\'; } return nr; } /* * read_limits - Read two integers to be taken as a minimum and maximum. * If the first character is '-', then the range is reversed. * Should end with 'end'. If minval is missing, zero is default, if maxval is * missing, a very big number is the default. */ static int read_limits(minval, maxval) long *minval; long *maxval; { int reverse = FALSE; char_u *first_char; long tmp; if (*regparse == '-') { /* Starts with '-', so reverse the range later */ regparse++; reverse = TRUE; } first_char = regparse; *minval = getdigits(®parse); if (*regparse == ',') /* There is a comma */ { if (vim_isdigit(*++regparse)) *maxval = getdigits(®parse); else *maxval = MAX_LIMIT; } else if (VIM_ISDIGIT(*first_char)) *maxval = *minval; /* It was \{n} or \{-n} */ else *maxval = MAX_LIMIT; /* It was \{} or \{-} */ if (*regparse == '\\') regparse++; /* Allow either \{...} or \{...\} */ if (*regparse != '}') { sprintf((char *)IObuff, _("E554: Syntax error in %s{...}"), reg_magic == MAGIC_ALL ? "" : "\\"); EMSG_RET_FAIL(IObuff); } /* * Reverse the range if there was a '-', or make sure it is in the right * order otherwise. */ if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) { tmp = *minval; *minval = *maxval; *maxval = tmp; } skipchr(); /* let's be friends with the lexer again */ return OK; } /* * vim_regexec and friends */ /* * Global work variables for vim_regexec(). */ /* The current match-position is remembered with these variables: */ static linenr_T reglnum; /* line number, relative to first line */ static char_u *regline; /* start of current line */ static char_u *reginput; /* current input, points into "regline" */ static int need_clear_subexpr; /* subexpressions still need to be * cleared */ #ifdef FEAT_SYN_HL static int need_clear_zsubexpr = FALSE; /* extmatch subexpressions * still need to be cleared */ #endif /* * Structure used to save the current input state, when it needs to be * restored after trying a match. Used by reg_save() and reg_restore(). * Also stores the length of "backpos". */ typedef struct { union { char_u *ptr; /* reginput pointer, for single-line regexp */ lpos_T pos; /* reginput pos, for multi-line regexp */ } rs_u; int rs_len; } regsave_T; /* struct to save start/end pointer/position in for \(\) */ typedef struct { union { char_u *ptr; lpos_T pos; } se_u; } save_se_T; /* used for BEHIND and NOBEHIND matching */ typedef struct regbehind_S { regsave_T save_after; regsave_T save_behind; int save_need_clear_subexpr; save_se_T save_start[NSUBEXP]; save_se_T save_end[NSUBEXP]; } regbehind_T; static char_u *reg_getline __ARGS((linenr_T lnum)); static long vim_regexec_both __ARGS((char_u *line, colnr_T col, proftime_T *tm)); static long regtry __ARGS((regprog_T *prog, colnr_T col)); static void cleanup_subexpr __ARGS((void)); #ifdef FEAT_SYN_HL static void cleanup_zsubexpr __ARGS((void)); #endif static void save_subexpr __ARGS((regbehind_T *bp)); static void restore_subexpr __ARGS((regbehind_T *bp)); static void reg_nextline __ARGS((void)); static void reg_save __ARGS((regsave_T *save, garray_T *gap)); static void reg_restore __ARGS((regsave_T *save, garray_T *gap)); static int reg_save_equal __ARGS((regsave_T *save)); static void save_se_multi __ARGS((save_se_T *savep, lpos_T *posp)); static void save_se_one __ARGS((save_se_T *savep, char_u **pp)); /* Save the sub-expressions before attempting a match. */ #define save_se(savep, posp, pp) \ REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp)) /* After a failed match restore the sub-expressions. */ #define restore_se(savep, posp, pp) { \ if (REG_MULTI) \ *(posp) = (savep)->se_u.pos; \ else \ *(pp) = (savep)->se_u.ptr; } static int re_num_cmp __ARGS((long_u val, char_u *scan)); static int regmatch __ARGS((char_u *prog)); static int regrepeat __ARGS((char_u *p, long maxcount)); #ifdef DEBUG int regnarrate = 0; #endif /* * Internal copy of 'ignorecase'. It is set at each call to vim_regexec(). * Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern * contains '\c' or '\C' the value is overruled. */ static int ireg_ic; #ifdef FEAT_MBYTE /* * Similar to ireg_ic, but only for 'combining' characters. Set with \Z flag * in the regexp. Defaults to false, always. */ static int ireg_icombine; #endif /* * Copy of "rmm_maxcol": maximum column to search for a match. Zero when * there is no maximum. */ static colnr_T ireg_maxcol; /* * Sometimes need to save a copy of a line. Since alloc()/free() is very * slow, we keep one allocated piece of memory and only re-allocate it when * it's too small. It's freed in vim_regexec_both() when finished. */ static char_u *reg_tofree = NULL; static unsigned reg_tofreelen; /* * These variables are set when executing a regexp to speed up the execution. * Which ones are set depends on whether a single-line or multi-line match is * done: * single-line multi-line * reg_match ®match_T NULL * reg_mmatch NULL ®mmatch_T * reg_startp reg_match->startp * reg_endp reg_match->endp * reg_startpos reg_mmatch->startpos * reg_endpos reg_mmatch->endpos * reg_win NULL window in which to search * reg_buf buffer in which to search * reg_firstlnum first line in which to search * reg_maxline 0 last line nr * reg_line_lbr FALSE or TRUE FALSE */ static regmatch_T *reg_match; static regmmatch_T *reg_mmatch; static char_u **reg_startp = NULL; static char_u **reg_endp = NULL; static lpos_T *reg_startpos = NULL; static lpos_T *reg_endpos = NULL; static win_T *reg_win; static buf_T *reg_buf; static linenr_T reg_firstlnum; static linenr_T reg_maxline; static int reg_line_lbr; /* "\n" in string is line break */ /* Values for rs_state in regitem_T. */ typedef enum regstate_E { RS_NOPEN = 0 /* NOPEN and NCLOSE */ , RS_MOPEN /* MOPEN + [0-9] */ , RS_MCLOSE /* MCLOSE + [0-9] */ #ifdef FEAT_SYN_HL , RS_ZOPEN /* ZOPEN + [0-9] */ , RS_ZCLOSE /* ZCLOSE + [0-9] */ #endif , RS_BRANCH /* BRANCH */ , RS_BRCPLX_MORE /* BRACE_COMPLEX and trying one more match */ , RS_BRCPLX_LONG /* BRACE_COMPLEX and trying longest match */ , RS_BRCPLX_SHORT /* BRACE_COMPLEX and trying shortest match */ , RS_NOMATCH /* NOMATCH */ , RS_BEHIND1 /* BEHIND / NOBEHIND matching rest */ , RS_BEHIND2 /* BEHIND / NOBEHIND matching behind part */ , RS_STAR_LONG /* STAR/PLUS/BRACE_SIMPLE longest match */ , RS_STAR_SHORT /* STAR/PLUS/BRACE_SIMPLE shortest match */ } regstate_T; /* * When there are alternatives a regstate_T is put on the regstack to remember * what we are doing. * Before it may be another type of item, depending on rs_state, to remember * more things. */ typedef struct regitem_S { regstate_T rs_state; /* what we are doing, one of RS_ above */ char_u *rs_scan; /* current node in program */ union { save_se_T sesave; regsave_T regsave; } rs_un; /* room for saving reginput */ short rs_no; /* submatch nr or BEHIND/NOBEHIND */ } regitem_T; static regitem_T *regstack_push __ARGS((regstate_T state, char_u *scan)); static void regstack_pop __ARGS((char_u **scan)); /* used for STAR, PLUS and BRACE_SIMPLE matching */ typedef struct regstar_S { int nextb; /* next byte */ int nextb_ic; /* next byte reverse case */ long count; long minval; long maxval; } regstar_T; /* used to store input position when a BACK was encountered, so that we now if * we made any progress since the last time. */ typedef struct backpos_S { char_u *bp_scan; /* "scan" where BACK was encountered */ regsave_T bp_pos; /* last input position */ } backpos_T; /* * "regstack" and "backpos" are used by regmatch(). They are kept over calls * to avoid invoking malloc() and free() often. * "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T * or regbehind_T. * "backpos_T" is a table with backpos_T for BACK */ static garray_T regstack = {0, 0, 0, 0, NULL}; static garray_T backpos = {0, 0, 0, 0, NULL}; /* * Both for regstack and backpos tables we use the following strategy of * allocation (to reduce malloc/free calls): * - Initial size is fairly small. * - When needed, the tables are grown bigger (8 times at first, double after * that). * - After executing the match we free the memory only if the array has grown. * Thus the memory is kept allocated when it's at the initial size. * This makes it fast while not keeping a lot of memory allocated. * A three times speed increase was observed when using many simple patterns. */ #define REGSTACK_INITIAL 2048 #define BACKPOS_INITIAL 64 #if defined(EXITFREE) || defined(PROTO) void free_regexp_stuff() { ga_clear(®stack); ga_clear(&backpos); vim_free(reg_tofree); vim_free(reg_prev_sub); } #endif /* * Get pointer to the line "lnum", which is relative to "reg_firstlnum". */ static char_u * reg_getline(lnum) linenr_T lnum; { /* when looking behind for a match/no-match lnum is negative. But we * can't go before line 1 */ if (reg_firstlnum + lnum < 1) return NULL; if (lnum > reg_maxline) /* Must have matched the "\n" in the last line. */ return (char_u *)""; return ml_get_buf(reg_buf, reg_firstlnum + lnum, FALSE); } static regsave_T behind_pos; #ifdef FEAT_SYN_HL static char_u *reg_startzp[NSUBEXP]; /* Workspace to mark beginning */ static char_u *reg_endzp[NSUBEXP]; /* and end of \z(...\) matches */ static lpos_T reg_startzpos[NSUBEXP]; /* idem, beginning pos */ static lpos_T reg_endzpos[NSUBEXP]; /* idem, end pos */ #endif /* TRUE if using multi-line regexp. */ #define REG_MULTI (reg_match == NULL) /* * Match a regexp against a string. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * * Return TRUE if there is a match, FALSE if not. */ int vim_regexec(rmp, line, col) regmatch_T *rmp; char_u *line; /* string to match against */ colnr_T col; /* column to start looking for match */ { reg_match = rmp; reg_mmatch = NULL; reg_maxline = 0; reg_line_lbr = FALSE; reg_win = NULL; ireg_ic = rmp->rm_ic; #ifdef FEAT_MBYTE ireg_icombine = FALSE; #endif ireg_maxcol = 0; return (vim_regexec_both(line, col, NULL) != 0); } #if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \ || defined(FIND_REPLACE_DIALOG) || defined(PROTO) /* * Like vim_regexec(), but consider a "\n" in "line" to be a line break. */ int vim_regexec_nl(rmp, line, col) regmatch_T *rmp; char_u *line; /* string to match against */ colnr_T col; /* column to start looking for match */ { reg_match = rmp; reg_mmatch = NULL; reg_maxline = 0; reg_line_lbr = TRUE; reg_win = NULL; ireg_ic = rmp->rm_ic; #ifdef FEAT_MBYTE ireg_icombine = FALSE; #endif ireg_maxcol = 0; return (vim_regexec_both(line, col, NULL) != 0); } #endif /* * Match a regexp against multiple lines. