// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. */ /* * Memory Functions * * Copied from FADS ROM, Dan Malek (dmalek@jlc.net) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SYS_MEMTEST_SCRATCH #define CONFIG_SYS_MEMTEST_SCRATCH 0 #endif /* Create a compile-time value */ #if MEM_SUPPORT_64BIT_DATA #define HELP_Q ", .q" #else #define HELP_Q "" #endif static int mod_mem(struct cmd_tbl *, int, int, int, char * const []); /* Display values from last command. * Memory modify remembered values are different from display memory. */ static ulong dp_last_addr, dp_last_size; static ulong dp_last_length = 0x40; static ulong mm_last_addr, mm_last_size; static ulong base_address = 0; /* Memory Display * * Syntax: * md{.b, .w, .l, .q} {addr} {len} */ #define DISP_LINE_LEN 16 static int do_mem_md(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { ulong addr, length, bytes; const void *buf; int size; int rc = 0; /* We use the last specified parameters, unless new ones are * entered. */ addr = dp_last_addr; size = dp_last_size; length = dp_last_length; if (argc < 2) return CMD_RET_USAGE; if ((flag & CMD_FLAG_REPEAT) == 0) { /* New command specified. Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; /* If another parameter, it is the length to display. * Length is the number of objects, not number of bytes. */ if (argc > 2) length = simple_strtoul(argv[2], NULL, 16); } bytes = size * length; buf = map_sysmem(addr, bytes); /* Print the lines. */ print_buffer(addr, buf, size, length, DISP_LINE_LEN / size); addr += bytes; unmap_sysmem(buf); dp_last_addr = addr; dp_last_length = length; dp_last_size = size; return (rc); } static int do_mem_mm(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { return mod_mem (cmdtp, 1, flag, argc, argv); } static int do_mem_nm(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { return mod_mem (cmdtp, 0, flag, argc, argv); } static int do_mem_mw(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { #if MEM_SUPPORT_64BIT_DATA u64 writeval; #else ulong writeval; #endif ulong addr, count; int size; void *buf, *start; ulong bytes; if ((argc < 3) || (argc > 4)) return CMD_RET_USAGE; /* Check for size specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 1) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; /* Get the value to write. */ #if MEM_SUPPORT_64BIT_DATA writeval = simple_strtoull(argv[2], NULL, 16); #else writeval = simple_strtoul(argv[2], NULL, 16); #endif /* Count ? */ if (argc == 4) { count = simple_strtoul(argv[3], NULL, 16); } else { count = 1; } bytes = size * count; start = map_sysmem(addr, bytes); buf = start; while (count-- > 0) { if (size == 4) *((u32 *)buf) = (u32)writeval; #if MEM_SUPPORT_64BIT_DATA else if (size == 8) *((u64 *)buf) = (u64)writeval; #endif else if (size == 2) *((u16 *)buf) = (u16)writeval; else *((u8 *)buf) = (u8)writeval; buf += size; } unmap_sysmem(start); return 0; } #ifdef CONFIG_CMD_MX_CYCLIC static int do_mem_mdc(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int i; ulong count; if (argc < 4) return CMD_RET_USAGE; count = simple_strtoul(argv[3], NULL, 10); for (;;) { do_mem_md (NULL, 0, 3, argv); /* delay for ms... */ for (i=0; i ms... */ for (i=0; i 1) { /* Set new base address. */ base_address = simple_strtoul(argv[1], NULL, 16); } /* Print the current base address. */ printf("Base Address: 0x%08lx\n", base_address); return 0; } static int do_mem_loop(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { ulong addr, length, i, bytes; int size; #if MEM_SUPPORT_64BIT_DATA volatile u64 *llp; #endif volatile u32 *longp; volatile u16 *shortp; volatile u8 *cp; const void *buf; if (argc < 3) return CMD_RET_USAGE; /* * Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is always specified. */ addr = simple_strtoul(argv[1], NULL, 16); /* Length is the number of objects, not number of bytes. */ length = simple_strtoul(argv[2], NULL, 16); bytes = size * length; buf = map_sysmem(addr, bytes); /* We want to optimize the loops to run as fast as possible. * If we have only one object, just run infinite loops. */ if (length == 1) { #if MEM_SUPPORT_64BIT_DATA if (size == 8) { llp = (u64 *)buf; for (;;) i = *llp; } #endif if (size == 4) { longp = (u32 *)buf; for (;;) i = *longp; } if (size == 2) { shortp = (u16 *)buf; for (;;) i = *shortp; } cp = (u8 *)buf; for (;;) i = *cp; } #if MEM_SUPPORT_64BIT_DATA if (size == 8) { for (;;) { llp = (u64 *)buf; i = length; while (i-- > 0) *llp++; } } #endif if (size == 4) { for (;;) { longp = (u32 *)buf; i = length; while (i-- > 0) *longp++; } } if (size == 2) { for (;;) { shortp = (u16 *)buf; i = length; while (i-- > 0) *shortp++; } } for (;;) { cp = (u8 *)buf; i = length; while (i-- > 0) *cp++; } unmap_sysmem(buf); return 0; } #ifdef CONFIG_LOOPW static int do_mem_loopw(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { ulong addr, length, i, bytes; int size; #if MEM_SUPPORT_64BIT_DATA volatile u64 *llp; u64 data; #else ulong data; #endif volatile u32 *longp; volatile u16 *shortp; volatile u8 *cp; void *buf; if (argc < 4) return CMD_RET_USAGE; /* * Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is always specified. */ addr = simple_strtoul(argv[1], NULL, 16); /* Length is the number of objects, not number of bytes. */ length = simple_strtoul(argv[2], NULL, 16); /* data to write */ #if MEM_SUPPORT_64BIT_DATA data = simple_strtoull(argv[3], NULL, 16); #else data = simple_strtoul(argv[3], NULL, 16); #endif bytes = size * length; buf = map_sysmem(addr, bytes); /* We want to optimize the loops to run as fast as possible. * If we have only one object, just run infinite loops. */ if (length == 1) { #if MEM_SUPPORT_64BIT_DATA if (size == 8) { llp = (u64 *)buf; for (;;) *llp = data; } #endif if (size == 4) { longp = (u32 *)buf; for (;;) *longp = data; } if (size == 2) { shortp = (u16 *)buf; for (;;) *shortp = data; } cp = (u8 *)buf; for (;;) *cp = data; } #if MEM_SUPPORT_64BIT_DATA if (size == 8) { for (;;) { llp = (u64 *)buf; i = length; while (i-- > 0) *llp++ = data; } } #endif if (size == 4) { for (;;) { longp = (u32 *)buf; i = length; while (i-- > 0) *longp++ = data; } } if (size == 2) { for (;;) { shortp = (u16 *)buf; i = length; while (i-- > 0) *shortp++ = data; } } for (;;) { cp = (u8 *)buf; i = length; while (i-- > 0) *cp++ = data; } } #endif /* CONFIG_LOOPW */ #ifdef CONFIG_CMD_MEMTEST static ulong mem_test_alt(vu_long *buf, ulong start_addr, ulong end_addr, vu_long *dummy) { vu_long *addr; ulong errs = 0; ulong val, readback; int j; vu_long offset; vu_long test_offset; vu_long pattern; vu_long temp; vu_long anti_pattern; vu_long num_words; static const ulong bitpattern[] = { 0x00000001, /* single bit */ 0x00000003, /* two adjacent bits */ 0x00000007, /* three adjacent bits */ 0x0000000F, /* four adjacent bits */ 0x00000005, /* two non-adjacent bits */ 0x00000015, /* three non-adjacent bits */ 0x00000055, /* four non-adjacent bits */ 0xaaaaaaaa, /* alternating 1/0 */ }; num_words = (end_addr - start_addr) / sizeof(vu_long); /* * Data line test: write a pattern to the first * location, write the 1's complement to a 'parking' * address (changes the state of the data bus so a * floating bus doesn't give a false OK), and then * read the value back. Note that we read it back * into a variable because the next time we read it, * it might be right (been there, tough to explain to * the quality guys why it prints a failure when the * "is" and "should be" are obviously the same in the * error message). * * Rather than exhaustively testing, we test some * patterns by shifting '1' bits through a field of * '0's and '0' bits through a field of '1's (i.e. * pattern and ~pattern). */ addr = buf; for (j = 0; j < sizeof(bitpattern) / sizeof(bitpattern[0]); j++) { val = bitpattern[j]; for (; val != 0; val <<= 1) { *addr = val; *dummy = ~val; /* clear the test data off the bus */ readback = *addr; if (readback != val) { printf("FAILURE (data line): " "expected %08lx, actual %08lx\n", val, readback); errs++; if (ctrlc()) return -1; } *addr = ~val; *dummy = val; readback = *addr; if (readback != ~val) { printf("FAILURE (data line): " "Is %08lx, should be %08lx\n", readback, ~val); errs++; if (ctrlc()) return -1; } } } /* * Based on code whose Original Author and Copyright * information follows: Copyright (c) 1998 by Michael * Barr. This software is placed into the public * domain and may be used for any purpose. However, * this notice must not be changed or removed and no * warranty is either expressed or implied by its * publication or distribution. */ /* * Address line test * Description: Test the address bus wiring in a * memory region by performing a walking * 1's test on the