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * * Return zero if there is no match. Return number of lines contained in the * match otherwise. */ long vim_regexec_multi(rmp, win, buf, lnum, col, tm) regmmatch_T *rmp; win_T *win; /* window in which to search or NULL */ buf_T *buf; /* buffer in which to search */ linenr_T lnum; /* nr of line to start looking for match */ colnr_T col; /* column to start looking for match */ proftime_T *tm; /* timeout limit or NULL */ { long r; buf_T *save_curbuf = curbuf; reg_match = NULL; reg_mmatch = rmp; reg_buf = buf; reg_win = win; reg_firstlnum = lnum; reg_maxline = reg_buf->b_ml.ml_line_count - lnum; reg_line_lbr = FALSE; ireg_ic = rmp->rmm_ic; #ifdef FEAT_MBYTE ireg_icombine = FALSE; #endif ireg_maxcol = rmp->rmm_maxcol; /* Need to switch to buffer "buf" to make vim_iswordc() work. */ curbuf = buf; r = vim_regexec_both(NULL, col, tm); curbuf = save_curbuf; return r; } /* * Match a regexp against a string ("line" points to the string) or multiple * lines ("line" is NULL, use reg_getline()). */ static long vim_regexec_both(line, col, tm) char_u *line; colnr_T col; /* column to start looking for match */ proftime_T *tm UNUSED; /* timeout limit or NULL */ { regprog_T *prog; char_u *s; long retval = 0L; /* Create "regstack" and "backpos" if they are not allocated yet. * We allocate *_INITIAL amount of bytes first and then set the grow size * to much bigger value to avoid many malloc calls in case of deep regular * expressions. */ if (regstack.ga_data == NULL) { /* Use an item size of 1 byte, since we push different things * onto the regstack. */ ga_init2(®stack, 1, REGSTACK_INITIAL); ga_grow(®stack, REGSTACK_INITIAL); regstack.ga_growsize = REGSTACK_INITIAL * 8; } if (backpos.ga_data == NULL) { ga_init2(&backpos, sizeof(backpos_T), BACKPOS_INITIAL); ga_grow(&backpos, BACKPOS_INITIAL); backpos.ga_growsize = BACKPOS_INITIAL * 8; } if (REG_MULTI) { prog = reg_mmatch->regprog; line = reg_getline((linenr_T)0); reg_startpos = reg_mmatch->startpos; reg_endpos = reg_mmatch->endpos; } else { prog = reg_match->regprog; reg_startp = reg_match->startp; reg_endp = reg_match->endp; } /* Be paranoid... */ if (prog == NULL || line == NULL) { EMSG(_(e_null)); goto theend; } /* Check validity of program. */ if (prog_magic_wrong()) goto theend; /* If the start column is past the maximum column: no need to try. */ if (ireg_maxcol > 0 && col >= ireg_maxcol) goto theend; /* If pattern contains "\c" or "\C": overrule value of ireg_ic */ if (prog->regflags & RF_ICASE) ireg_ic = TRUE; else if (prog->regflags & RF_NOICASE) ireg_ic = FALSE; #ifdef FEAT_MBYTE /* If pattern contains "\Z" overrule value of ireg_icombine */ if (prog->regflags & RF_ICOMBINE) ireg_icombine = TRUE; #endif /* If there is a "must appear" string, look for it. */ if (prog->regmust != NULL) { int c; #ifdef FEAT_MBYTE if (has_mbyte) c = (*mb_ptr2char)(prog->regmust); else #endif c = *prog->regmust; s = line + col; /* * This is used very often, esp. for ":global". Use three versions of * the loop to avoid overhead of conditions. */ if (!ireg_ic #ifdef FEAT_MBYTE && !has_mbyte #endif ) while ((s = vim_strbyte(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; /* Found it. */ ++s; } #ifdef FEAT_MBYTE else if (!ireg_ic || (!enc_utf8 && mb_char2len(c) > 1)) while ((s = vim_strchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; /* Found it. */ mb_ptr_adv(s); } #endif else while ((s = cstrchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; /* Found it. */ mb_ptr_adv(s); } if (s == NULL) /* Not present. */ goto theend; } regline = line; reglnum = 0; /* Simplest case: Anchored match need be tried only once. */ if (prog->reganch) { int c; #ifdef FEAT_MBYTE if (has_mbyte) c = (*mb_ptr2char)(regline + col); else #endif c = regline[col]; if (prog->regstart == NUL || prog->regstart == c || (ireg_ic && (( #ifdef FEAT_MBYTE (enc_utf8 && utf_fold(prog->regstart) == utf_fold(c))) || (c < 255 && prog->regstart < 255 && #endif MB_TOLOWER(prog->regstart) == MB_TOLOWER(c))))) retval = regtry(prog, col); else retval = 0; } else { #ifdef FEAT_RELTIME int tm_count = 0; #endif /* Messy cases: unanchored match. */ while (!got_int) { if (prog->regstart != NUL) { /* Skip until the char we know it must start with. * Used often, do some work to avoid call overhead. */ if (!ireg_ic #ifdef FEAT_MBYTE && !has_mbyte #endif ) s = vim_strbyte(regline + col, prog->regstart); else s = cstrchr(regline + col, prog->regstart); if (s == NULL) { retval = 0; break; } col = (int)(s - regline); } /* Check for maximum column to try. */ if (ireg_maxcol > 0 && col >= ireg_maxcol) { retval = 0; break; } retval = regtry(prog, col); if (retval > 0) break; /* if not currently on the first line, get it again */ if (reglnum != 0) { reglnum = 0; regline = reg_getline((linenr_T)0); } if (regline[col] == NUL) break; #ifdef FEAT_MBYTE if (has_mbyte) col += (*mb_ptr2len)(regline + col); else #endif ++col; #ifdef FEAT_RELTIME /* Check for timeout once in a twenty times to avoid overhead. */ if (tm != NULL && ++tm_count == 20) { tm_count = 0; if (profile_passed_limit(tm)) break; } #endif } } theend: /* Free "reg_tofree" when it's a bit big. * Free regstack and backpos if they are bigger than their initial size. */ if (reg_tofreelen > 400) { vim_free(reg_tofree); reg_tofree = NULL; } if (regstack.ga_maxlen > REGSTACK_INITIAL) ga_clear(®stack); if (backpos.ga_maxlen > BACKPOS_INITIAL) ga_clear(&backpos); return retval; } #ifdef FEAT_SYN_HL static reg_extmatch_T *make_extmatch __ARGS((void)); /* * Create a new extmatch and mark it as referenced once. */ static reg_extmatch_T * make_extmatch() { reg_extmatch_T *em; em = (reg_extmatch_T *)alloc_clear((unsigned)sizeof(reg_extmatch_T)); if (em != NULL) em->refcnt = 1; return em; } /* * Add a reference to an extmatch. */ reg_extmatch_T * ref_extmatch(em) reg_extmatch_T *em; { if (em != NULL) em->refcnt++; return em; } /* * Remove a reference to an extmatch. If there are no references left, free * the info. */ void unref_extmatch(em) reg_extmatch_T *em; { int i; if (em != NULL && --em->refcnt <= 0) { for (i = 0; i < NSUBEXP; ++i) vim_free(em->matches[i]); vim_free(em); } } #endif /* * regtry - try match of "prog" with at regline["col"]. * Returns 0 for failure, number of lines contained in the match otherwise. */ static long regtry(prog, col) regprog_T *prog; colnr_T col; { reginput = regline + col; need_clear_subexpr = TRUE; #ifdef FEAT_SYN_HL /* Clear the external match subpointers if necessary. */ if (prog->reghasz == REX_SET) need_clear_zsubexpr = TRUE; #endif if (regmatch(prog->program + 1) == 0) return 0; cleanup_subexpr(); if (REG_MULTI) { if (reg_startpos[0].lnum < 0) { reg_startpos[0].lnum = 0; reg_startpos[0].col = col; } if (reg_endpos[0].lnum < 0) { reg_endpos[0].lnum = reglnum; reg_endpos[0].col = (int)(reginput - regline); } else /* Use line number of "\ze". */ reglnum = reg_endpos[0].lnum; } else { if (reg_startp[0] == NULL) reg_startp[0] = regline + col; if (reg_endp[0] == NULL) reg_endp[0] = reginput; } #ifdef FEAT_SYN_HL /* Package any found \z(...\) matches for export. Default is none. */ unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { int i; cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); for (i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { /* Only accept single line matches. */ if (reg_startzpos[i].lnum >= 0 && reg_endzpos[i].lnum == reg_startzpos[i].lnum) re_extmatch_out->matches[i] = vim_strnsave(reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col, reg_endzpos[i].col - reg_startzpos[i].col); } else { if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) re_extmatch_out->matches[i] = vim_strnsave(reg_startzp[i], (int)(reg_endzp[i] - reg_startzp[i])); } } } #endif return 1 + reglnum; } #ifdef FEAT_MBYTE static int reg_prev_class __ARGS((void)); /* * Get class of previous character. */ static int reg_prev_class() { if (reginput > regline) return mb_get_class(reginput - 1 - (*mb_head_off)(regline, reginput - 1)); return -1; } #endif #define ADVANCE_REGINPUT() mb_ptr_adv(reginput) /* * The arguments from BRACE_LIMITS are stored here. They are actually local * to regmatch(), but they are here to reduce the amount of stack space used * (it can be called recursively many times). */ static long bl_minval; static long bl_maxval; /* * regmatch - main matching routine * * Conceptually the strategy is simple: Check to see whether the current node * matches, push an item onto the regstack and loop to see whether the rest * matches, and then act accordingly. In practice we make some effort to * avoid using the regstack, in particular by going through "ordinary" nodes * (that don't need to know whether the rest of the match failed) by a nested * loop. * * Returns TRUE when there is a match. Leaves reginput and reglnum just after * the last matched character. * Returns FALSE when there is no match. Leaves reginput and reglnum in an * undefined state! */ static int regmatch(scan) char_u *scan; /* Current node. */ { char_u *next; /* Next node. */ int op; int c; regitem_T *rp; int no; int status; /* one of the RA_ values: */ #define RA_FAIL 1 /* something failed, abort */ #define RA_CONT 2 /* continue in inner loop */ #define RA_BREAK 3 /* break inner loop */ #define RA_MATCH 4 /* successful match */ #define RA_NOMATCH 5 /* didn't match */ /* Make "regstack" and "backpos" empty. They are allocated and freed in * vim_regexec_both() to reduce malloc()/free() calls. */ regstack.ga_len = 0; backpos.ga_len = 0; /* * Repeat until "regstack" is empty. */ for (;;) { /* Some patterns my cause a long time to match, even though they are not * illegal. E.g., "\([a-z]\+\)\+Q". Allow breaking them with CTRL-C. */ fast_breakcheck(); #ifdef DEBUG if (scan != NULL && regnarrate) { mch_errmsg(regprop(scan)); mch_errmsg("(\n"); } #endif /* * Repeat for items that can be matched sequentially, without using the * regstack. */ for (;;) { if (got_int || scan == NULL) { status = RA_FAIL; break; } status = RA_CONT; #ifdef DEBUG if (regnarrate) { mch_errmsg(regprop(scan)); mch_errmsg("...\n"); # ifdef FEAT_SYN_HL if (re_extmatch_in != NULL) { int i; mch_errmsg(_("External submatches:\n")); for (i = 0; i < NSUBEXP; i++) { mch_errmsg(" \""); if (re_extmatch_in->matches[i] != NULL) mch_errmsg(re_extmatch_in->matches[i]); mch_errmsg("\"\n"); } } # endif } #endif next = regnext(scan); op = OP(scan); /* Check for character class with NL added. */ if (!reg_line_lbr && WITH_NL(op) && REG_MULTI && *reginput == NUL && reglnum <= reg_maxline) { reg_nextline(); } else if (reg_line_lbr && WITH_NL(op) && *reginput == '\n') { ADVANCE_REGINPUT(); } else { if (WITH_NL(op)) op -= ADD_NL; #ifdef FEAT_MBYTE if (has_mbyte) c = (*mb_ptr2char)(reginput); else #endif c = *reginput; switch (op) { case BOL: if (reginput != regline) status = RA_NOMATCH; break; case EOL: if (c != NUL) status = RA_NOMATCH; break; case RE_BOF: /* We're not at the beginning of the file when below the first * line where we started, not at the start of the line or we * didn't start at the first line of the buffer. */ if (reglnum != 0 || reginput != regline || (REG_MULTI && reg_firstlnum > 1)) status = RA_NOMATCH; break; case RE_EOF: if (reglnum != reg_maxline || c != NUL) status = RA_NOMATCH; break; case CURSOR: /* Check if the buffer is in a window and compare the * reg_win->w_cursor position to the match position. */ if (reg_win == NULL || (reglnum + reg_firstlnum != reg_win->w_cursor.lnum) || ((colnr_T)(reginput - regline) != reg_win->w_cursor.col)) status = RA_NOMATCH; break; case RE_MARK: /* Compare the mark position to the match position. NOTE: Always * uses the current buffer. */ { int mark = OPERAND(scan)[0]; int cmp = OPERAND(scan)[1]; pos_T *pos; pos = getmark(mark, FALSE); if (pos == NULL /* mark doesn't exist */ || pos->lnum <= 0 /* mark isn't set (in curbuf) */ || (pos->lnum == reglnum + reg_firstlnum ? (pos->col == (colnr_T)(reginput - regline) ? (cmp == '<' || cmp == '>') : (pos->col < (colnr_T)(reginput - regline) ? cmp != '>' : cmp != '<')) : (pos->lnum < reglnum + reg_firstlnum ? cmp != '>' : cmp != '<'))) status = RA_NOMATCH; } break; case RE_VISUAL: #ifdef FEAT_VISUAL /* Check if the buffer is the current buffer. and whether the * position is inside the Visual area. */ if (reg_buf != curbuf || VIsual.lnum == 0) status = RA_NOMATCH; else { pos_T top, bot; linenr_T lnum; colnr_T col; win_T *wp = reg_win == NULL ? curwin : reg_win; int mode; if (VIsual_active) { if (lt(VIsual, wp->w_cursor)) { top = VIsual; bot = wp->w_cursor; } else { top = wp->w_cursor; bot = VIsual; } mode = VIsual_mode; } else { if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) { top = curbuf->b_visual.vi_start; bot = curbuf->b_visual.vi_end; } else { top = curbuf->b_visual.vi_end; bot = curbuf->b_visual.vi_start; } mode = curbuf->b_visual.vi_mode; } lnum = reglnum + reg_firstlnum; col = (colnr_T)(reginput - regline); if (lnum < top.lnum || lnum > bot.lnum) status = RA_NOMATCH; else if (mode == 'v') { if ((lnum == top.lnum && col < top.col) || (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) status = RA_NOMATCH; } else if (mode == Ctrl_V) { colnr_T start, end; colnr_T start2, end2; colnr_T cols; getvvcol(wp, &top, &start, NULL, &end); getvvcol(wp, &bot, &start2, NULL, &end2); if (start2 < start) start = start2; if (end2 > end) end = end2; if (top.col == MAXCOL || bot.col == MAXCOL) end = MAXCOL; cols = win_linetabsize(wp, regline, (colnr_T)(reginput - regline)); if (cols < start || cols > end - (*p_sel == 'e')) status = RA_NOMATCH; } } #else status = RA_NOMATCH; #endif break; case RE_LNUM: if (!REG_MULTI || !re_num_cmp((long_u)(reglnum + reg_firstlnum), scan)) status = RA_NOMATCH; break; case RE_COL: if (!re_num_cmp((long_u)(reginput - regline) + 1, scan)) status = RA_NOMATCH; break; case RE_VCOL: if (!re_num_cmp((long_u)win_linetabsize( reg_win == NULL ? curwin : reg_win, regline, (colnr_T)(reginput - regline)) + 1, scan)) status = RA_NOMATCH; break; case BOW: /* \ regline && vim_iswordc(reginput[-1]))) status = RA_NOMATCH; } break; case EOW: /* word\>; reginput points after d */ if (reginput == regline) /* Can't match at start of line */ status = RA_NOMATCH; #ifdef FEAT_MBYTE else if (has_mbyte) { int this_class, prev_class; /* Get class of current and previous char (if it exists). */ this_class = mb_get_class(reginput); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) status = RA_NOMATCH; } #endif else { if (!vim_iswordc(reginput[-1]) || (reginput[0] != NUL && vim_iswordc(c))) status = RA_NOMATCH; } break; /* Matched with EOW */ case ANY: if (c == NUL) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case IDENT: if (!vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SIDENT: if (VIM_ISDIGIT(*reginput) || !vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case KWORD: if (!vim_iswordp(reginput)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SKWORD: if (VIM_ISDIGIT(*reginput) || !vim_iswordp(reginput)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case FNAME: if (!vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SFNAME: if (VIM_ISDIGIT(*reginput) || !vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case PRINT: if (ptr2cells(reginput) != 1) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SPRINT: if (VIM_ISDIGIT(*reginput) || ptr2cells(reginput) != 1) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WHITE: if (!vim_iswhite(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWHITE: if (c == NUL || vim_iswhite(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case DIGIT: if (!ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NDIGIT: if (c == NUL || ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEX: if (!ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEX: if (c == NUL || ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case OCTAL: if (!ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NOCTAL: if (c == NUL || ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WORD: if (!ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWORD: if (c == NUL || ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEAD: if (!ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEAD: if (c == NUL || ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case ALPHA: if (!ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NALPHA: if (c == NUL || ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case LOWER: if (!ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NLOWER: if (c == NUL || ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case UPPER: if (!ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NUPPER: if (c == NUL || ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case EXACTLY: { int len; char_u *opnd; opnd = OPERAND(scan); /* Inline the first byte, for speed. */ if (*opnd != *reginput && (!ireg_ic || ( #ifdef FEAT_MBYTE !enc_utf8 && #endif MB_TOLOWER(*opnd) != MB_TOLOWER(*reginput)))) status = RA_NOMATCH; else if (*opnd == NUL) { /* match empty string always works; happens when "~" is * empty. */ } else if (opnd[1] == NUL #ifdef FEAT_MBYTE && !(enc_utf8 && ireg_ic) #endif ) ++reginput; /* matched a single char */ else { len = (int)STRLEN(opnd); /* Need to match first byte again for multi-byte. */ if (cstrncmp(opnd, reginput, &len) != 0) status = RA_NOMATCH; #ifdef FEAT_MBYTE /* Check for following composing character. */ else if (enc_utf8 && UTF_COMPOSINGLIKE(reginput, reginput + len)) { /* raaron: This code makes a composing character get * ignored, which is the correct behavior (sometimes) * for voweled Hebrew texts. */ if (!ireg_icombine) status = RA_NOMATCH; } #endif else reginput += len; } } break; case ANYOF: case ANYBUT: if (c == NUL) status = RA_NOMATCH; else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; #ifdef FEAT_MBYTE case MULTIBYTECODE: if (has_mbyte) { int i, len; char_u *opnd; int opndc = 0, inpc; opnd = OPERAND(scan); /* Safety check (just in case 'encoding' was changed since * compiling the program). */ if ((len = (*mb_ptr2len)(opnd)) < 2) { status = RA_NOMATCH; break; } if (enc_utf8) opndc = mb_ptr2char(opnd); if (enc_utf8 && utf_iscomposing(opndc)) { /* When only a composing char is given match at any * position where that composing char appears. */ status = RA_NOMATCH; for (i = 0; reginput[i] != NUL; i += utf_char2len(inpc)) { inpc = mb_ptr2char(reginput + i); if (!utf_iscomposing(inpc)) { if (i > 0) break; } else if (opndc == inpc) { /* Include all following composing chars. */ len = i + mb_ptr2len(reginput + i); status = RA_MATCH; break; } } } else for (i = 0; i < len; ++i) if (opnd[i] != reginput[i]) { status = RA_NOMATCH; break; } reginput += len; } else status = RA_NOMATCH; break; #endif case NOTHING: break; case BACK: { int i; backpos_T *bp; /* * When we run into BACK we need to check if we don't keep * looping without matching any input. The second and later * times a BACK is encountered it fails if the input is still * at the same position as the previous time. * The positions are stored in "backpos" and found by the * current value of "scan", the position in the RE program. */ bp = (backpos_T *)backpos.ga_data; for (i = 0; i < backpos.ga_len; ++i) if (bp[i].bp_scan == scan) break; if (i == backpos.ga_len) { /* First time at this BACK, make room to store the pos. */ if (ga_grow(&backpos, 1) == FAIL) status = RA_FAIL; else { /* get "ga_data" again, it may have changed */ bp = (backpos_T *)backpos.ga_data; bp[i].bp_scan = scan; ++backpos.ga_len; } } else if (reg_save_equal(&bp[i].bp_pos)) /* Still at same position as last time, fail. */ status = RA_NOMATCH; if (status != RA_FAIL && status != RA_NOMATCH) reg_save(&bp[i].bp_pos, &backpos); } break; case MOPEN + 0: /* Match start: \zs */ case MOPEN + 1: /* \( */ case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: { no = op - MOPEN; cleanup_subexpr(); rp = regstack_push(RS_MOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_startpos[no], ®_startp[no]); /* We simply continue and handle the result when done. */ } } break; case NOPEN: /* \%( */ case NCLOSE: /* \) after \%( */ if (regstack_push(RS_NOPEN, scan) == NULL) status = RA_FAIL; /* We simply continue and handle the result when done. */ break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: { no = op - ZOPEN; cleanup_zsubexpr(); rp = regstack_push(RS_ZOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_startzpos[no], ®_startzp[no]); /* We simply continue and handle the result when done. */ } } break; #endif case MCLOSE + 0: /* Match end: \ze */ case MCLOSE + 1: /* \) */ case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: { no = op - MCLOSE; cleanup_subexpr(); rp = regstack_push(RS_MCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_endpos[no], ®_endp[no]); /* We simply continue and handle the result when done. */ } } break; #ifdef FEAT_SYN_HL case ZCLOSE + 1: /* \) after \z( */ case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: { no = op - ZCLOSE; cleanup_zsubexpr(); rp = regstack_push(RS_ZCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_endzpos[no], ®_endzp[no]); /* We simply continue and handle the result when done. */ } } break; #endif case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: { int len; linenr_T clnum; colnr_T ccol; char_u *p; no = op - BACKREF; cleanup_subexpr(); if (!REG_MULTI) /* Single-line regexp */ { if (reg_startp[no] == NULL || reg_endp[no] == NULL) { /* Backref was not set: Match an empty string. */ len = 0; } else { /* Compare current input with back-ref in the same * line. */ len = (int)(reg_endp[no] - reg_startp[no]); if (cstrncmp(reg_startp[no], reginput, &len) != 0) status = RA_NOMATCH; } } else /* Multi-line regexp */ { if (reg_startpos[no].lnum < 0 || reg_endpos[no].lnum < 0) { /* Backref was not set: Match an empty string. */ len = 0; } else { if (reg_startpos[no].lnum == reglnum && reg_endpos[no].lnum == reglnum) { /* Compare back-ref within the current line. */ len = reg_endpos[no].col - reg_startpos[no].col; if (cstrncmp(regline + reg_startpos[no].col, reginput, &len) != 0) status = RA_NOMATCH; } else { /* Messy situation: Need to compare between two * lines. */ ccol = reg_startpos[no].col; clnum = reg_startpos[no].lnum; for (;;) { /* Since getting one line may invalidate * the other, need to make copy. Slow! */ if (regline != reg_tofree) { len = (int)STRLEN(regline); if (reg_tofree == NULL || len >= (int)reg_tofreelen) { len += 50; /* get some extra */ vim_free(reg_tofree); reg_tofree = alloc(len); if (reg_tofree == NULL) { status = RA_FAIL; /* outof memory!*/ break; } reg_tofreelen = len; } STRCPY(reg_tofree, regline); reginput = reg_tofree + (reginput - regline); regline = reg_tofree; } /* Get the line to compare with. */ p = reg_getline(clnum); if (clnum == reg_endpos[no].lnum) len = reg_endpos[no].col - ccol; else len = (int)STRLEN(p + ccol); if (cstrncmp(p + ccol, reginput, &len) != 0) { status = RA_NOMATCH; /* doesn't match */ break; } if (clnum == reg_endpos[no].lnum) break; /* match and at end! */ if (reglnum >= reg_maxline) { status = RA_NOMATCH; /* text too short */ break; } /* Advance to next line. */ reg_nextline(); ++clnum; ccol = 0; if (got_int) { status = RA_FAIL; break; } } /* found a match! Note that regline may now point * to a copy of the line, that should not matter. */ } } } /* Matched the backref, skip over it. */ reginput += len; } break; #ifdef FEAT_SYN_HL case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: { int len; cleanup_zsubexpr(); no = op - ZREF; if (re_extmatch_in != NULL && re_extmatch_in->matches[no] != NULL) { len = (int)STRLEN(re_extmatch_in->matches[no]); if (cstrncmp(re_extmatch_in->matches[no], reginput, &len) != 0) status = RA_NOMATCH; else reginput += len; } else { /* Backref was not set: Match an empty string. */ } } break; #endif case BRANCH: { if (OP(next) != BRANCH) /* No choice. */ next = OPERAND(scan); /* Avoid recursion. */ else { rp = regstack_push(RS_BRANCH, scan); if (rp == NULL) status = RA_FAIL; else status = RA_BREAK; /* rest is below */ } } break; case BRACE_LIMITS: { if (OP(next) == BRACE_SIMPLE) { bl_minval = OPERAND_MIN(scan); bl_maxval = OPERAND_MAX(scan); } else if (OP(next) >= BRACE_COMPLEX && OP(next) < BRACE_COMPLEX + 10) { no = OP(next) - BRACE_COMPLEX; brace_min[no] = OPERAND_MIN(scan); brace_max[no] = OPERAND_MAX(scan); brace_count[no] = 0; } else { EMSG(_(e_internal)); /* Shouldn't happen */ status = RA_FAIL; } } break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: { no = op - BRACE_COMPLEX; ++brace_count[no]; /* If not matched enough times yet, try one more */ if (brace_count[no] <= (brace_min[no] <= brace_max[no] ? brace_min[no] : brace_max[no])) { rp = regstack_push(RS_BRCPLX_MORE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); /* We continue and handle the result when done. */ } break; } /* If matched enough times, may try matching some more */ if (brace_min[no] <= brace_max[no]) { /* Range is the normal way around, use longest match */ if (brace_count[no] <= brace_max[no]) { rp = regstack_push(RS_BRCPLX_LONG, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); /* We continue and handle the result when done. */ } } } else { /* Range is backwards, use shortest match first */ if (brace_count[no] <= brace_min[no]) { rp = regstack_push(RS_BRCPLX_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { reg_save(&rp->rs_un.regsave, &backpos); /* We continue and handle the result when done. */ } } } } break; case BRACE_SIMPLE: case STAR: case PLUS: { regstar_T rst; /* * Lookahead to avoid useless match attempts when we know * what character comes next. */ if (OP(next) == EXACTLY) { rst.nextb = *OPERAND(next); if (ireg_ic) { if (MB_ISUPPER(rst.nextb)) rst.nextb_ic = MB_TOLOWER(rst.nextb); else rst.nextb_ic = MB_TOUPPER(rst.nextb); } else rst.nextb_ic = rst.nextb; } else { rst.nextb = NUL; rst.nextb_ic = NUL; } if (op != BRACE_SIMPLE) { rst.minval = (op == STAR) ? 0 : 1; rst.maxval = MAX_LIMIT; } else { rst.minval = bl_minval; rst.maxval = bl_maxval; } /* * When maxval > minval, try matching as much as possible, up * to maxval. When maxval < minval, try matching at least the * minimal number (since the range is backwards, that's also * maxval!). */ rst.count = regrepeat(OPERAND(scan), rst.maxval); if (got_int) { status = RA_FAIL; break; } if (rst.minval <= rst.maxval ? rst.count >= rst.minval : rst.count >= rst.maxval) { /* It could match. Prepare for trying to match what * follows. The code is below. Parameters are stored in * a regstar_T on the regstack. */ if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { EMSG(_(e_maxmempat)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regstar_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regstar_T); rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { *(((regstar_T *)rp) - 1) = rst; status = RA_BREAK; /* skip the restore bits */ } } } else status = RA_NOMATCH; } break; case NOMATCH: case MATCH: case SUBPAT: rp = regstack_push(RS_NOMATCH, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); /* We continue and handle the result when done. */ } break; case BEHIND: case NOBEHIND: /* Need a bit of room to store extra positions. */ if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { EMSG(_(e_maxmempat)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regbehind_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regbehind_T); rp = regstack_push(RS_BEHIND1, scan); if (rp == NULL) status = RA_FAIL; else { /* Need to save the subexpr to be able to restore them * when there is a match but we don't use it. */ save_subexpr(((regbehind_T *)rp) - 1); rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); /* First try if what follows matches. If it does then we * check the behind match by looping. */ } } break; case BHPOS: if (REG_MULTI) { if (behind_pos.rs_u.pos.col != (colnr_T)(reginput - regline) || behind_pos.rs_u.pos.lnum != reglnum) status = RA_NOMATCH; } else if (behind_pos.rs_u.ptr != reginput) status = RA_NOMATCH; break; case NEWL: if ((c != NUL || !REG_MULTI || reglnum > reg_maxline || reg_line_lbr) && (c != '\n' || !reg_line_lbr)) status = RA_NOMATCH; else if (reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); break; case END: status = RA_MATCH; /* Success! */ break; default: EMSG(_(e_re_corr)); #ifdef DEBUG printf("Illegal op code %d\n", op); #endif status = RA_FAIL; break; } } /* If we can't continue sequentially, break the inner loop. */ if (status != RA_CONT) break; /* Continue in inner loop, advance to next item. */ scan = next; } /* end of inner loop */ /* * If there is something on the regstack execute the code for the state. * If the state is popped then loop and use the older state. */ while (regstack.ga_len > 0 && status != RA_FAIL) { rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; switch (rp->rs_state) { case RS_NOPEN: /* Result is passed on as-is, simply pop the state. */ regstack_pop(&scan); break; case RS_MOPEN: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_startpos[rp->rs_no], ®_startp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZOPEN: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no], ®_startzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_MCLOSE: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_endpos[rp->rs_no], ®_endp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZCLOSE: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no], ®_endzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_BRANCH: if (status == RA_MATCH) /* this branch matched, use it */ regstack_pop(&scan); else { if (status != RA_BREAK) { /* After a non-matching branch: try next one. */ reg_restore(&rp->rs_un.regsave, &backpos); scan = rp->rs_scan; } if (scan == NULL || OP(scan) != BRANCH) { /* no more branches, didn't find a match */ status = RA_NOMATCH; regstack_pop(&scan); } else { /* Prepare to try a branch. */ rp->rs_scan = regnext(scan); reg_save(&rp->rs_un.regsave, &backpos); scan = OPERAND(scan); } } break; case RS_BRCPLX_MORE: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) { reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; /* decrement match count */ } regstack_pop(&scan); break; case RS_BRCPLX_LONG: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) { /* There was no match, but we did find enough matches. */ reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; /* continue with the items after "\{}" */ status = RA_CONT; } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BRCPLX_SHORT: /* Pop the state. Restore pointers when there is no match. */ if (status == RA_NOMATCH) /* There was no match, try to match one more item. */ reg_restore(&rp->rs_un.regsave, &backpos); regstack_pop(&scan); if (status == RA_NOMATCH) { scan = OPERAND(scan); status = RA_CONT; } break; case RS_NOMATCH: /* Pop the state. If the operand matches for NOMATCH or * doesn't match for MATCH/SUBPAT, we fail. Otherwise backup, * except for SUBPAT, and continue with the next item. */ if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) status = RA_NOMATCH; else { status = RA_CONT; if (rp->rs_no != SUBPAT) /* zero-width */ reg_restore(&rp->rs_un.regsave, &backpos); } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BEHIND1: if (status == RA_NOMATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { /* The stuff after BEHIND/NOBEHIND matches. Now try if * the behind part does (not) match before the current * position in the input. This must be done at every * position in the input and checking if the match ends at * the current position. */ /* save the position after the found match for next */ reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos); /* start looking for a match with operand at the current * position. Go back one character until we find the * result, hitting the start of the line or the previous * line (for multi-line matching). * Set behind_pos to where the match should end, BHPOS * will match it. Save the current value. */ (((regbehind_T *)rp) - 1)->save_behind = behind_pos; behind_pos = rp->rs_un.regsave; rp->rs_state = RS_BEHIND2; reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan); } break; case RS_BEHIND2: /* * Looping for BEHIND / NOBEHIND match. */ if (status == RA_MATCH && reg_save_equal(&behind_pos)) { /* found a match that ends where "next" started */ behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == BEHIND) reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); else { /* But we didn't want a match. Need to restore the * subexpr, because what follows matched, so they have * been set. */ status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { /* No match or a match that doesn't end where we want it: Go * back one character. May go to previous line once. */ no = OK; if (REG_MULTI) { if (rp->rs_un.regsave.rs_u.pos.col == 0) { if (rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum || reg_getline( --rp->rs_un.regsave.rs_u.pos.lnum) == NULL) no = FAIL; else { reg_restore(&rp->rs_un.regsave, &backpos); rp->rs_un.regsave.rs_u.pos.col = (colnr_T)STRLEN(regline); } } else --rp->rs_un.regsave.rs_u.pos.col; } else { if (rp->rs_un.regsave.rs_u.ptr == regline) no = FAIL; else --rp->rs_un.regsave.rs_u.ptr; } if (no == OK) { /* Advanced, prepare for finding match again. */ reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan); if (status == RA_MATCH) { /* We did match, so subexpr may have been changed, * need to restore them for the next try. */ status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } else { /* Can't advance. For NOBEHIND that's a match. */ behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == NOBEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); status = RA_MATCH; } else { /* We do want a proper match. Need to restore the * subexpr if we had a match, because they may have * been set. */ if (status == RA_MATCH) { status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } } break; case RS_STAR_LONG: case RS_STAR_SHORT: { regstar_T *rst = ((regstar_T *)rp) - 1; if (status == RA_MATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); break; } /* Tried once already, restore input pointers. */ if (status != RA_BREAK) reg_restore(&rp->rs_un.regsave, &backpos); /* Repeat until we found a position where it could match. */ for (;;) { if (status != RA_BREAK) { /* Tried first position already, advance. */ if (rp->rs_state == RS_STAR_LONG) { /* Trying for longest match, but couldn't or * didn't match -- back up one char. */ if (--rst->count < rst->minval) break; if (reginput == regline) { /* backup to last char of previous line */ --reglnum; regline = reg_getline(reglnum); /* Just in case regrepeat() didn't count * right. */ if (regline == NULL) break; reginput = regline + STRLEN(regline); fast_breakcheck(); } else mb_ptr_back(regline, reginput); } else { /* Range is backwards, use shortest match first. * Careful: maxval and minval are exchanged! * Couldn't or didn't match: try advancing one * char. */ if (rst->count == rst->minval || regrepeat(OPERAND(rp->rs_scan), 1L) == 0) break; ++rst->count; } if (got_int) break; } else status = RA_NOMATCH; /* If it could match, try it. */ if (rst->nextb == NUL || *reginput == rst->nextb || *reginput == rst->nextb_ic) { reg_save(&rp->rs_un.regsave, &backpos); scan = regnext(rp->rs_scan); status = RA_CONT; break; } } if (status != RA_CONT) { /* Failed. */ regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); status = RA_NOMATCH; } } break; } /* If we want to continue the inner loop or didn't pop a state * continue matching loop */ if (status == RA_CONT || rp == (regitem_T *) ((char *)regstack.ga_data + regstack.ga_len) - 1) break; } /* May need to continue with the inner loop, starting at "scan". */ if (status == RA_CONT) continue; /* * If the regstack is empty or something failed we are done. */ if (regstack.ga_len == 0 || status == RA_FAIL) { if (scan == NULL) { /* * We get here only if there's trouble -- normally "case END" is * the terminating point. */ EMSG(_(e_re_corr)); #ifdef DEBUG printf("Premature EOL\n"); #endif } if (status == RA_FAIL) got_int = TRUE; return (status == RA_MATCH); } } /* End of loop until the regstack is empty. */ /* NOTREACHED */ } /* * Push an item onto the regstack. * Returns pointer to new item. Returns NULL when out of memory. */ static regitem_T * regstack_push(state, scan) regstate_T state; char_u *scan; { regitem_T *rp; if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { EMSG(_(e_maxmempat)); return NULL; } if (ga_grow(®stack, sizeof(regitem_T)) == FAIL) return NULL; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len); rp->rs_state = state; rp->rs_scan = scan; regstack.ga_len += sizeof(regitem_T); return rp; } /* * Pop an item from the regstack. */ static void regstack_pop(scan) char_u **scan; { regitem_T *rp; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; *scan = rp->rs_scan; regstack.ga_len -= sizeof(regitem_T); } /* * regrepeat - repeatedly match something simple, return how many. * Advances reginput (and reglnum) to just after the matched chars. */ static int regrepeat(p, maxcount) char_u *p; long maxcount; /* maximum number of matches allowed */ { long count = 0; char_u *scan; char_u *opnd; int mask; int testval = 0; scan = reginput; /* Make local copy of reginput for speed. */ opnd = OPERAND(p); switch (OP(p)) { case ANY: case ANY + ADD_NL: while (count < maxcount) { /* Matching anything means we continue until end-of-line (or * end-of-file for ANY + ADD_NL), only limited by maxcount. */ while (*scan != NUL && count < maxcount) { ++count; mb_ptr_adv(scan); } if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr || count == maxcount) break; ++count; /* count the line-break */ reg_nextline(); scan = reginput; if (got_int) break; } break; case IDENT: case IDENT + ADD_NL: testval = TRUE; /*FALLTHROUGH*/ case SIDENT: case SIDENT + ADD_NL: while (count < maxcount) { if (vim_isIDc(*scan) && (testval || !VIM_ISDIGIT(*scan))) { mb_ptr_adv(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case KWORD: case KWORD + ADD_NL: testval = TRUE; /*FALLTHROUGH*/ case SKWORD: case SKWORD + ADD_NL: while (count < maxcount) { if (vim_iswordp(scan) && (testval || !VIM_ISDIGIT(*scan))) { mb_ptr_adv(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case FNAME: case FNAME + ADD_NL: testval = TRUE; /*FALLTHROUGH*/ case SFNAME: case SFNAME + ADD_NL: while (count < maxcount) { if (vim_isfilec(*scan) && (testval || !VIM_ISDIGIT(*scan))) { mb_ptr_adv(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case PRINT: case PRINT + ADD_NL: testval = TRUE; /*FALLTHROUGH*/ case SPRINT: case SPRINT + ADD_NL: while (count < maxcount) { if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } else if (ptr2cells(scan) == 1 && (testval || !VIM_ISDIGIT(*scan))) { mb_ptr_adv(scan); } else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case WHITE: case WHITE + ADD_NL: testval = mask = RI_WHITE; do_class: while (count < maxcount) { #ifdef FEAT_MBYTE int l; #endif if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } #ifdef FEAT_MBYTE else if (has_mbyte && (l = (*mb_ptr2len)(scan)) > 1) { if (testval != 0) break; scan += l; } #endif else if ((class_tab[*scan] & mask) == testval) ++scan; else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case NWHITE: case NWHITE + ADD_NL: mask = RI_WHITE; goto do_class; case DIGIT: case DIGIT + ADD_NL: testval = mask = RI_DIGIT; goto do_class; case NDIGIT: case NDIGIT + ADD_NL: mask = RI_DIGIT; goto do_class; case HEX: case HEX + ADD_NL: testval = mask = RI_HEX; goto do_class; case NHEX: case NHEX + ADD_NL: mask = RI_HEX; goto do_class; case OCTAL: case OCTAL + ADD_NL: testval = mask = RI_OCTAL; goto do_class; case NOCTAL: case NOCTAL + ADD_NL: mask = RI_OCTAL; goto do_class; case WORD: case WORD + ADD_NL: testval = mask = RI_WORD; goto do_class; case NWORD: case NWORD + ADD_NL: mask = RI_WORD; goto do_class; case HEAD: case HEAD + ADD_NL: testval = mask = RI_HEAD; goto do_class; case NHEAD: case NHEAD + ADD_NL: mask = RI_HEAD; goto do_class; case ALPHA: case ALPHA + ADD_NL: testval = mask = RI_ALPHA; goto do_class; case NALPHA: case NALPHA + ADD_NL: mask = RI_ALPHA; goto do_class; case LOWER: case LOWER + ADD_NL: testval = mask = RI_LOWER; goto do_class; case NLOWER: case NLOWER + ADD_NL: mask = RI_LOWER; goto do_class; case UPPER: case UPPER + ADD_NL: testval = mask = RI_UPPER; goto do_class; case NUPPER: case NUPPER + ADD_NL: mask = RI_UPPER; goto do_class; case EXACTLY: { int cu, cl; /* This doesn't do a multi-byte character, because a MULTIBYTECODE * would have been used for it. It does handle single-byte * characters, such as latin1. */ if (ireg_ic) { cu = MB_TOUPPER(*opnd); cl = MB_TOLOWER(*opnd); while (count < maxcount && (*scan == cu || *scan == cl)) { count++; scan++; } } else { cu = *opnd; while (count < maxcount && *scan == cu) { count++; scan++; } } break; } #ifdef FEAT_MBYTE case MULTIBYTECODE: { int i, len, cf = 0; /* Safety check (just in case 'encoding' was changed since * compiling the program). */ if ((len = (*mb_ptr2len)(opnd)) > 1) { if (ireg_ic && enc_utf8) cf = utf_fold(utf_ptr2char(opnd)); while (count < maxcount) { for (i = 0; i < len; ++i) if (opnd[i] != scan[i]) break; if (i < len && (!ireg_ic || !enc_utf8 || utf_fold(utf_ptr2char(scan)) != cf)) break; scan += len; ++count; } } } break; #endif case ANYOF: case ANYOF + ADD_NL: testval = TRUE; /*FALLTHROUGH*/ case ANYBUT: case ANYBUT + ADD_NL: while (count < maxcount) { #ifdef FEAT_MBYTE int len; #endif if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline || reg_line_lbr) break; reg_nextline(); scan = reginput; if (got_int) break; } else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; #ifdef FEAT_MBYTE else if (has_mbyte && (len = (*mb_ptr2len)(scan)) > 1) { if ((cstrchr(opnd, (*mb_ptr2char)(scan)) == NULL) == testval) break; scan += len; } #endif else { if ((cstrchr(opnd, *scan) == NULL) == testval) break; ++scan; } ++count; } break; case NEWL: while (count < maxcount && ((*scan == NUL && reglnum <= reg_maxline && !reg_line_lbr && REG_MULTI) || (*scan == '\n' && reg_line_lbr))) { count++; if (reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); scan = reginput; if (got_int) break; } break; default: /* Oh dear. Called inappropriately. */ EMSG(_(e_re_corr)); #ifdef DEBUG printf("Called regrepeat with op code %d\n", OP(p)); #endif break; } reginput = scan; return (int)count; } /* * regnext - dig the "next" pointer out of a node * Returns NULL when calculating size, when there is no next item and when * there is an error. */ static char_u * regnext(p) char_u *p; { int offset; if (p == JUST_CALC_SIZE || reg_toolong) return NULL; offset = NEXT(p); if (offset == 0) return NULL; if (OP(p) == BACK) return p - offset; else return p + offset; } /* * Check the regexp program for its magic number. * Return TRUE if it's wrong. */ static int prog_magic_wrong() { if (UCHARAT(REG_MULTI ? reg_mmatch->regprog->program : reg_match->regprog->program) != REGMAGIC) { EMSG(_(e_re_corr)); return TRUE; } return FALSE; } /* * Cleanup the subexpressions, if this wasn't done yet. * This construction is used to clear the subexpressions only when they are * used (to increase speed). */ static void cleanup_subexpr() { if (need_clear_subexpr) { if (REG_MULTI) { /* Use 0xff to set lnum to -1 */ vim_memset(reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP); vim_memset(reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { vim_memset(reg_startp, 0, sizeof(char_u *) * NSUBEXP); vim_memset(reg_endp, 0, sizeof(char_u *) * NSUBEXP); } need_clear_subexpr = FALSE; } } #ifdef FEAT_SYN_HL static void cleanup_zsubexpr() { if (need_clear_zsubexpr) { if (REG_MULTI) { /* Use 0xff to set lnum to -1 */ vim_memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP); vim_memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { vim_memset(reg_startzp, 0, sizeof(char_u *) * NSUBEXP); vim_memset(reg_endzp, 0, sizeof(char_u *) * NSUBEXP); } need_clear_zsubexpr = FALSE; } } #endif /* * Save the current subexpr to "bp", so that they can be restored * later by restore_subexpr(). */ static void save_subexpr(bp) regbehind_T *bp; { int i; /* When "need_clear_subexpr" is set we don't need to save the values, only * remember that this flag needs to be set again when restoring. */ bp->save_need_clear_subexpr = need_clear_subexpr; if (!need_clear_subexpr) { for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { bp->save_start[i].se_u.pos = reg_startpos[i]; bp->save_end[i].se_u.pos = reg_endpos[i]; } else { bp->save_start[i].se_u.ptr = reg_startp[i]; bp->save_end[i].se_u.ptr = reg_endp[i]; } } } } /* * Restore the subexpr from "bp". */ static void restore_subexpr(bp) regbehind_T *bp; { int i; /* Only need to restore saved values when they are not to be cleared. */ need_clear_subexpr = bp->save_need_clear_subexpr; if (!need_clear_subexpr) { for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { reg_startpos[i] = bp->save_start[i].se_u.pos; reg_endpos[i] = bp->save_end[i].se_u.pos; } else { reg_startp[i] = bp->save_start[i].se_u.ptr; reg_endp[i] = bp->save_end[i].se_u.ptr; } } } } /* * Advance reglnum, regline and reginput to the next line. */ static void reg_nextline() { regline = reg_getline(++reglnum); reginput = regline; fast_breakcheck(); } /* * Save the input line and position in a regsave_T. */ static void reg_save(save, gap) regsave_T *save; garray_T *gap; { if (REG_MULTI) { save->rs_u.pos.col = (colnr_T)(reginput - regline); save->rs_u.pos.lnum = reglnum; } else save->rs_u.ptr = reginput; save->rs_len = gap->ga_len; } /* * Restore the input line and position from a regsave_T. */ static void reg_restore(save, gap) regsave_T *save; garray_T *gap; { if (REG_MULTI) { if (reglnum != save->rs_u.pos.lnum) { /* only call reg_getline() when the line number changed to save * a bit of time */ reglnum = save->rs_u.pos.lnum; regline = reg_getline(reglnum); } reginput = regline + save->rs_u.pos.col; } else reginput = save->rs_u.ptr; gap->ga_len = save->rs_len; } /* * Return TRUE if current position is equal to saved position. */ static int reg_save_equal(save) regsave_T *save; { if (REG_MULTI) return reglnum == save->rs_u.pos.lnum && reginput == regline + save->rs_u.pos.col; return reginput == save->rs_u.ptr; } /* * Tentatively set the sub-expression start to the current position (after * calling regmatch() they will have changed). Need to save the existing * values for when there is no match. * Use se_save() to use pointer (save_se_multi()) or position (save_se_one()), * depending on REG_MULTI. */ static void save_se_multi(savep, posp) save_se_T *savep; lpos_T *posp; { savep->se_u.pos = *posp; posp->lnum = reglnum; posp->col = (colnr_T)(reginput - regline); } static void save_se_one(savep, pp) save_se_T *savep; char_u **pp; { savep->se_u.ptr = *pp; *pp = reginput; } /* * Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL. */ static int re_num_cmp(val, scan) long_u val; char_u *scan; { long_u n = OPERAND_MIN(scan); if (OPERAND_CMP(scan) == '>') return val > n; if (OPERAND_CMP(scan) == '<') return val < n; return val == n; } #ifdef DEBUG /* * regdump - dump a regexp onto stdout in vaguely comprehensible form */ static void regdump(pattern, r) char_u *pattern; regprog_T *r; { char_u *s; int op = EXACTLY; /* Arbitrary non-END op. */ char_u *next; char_u *end = NULL; printf("\r\nregcomp(%s):\r\n", pattern); s = r->program + 1; /* * Loop until we find the END that isn't before a referred next (an END * can also appear in a NOMATCH operand). */ while (op != END || s <= end) { op = OP(s); printf("%2d%s", (int)(s - r->program), regprop(s)); /* Where, what. */ next = regnext(s); if (next == NULL) /* Next ptr. */ printf("(0)"); else printf("(%d)", (int)((s - r->program) + (next - s))); if (end < next) end = next; if (op == BRACE_LIMITS) { /* Two short ints */ printf(" minval %ld, maxval %ld", OPERAND_MIN(s), OPERAND_MAX(s)); s += 8; } s += 3; if (op == ANYOF || op == ANYOF + ADD_NL || op == ANYBUT || op == ANYBUT + ADD_NL || op == EXACTLY) { /* Literal string, where present. */ while (*s != NUL) printf("%c", *s++); s++; } printf("\r\n"); } /* Header fields of interest. */ if (r->regstart != NUL) printf("start `%s' 0x%x; ", r->regstart < 256 ? (char *)transchar(r->regstart) : "multibyte", r->regstart); if (r->reganch) printf("anchored; "); if (r->regmust != NULL) printf("must have \"%s\"", r->regmust); printf("\r\n"); } /* * regprop - printable representation of opcode */ static char_u * regprop(op) char_u *op; { char_u *p; static char_u buf[50]; (void) strcpy(buf, ":"); switch (OP(op)) { case BOL: p = "BOL"; break; case EOL: p = "EOL"; break; case RE_BOF: p = "BOF"; break; case RE_EOF: p = "EOF"; break; case CURSOR: p = "CURSOR"; break; case RE_VISUAL: p = "RE_VISUAL"; break; case RE_LNUM: p = "RE_LNUM"; break; case RE_MARK: p = "RE_MARK"; break; case RE_COL: p = "RE_COL"; break; case RE_VCOL: p = "RE_VCOL"; break; case BOW: p = "BOW"; break; case EOW: p = "EOW"; break; case ANY: p = "ANY"; break; case ANY + ADD_NL: p = "ANY+NL"; break; case ANYOF: p = "ANYOF"; break; case ANYOF + ADD_NL: p = "ANYOF+NL"; break; case ANYBUT: p = "ANYBUT"; break; case ANYBUT + ADD_NL: p = "ANYBUT+NL"; break; case IDENT: p = "IDENT"; break; case IDENT + ADD_NL: p = "IDENT+NL"; break; case SIDENT: p = "SIDENT"; break; case SIDENT + ADD_NL: p = "SIDENT+NL"; break; case KWORD: p = "KWORD"; break; case KWORD + ADD_NL: p = "KWORD+NL"; break; case SKWORD: p = "SKWORD"; break; case SKWORD + ADD_NL: p = "SKWORD+NL"; break; case FNAME: p = "FNAME"; break; case FNAME + ADD_NL: p = "FNAME+NL"; break; case SFNAME: p = "SFNAME"; break; case SFNAME + ADD_NL: p = "SFNAME+NL"; break; case PRINT: p = "PRINT"; break; case PRINT + ADD_NL: p = "PRINT+NL"; break; case SPRINT: p = "SPRINT"; break; case SPRINT + ADD_NL: p = "SPRINT+NL"; break; case WHITE: p = "WHITE"; break; case WHITE + ADD_NL: p = "WHITE+NL"; break; case NWHITE: p = "NWHITE"; break; case NWHITE + ADD_NL: p = "NWHITE+NL"; break; case DIGIT: p = "DIGIT"; break; case DIGIT + ADD_NL: p = "DIGIT+NL"; break; case NDIGIT: p = "NDIGIT"; break; case NDIGIT + ADD_NL: p = "NDIGIT+NL"; break; case HEX: p = "HEX"; break; case HEX + ADD_NL: p = "HEX+NL"; break; case NHEX: p = "NHEX"; break; case NHEX + ADD_NL: p = "NHEX+NL"; break; case OCTAL: p = "OCTAL"; break; case OCTAL + ADD_NL: p = "OCTAL+NL"; break; case NOCTAL: p = "NOCTAL"; break; case NOCTAL + ADD_NL: p = "NOCTAL+NL"; break; case WORD: p = "WORD"; break; case WORD + ADD_NL: p = "WORD+NL"; break; case NWORD: p = "NWORD"; break; case NWORD + ADD_NL: p = "NWORD+NL"; break; case HEAD: p = "HEAD"; break; case HEAD + ADD_NL: p = "HEAD+NL"; break; case NHEAD: p = "NHEAD"; break; case NHEAD + ADD_NL: p = "NHEAD+NL"; break; case ALPHA: p = "ALPHA"; break; case ALPHA + ADD_NL: p = "ALPHA+NL"; break; case NALPHA: p = "NALPHA"; break; case NALPHA + ADD_NL: p = "NALPHA+NL"; break; case LOWER: p = "LOWER"; break; case LOWER + ADD_NL: p = "LOWER+NL"; break; case NLOWER: p = "NLOWER"; break; case NLOWER + ADD_NL: p = "NLOWER+NL"; break; case UPPER: p = "UPPER"; break; case UPPER + ADD_NL: p = "UPPER+NL"; break; case NUPPER: p = "NUPPER"; break; case NUPPER + ADD_NL: p = "NUPPER+NL"; break; case BRANCH: p = "BRANCH"; break; case EXACTLY: p = "EXACTLY"; break; case NOTHING: p = "NOTHING"; break; case BACK: p = "BACK"; break; case END: p = "END"; break; case MOPEN + 0: p = "MATCH START"; break; case MOPEN + 1: case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN); p = NULL; break; case MCLOSE + 0: p = "MATCH END"; break; case MCLOSE + 1: case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE); p = NULL; break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF); p = NULL; break; case NOPEN: p = "NOPEN"; break; case NCLOSE: p = "NCLOSE"; break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN); p = NULL; break; case ZCLOSE + 1: case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE); p = NULL; break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF); p = NULL; break; #endif case STAR: p = "STAR"; break; case PLUS: p = "PLUS"; break; case NOMATCH: p = "NOMATCH"; break; case MATCH: p = "MATCH"; break; case BEHIND: p = "BEHIND"; break; case NOBEHIND: p = "NOBEHIND"; break; case SUBPAT: p = "SUBPAT"; break; case BRACE_LIMITS: p = "BRACE_LIMITS"; break; case BRACE_SIMPLE: p = "BRACE_SIMPLE"; break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX); p = NULL; break; #ifdef FEAT_MBYTE case MULTIBYTECODE: p = "MULTIBYTECODE"; break; #endif case NEWL: p = "NEWL"; break; default: sprintf(buf + STRLEN(buf), "corrupt %d", OP(op)); p = NULL; break; } if (p != NULL) (void) strcat(buf, p); return buf; } #endif #ifdef FEAT_MBYTE static void mb_decompose __ARGS((int c, int *c1, int *c2, int *c3)); typedef struct { int a, b, c; } decomp_T; /* 0xfb20 - 0xfb4f */ static decomp_T decomp_table[0xfb4f-0xfb20+1] = { {0x5e2,0,0}, /* 0xfb20 alt ayin */ {0x5d0,0,0}, /* 0xfb21 alt alef */ {0x5d3,0,0}, /* 0xfb22 alt dalet */ {0x5d4,0,0}, /* 0xfb23 alt he */ {0x5db,0,0}, /* 0xfb24 alt kaf */ {0x5dc,0,0}, /* 0xfb25 alt lamed */ {0x5dd,0,0}, /* 0xfb26 alt mem-sofit */ {0x5e8,0,0}, /* 0xfb27 alt resh */ {0x5ea,0,0}, /* 0xfb28 alt tav */ {'+', 0, 0}, /* 0xfb29 alt plus */ {0x5e9, 0x5c1, 0}, /* 0xfb2a shin+shin-dot */ {0x5e9, 0x5c2, 0}, /* 0xfb2b shin+sin-dot */ {0x5e9, 0x5c1, 0x5bc}, /* 0xfb2c shin+shin-dot+dagesh */ {0x5e9, 0x5c2, 0x5bc}, /* 0xfb2d shin+sin-dot+dagesh */ {0x5d0, 0x5b7, 0}, /* 0xfb2e alef+patah */ {0x5d0, 0x5b8, 0}, /* 0xfb2f alef+qamats */ {0x5d0, 0x5b4, 0}, /* 0xfb30 alef+hiriq */ {0x5d1, 0x5bc, 0}, /* 0xfb31 bet+dagesh */ {0x5d2, 0x5bc, 0}, /* 0xfb32 gimel+dagesh */ {0x5d3, 0x5bc, 0}, /* 0xfb33 dalet+dagesh */ {0x5d4, 0x5bc, 0}, /* 0xfb34 he+dagesh */ {0x5d5, 0x5bc, 0}, /* 0xfb35 vav+dagesh */ {0x5d6, 0x5bc, 0}, /* 0xfb36 zayin+dagesh */ {0xfb37, 0, 0}, /* 0xfb37 -- UNUSED */ {0x5d8, 0x5bc, 0}, /* 0xfb38 tet+dagesh */ {0x5d9, 0x5bc, 0}, /* 0xfb39 yud+dagesh */ {0x5da, 0x5bc, 0}, /* 0xfb3a kaf sofit+dagesh */ {0x5db, 0x5bc, 0}, /* 0xfb3b kaf+dagesh */ {0x5dc, 0x5bc, 0}, /* 0xfb3c lamed+dagesh */ {0xfb3d, 0, 0}, /* 0xfb3d -- UNUSED */ {0x5de, 0x5bc, 0}, /* 0xfb3e mem+dagesh */ {0xfb3f, 0, 0}, /* 0xfb3f -- UNUSED */ {0x5e0, 0x5bc, 0}, /* 0xfb40 nun+dagesh */ {0x5e1, 0x5bc, 0}, /* 0xfb41 samech+dagesh */ {0xfb42, 0, 0}, /* 0xfb42 -- UNUSED */ {0x5e3, 0x5bc, 0}, /* 0xfb43 pe sofit+dagesh */ {0x5e4, 0x5bc,0}, /* 0xfb44 pe+dagesh */ {0xfb45, 0, 0}, /* 0xfb45 -- UNUSED */ {0x5e6, 0x5bc, 0}, /* 0xfb46 tsadi+dagesh */ {0x5e7, 0x5bc, 0}, /* 0xfb47 qof+dagesh */ {0x5e8, 0x5bc, 0}, /* 0xfb48 resh+dagesh */ {0x5e9, 0x5bc, 0}, /* 0xfb49 shin+dagesh */ {0x5ea, 0x5bc, 0}, /* 0xfb4a tav+dagesh */ {0x5d5, 0x5b9, 0}, /* 0xfb4b vav+holam */ {0x5d1, 0x5bf, 0}, /* 0xfb4c bet+rafe */ {0x5db, 0x5bf, 0}, /* 0xfb4d kaf+rafe */ {0x5e4, 0x5bf, 0}, /* 0xfb4e pe+rafe */ {0x5d0, 0x5dc, 0} /* 0xfb4f alef-lamed */ }; static void mb_decompose(c, c1, c2, c3) int c, *c1, *c2, *c3; { decomp_T d; if (c >= 0x4b20 && c <= 0xfb4f) { d = decomp_table[c - 0xfb20]; *c1 = d.a; *c2 = d.b; *c3 = d.c; } else { *c1 = c; *c2 = *c3 = 0; } } #endif /* * Compare two strings, ignore case if ireg_ic set. * Return 0 if strings match, non-zero otherwise. * Correct the length "*n" when composing characters are ignored. */ static int cstrncmp(s1, s2, n) char_u *s1, *s2; int *n; { int result; if (!ireg_ic) result = STRNCMP(s1, s2, *n); else result = MB_STRNICMP(s1, s2, *n); #ifdef FEAT_MBYTE /* if it failed and it's utf8 and we want to combineignore: */ if (result != 0 && enc_utf8 && ireg_icombine) { char_u *str1, *str2; int c1, c2, c11, c12; int junk; /* we have to handle the strcmp ourselves, since it is necessary to * deal with the composing characters by ignoring them: */ str1 = s1; str2 = s2; c1 = c2 = 0; while ((int)(str1 - s1) < *n) { c1 = mb_ptr2char_adv(&str1); c2 = mb_ptr2char_adv(&str2); /* decompose the character if necessary, into 'base' characters * because I don't care about Arabic, I will hard-code the Hebrew * which I *do* care about! So sue me... */ if (c1 != c2 && (!ireg_ic || utf_fold(c1) != utf_fold(c2))) { /* decomposition necessary? */ mb_decompose(c1, &c11, &junk, &junk); mb_decompose(c2, &c12, &junk, &junk); c1 = c11; c2 = c12; if (c11 != c12 && (!ireg_ic || utf_fold(c11) != utf_fold(c12))) break; } } result = c2 - c1; if (result == 0) *n = (int)(str2 - s2); } #endif return result; } /* * cstrchr: This function is used a lot for simple searches, keep it fast! */ static char_u * cstrchr(s, c) char_u *s; int c; { char_u *p; int cc; if (!ireg_ic #ifdef FEAT_MBYTE || (!enc_utf8 && mb_char2len(c) > 1) #endif ) return vim_strchr(s, c); /* tolower() and toupper() can be slow, comparing twice should be a lot * faster (esp. when using MS Visual C++!). * For UTF-8 need to use folded case. */ #ifdef FEAT_MBYTE if (enc_utf8 && c > 0x80) cc = utf_fold(c); else #endif if (MB_ISUPPER(c)) cc = MB_TOLOWER(c); else if (MB_ISLOWER(c)) cc = MB_TOUPPER(c); else return vim_strchr(s, c); #ifdef FEAT_MBYTE if (has_mbyte) { for (p = s; *p != NUL; p += (*mb_ptr2len)(p)) { if (enc_utf8 && c > 0x80) { if (utf_fold(utf_ptr2char(p)) == cc) return p; } else if (*p == c || *p == cc) return p; } } else #endif /* Faster version for when there are no multi-byte characters. */ for (p = s; *p != NUL; ++p) if (*p == c || *p == cc) return p; return NULL; } /*************************************************************** * regsub stuff * ***************************************************************/ /* This stuff below really confuses cc on an SGI -- webb */ #ifdef __sgi # undef __ARGS # define __ARGS(x) () #endif /* * We should define ftpr as a pointer to a function returning a pointer to * a function returning a pointer to a function ... * This is impossible, so we declare a pointer to a function returning a * pointer to a function returning void. This should work for all compilers. */ typedef void (*(*fptr_T) __ARGS((int *, int)))(); static fptr_T do_upper __ARGS((int *, int)); static fptr_T do_Upper __ARGS((int *, int)); static fptr_T do_lower __ARGS((int *, int)); static fptr_T do_Lower __ARGS((int *, int)); static int vim_regsub_both __ARGS((char_u *source, char_u *dest, int copy, int magic, int backslash)); static fptr_T do_upper(d, c) int *d; int c; { *d = MB_TOUPPER(c); return (fptr_T)NULL; } static fptr_T do_Upper(d, c) int *d; int c; { *d = MB_TOUPPER(c); return (fptr_T)do_Upper; } static fptr_T do_lower(d, c) int *d; int c; { *d = MB_TOLOWER(c); return (fptr_T)NULL; } static fptr_T do_Lower(d, c) int *d; int c; { *d = MB_TOLOWER(c); return (fptr_T)do_Lower; } /* * regtilde(): Replace tildes in the pattern by the old pattern. * * Short explanation of the tilde: It stands for the previous replacement * pattern. If that previous pattern also contains a ~ we should go back a * step further... But we insert the previous pattern into the current one * and remember that. * This still does not handle the case where "magic" changes. So require the * user to keep his hands off of "magic". * * The tildes are parsed once before the first call to vim_regsub(). */ char_u * regtilde(source, magic) char_u *source; int magic; { char_u *newsub = source; char_u *tmpsub; char_u *p; int len; int prevlen; for (p = newsub; *p; ++p) { if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) { if (reg_prev_sub != NULL) { /* length = len(newsub) - 1 + len(prev_sub) + 1 */ prevlen = (int)STRLEN(reg_prev_sub); tmpsub = alloc((unsigned)(STRLEN(newsub) + prevlen)); if (tmpsub != NULL) { /* copy prefix */ len = (int)(p - newsub); /* not including ~ */ mch_memmove(tmpsub, newsub, (size_t)len); /* interpret tilde */ mch_memmove(tmpsub + len, reg_prev_sub, (size_t)prevlen); /* copy postfix */ if (!magic) ++p; /* back off \ */ STRCPY(tmpsub + len + prevlen, p + 1); if (newsub != source) /* already allocated newsub */ vim_free(newsub); newsub = tmpsub; p = newsub + len + prevlen; } } else if (magic) STRMOVE(p, p + 1); /* remove '~' */ else STRMOVE(p, p + 2); /* remove '\~' */ --p; } else { if (*p == '\\' && p[1]) /* skip escaped characters */ ++p; #ifdef FEAT_MBYTE if (has_mbyte) p += (*mb_ptr2len)(p) - 1; #endif } } vim_free(reg_prev_sub); if (newsub != source) /* newsub was allocated, just keep it */ reg_prev_sub = newsub; else /* no ~ found, need to save newsub */ reg_prev_sub = vim_strsave(newsub); return newsub; } #ifdef FEAT_EVAL static int can_f_submatch = FALSE; /* TRUE when submatch() can be used */ /* These pointers are used instead of reg_match and reg_mmatch for * reg_submatch(). Needed for when the substitution string is an expression * that contains a call to substitute() and submatch(). */ static regmatch_T *submatch_match; static regmmatch_T *submatch_mmatch; static linenr_T submatch_firstlnum; static linenr_T submatch_maxline; #endif #if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) || defined(PROTO) /* * vim_regsub() - perform substitutions after a vim_regexec() or * vim_regexec_multi() match. * * If "copy" is TRUE really copy into "dest". * If "copy" is FALSE nothing is copied, this is just to find out the length * of the result. * * If "backslash" is TRUE, a backslash will be removed later, need to double * them to keep them, and insert a backslash before a CR to avoid it being * replaced with a line break later. * * Note: The matched text must not change between the call of * vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back * references invalid! * * Returns the size of the replacement, including terminating NUL. */ int vim_regsub(rmp, source, dest, copy, magic, backslash) regmatch_T *rmp; char_u *source; char_u *dest; int copy; int magic; int backslash; { reg_match = rmp; reg_mmatch = NULL; reg_maxline = 0; return vim_regsub_both(source, dest, copy, magic, backslash); } #endif int vim_regsub_multi(rmp, lnum, source, dest, copy, magic, backslash) regmmatch_T *rmp; linenr_T lnum; char_u *source; char_u *dest; int copy; int magic; int backslash; { reg_match = NULL; reg_mmatch = rmp; reg_buf = curbuf; /* always works on the current buffer! */ reg_firstlnum = lnum; reg_maxline = curbuf->b_ml.ml_line_count - lnum; return vim_regsub_both(source, dest, copy, magic, backslash); } static int vim_regsub_both(source, dest, copy, magic, backslash) char_u *source; char_u *dest; int copy; int magic; int backslash; { char_u *src; char_u *dst; char_u *s; int c; int cc; int no = -1; fptr_T func = (fptr_T)NULL; linenr_T clnum = 0; /* init for GCC */ int len = 0; /* init for GCC */ #ifdef FEAT_EVAL static char_u *eval_result = NULL; #endif /* Be paranoid... */ if (source == NULL || dest == NULL) { EMSG(_(e_null)); return 0; } if (prog_magic_wrong()) return 0; src = source; dst = dest; /* * When the substitute part starts with "\=" evaluate it as an expression. */ if (source[0] == '\\' && source[1] == '=' #ifdef FEAT_EVAL && !can_f_submatch /* can't do this recursively */ #endif ) { #ifdef FEAT_EVAL /* To make sure that the length doesn't change between checking the * length and copying the string, and to speed up things, the * resulting string is saved from the call with "copy" == FALSE to the * call with "copy" == TRUE. */ if (copy) { if (eval_result != NULL) { STRCPY(dest, eval_result); dst += STRLEN(eval_result); vim_free(eval_result); eval_result = NULL; } } else { win_T *save_reg_win; int save_ireg_ic; vim_free(eval_result); /* The expression may contain substitute(), which calls us * recursively. Make sure submatch() gets the text from the first * level. Don't need to save "reg_buf", because * vim_regexec_multi() can't be called recursively. */ submatch_match = reg_match; submatch_mmatch = reg_mmatch; submatch_firstlnum = reg_firstlnum; submatch_maxline = reg_maxline; save_reg_win = reg_win; save_ireg_ic = ireg_ic; can_f_submatch = TRUE; eval_result = eval_to_string(source + 2, NULL, TRUE); if (eval_result != NULL) { int had_backslash = FALSE; for (s = eval_result; *s != NUL; mb_ptr_adv(s)) { /* Change NL to CR, so that it becomes a line break. * Skip over a backslashed character. */ if (*s == NL) *s = CAR; else if (*s == '\\' && s[1] != NUL) { ++s; /* Change NL to CR here too, so that this works: * :s/abc\\\ndef/\="aaa\\\nbbb"/ on text: * abc\ * def */ if (*s == NL) *s = CAR; had_backslash = TRUE; } } if (had_backslash && backslash) { /* Backslashes will be consumed, need to double them. */ s = vim_strsave_escaped(eval_result, (char_u *)"\\"); if (s != NULL) { vim_free(eval_result); eval_result = s; } } dst += STRLEN(eval_result); } reg_match = submatch_match; reg_mmatch = submatch_mmatch; reg_firstlnum = submatch_firstlnum; reg_maxline = submatch_maxline; reg_win = save_reg_win; ireg_ic = save_ireg_ic; can_f_submatch = FALSE; } #endif } else while ((c = *src++) != NUL) { if (c == '&' && magic) no = 0; else if (c == '\\' && *src != NUL) { if (*src == '&' && !magic) { ++src; no = 0; } else if ('0' <= *src && *src <= '9') { no = *src++ - '0'; } else if (vim_strchr((char_u *)"uUlLeE", *src)) { switch (*src++) { case 'u': func = (fptr_T)do_upper; continue; case 'U': func = (fptr_T)do_Upper; continue; case 'l': func = (fptr_T)do_lower; continue; case 'L': func = (fptr_T)do_Lower; continue; case 'e': case 'E': func = (fptr_T)NULL; continue; } } } if (no < 0) /* Ordinary character. */ { if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) { /* Copy a special key as-is. */ if (copy) { *dst++ = c; *dst++ = *src++; *dst++ = *src++; } else { dst += 3; src += 2; } continue; } if (c == '\\' && *src != NUL) { /* Check for abbreviations -- webb */ switch (*src) { case 'r': c = CAR; ++src; break; case 'n': c = NL; ++src; break; case 't': c = TAB; ++src; break; /* Oh no! \e already has meaning in subst pat :-( */ /* case 'e': c = ESC; ++src; break; */ case 'b': c = Ctrl_H; ++src; break; /* If "backslash" is TRUE the backslash will be removed * later. Used to insert a literal CR. */ default: if (backslash) { if (copy) *dst = '\\'; ++dst; } c = *src++; } } #ifdef FEAT_MBYTE else if (has_mbyte) c = mb_ptr2char(src - 1); #endif /* Write to buffer, if copy is set. */ if (func == (fptr_T)NULL) /* just copy */ cc = c; else /* Turbo C complains without the typecast */ func = (fptr_T)(func(&cc, c)); #ifdef FEAT_MBYTE if (has_mbyte) { src += mb_ptr2len(src - 1) - 1; if (copy) mb_char2bytes(cc, dst); dst += mb_char2len(cc) - 1; } else #endif if (copy) *dst = cc; dst++; } else { if (REG_MULTI) { clnum = reg_mmatch->startpos[no].lnum; if (clnum < 0 || reg_mmatch->endpos[no].lnum < 0) s = NULL; else { s = reg_getline(clnum) + reg_mmatch->startpos[no].col; if (reg_mmatch->endpos[no].lnum == clnum) len = reg_mmatch->endpos[no].col - reg_mmatch->startpos[no].col; else len = (int)STRLEN(s); } } else { s = reg_match->startp[no]; if (reg_match->endp[no] == NULL) s = NULL; else len = (int)(reg_match->endp[no] - s); } if (s != NULL) { for (;;) { if (len == 0) { if (REG_MULTI) { if (reg_mmatch->endpos[no].lnum == clnum) break; if (copy) *dst = CAR; ++dst; s = reg_getline(++clnum); if (reg_mmatch->endpos[no].lnum == clnum) len = reg_mmatch->endpos[no].col; else len = (int)STRLEN(s); } else break; } else if (*s == NUL) /* we hit NUL. */ { if (copy) EMSG(_(e_re_damg)); goto exit; } else { if (backslash && (*s == CAR || *s == '\\')) { /* * Insert a backslash in front of a CR, otherwise * it will be replaced by a line break. * Number of backslashes will be halved later, * double them here. */ if (copy) { dst[0] = '\\'; dst[1] = *s; } dst += 2; } else { #ifdef FEAT_MBYTE if (has_mbyte) c = mb_ptr2char(s); else #endif c = *s; if (func == (fptr_T)NULL) /* just copy */ cc = c; else /* Turbo C complains without the typecast */ func = (fptr_T)(func(&cc, c)); #ifdef FEAT_MBYTE if (has_mbyte) { int l; /* Copy composing characters separately, one * at a time. */ if (enc_utf8) l = utf_ptr2len(s) - 1; else l = mb_ptr2len(s) - 1; s += l; len -= l; if (copy) mb_char2bytes(cc, dst); dst += mb_char2len(cc) - 1; } else #endif if (copy) *dst = cc; dst++; } ++s; --len; } } } no = -1; } } if (copy) *dst = NUL; exit: return (int)((dst - dest) + 1); } #ifdef FEAT_EVAL static char_u *reg_getline_submatch __ARGS((linenr_T lnum)); /* * Call reg_getline() with the line numbers from the submatch. If a * substitute() was used the reg_maxline and other values have been * overwritten. */ static char_u * reg_getline_submatch(lnum) linenr_T lnum; { char_u *s; linenr_T save_first = reg_firstlnum; linenr_T save_max = reg_maxline; reg_firstlnum = submatch_firstlnum; reg_maxline = submatch_maxline; s = reg_getline(lnum); reg_firstlnum = save_first; reg_maxline = save_max; return s; } /* * Used for the submatch() function: get the string from the n'th submatch in * allocated memory. * Returns NULL when not in a ":s" command and for a non-existing submatch. */ char_u * reg_submatch(no) int no; { char_u *retval = NULL; char_u *s; int len; int round; linenr_T lnum; if (!can_f_submatch || no < 0) return NULL; if (submatch_match == NULL) { /* * First round: compute the length and allocate memory. * Second round: copy the text. */ for (round = 1; round <= 2; ++round) { lnum = submatch_mmatch->startpos[no].lnum; if (lnum < 0 || submatch_mmatch->endpos[no].lnum < 0) return NULL; s = reg_getline_submatch(lnum) + submatch_mmatch->startpos[no].col; if (s == NULL) /* anti-crash check, cannot happen? */ break; if (submatch_mmatch->endpos[no].lnum == lnum) { /* Within one line: take form start to end col. */ len = submatch_mmatch->endpos[no].col - submatch_mmatch->startpos[no].col; if (round == 2) vim_strncpy(retval, s, len); ++len; } else { /* Multiple lines: take start line from start col, middle * lines completely and end line up to end col. */ len = (int)STRLEN(s); if (round == 2) { STRCPY(retval, s); retval[len] = '\n'; } ++len; ++lnum; while (lnum < submatch_mmatch->endpos[no].lnum) { s = reg_getline_submatch(lnum++); if (round == 2) STRCPY(retval + len, s); len += (int)STRLEN(s); if (round == 2) retval[len] = '\n'; ++len; } if (round == 2) STRNCPY(retval + len, reg_getline_submatch(lnum), submatch_mmatch->endpos[no].col); len += submatch_mmatch->endpos[no].col; if (round == 2) retval[len] = NUL; ++len; } if (retval == NULL) { retval = lalloc((long_u)len, TRUE); if (retval == NULL) return NULL; } } } else { s = submatch_match->startp[no]; if (s == NULL || submatch_match->endp[no] == NULL) retval = NULL; else retval = vim_strnsave(s, (int)(submatch_match->endp[no] - s)); } return retval; } #endif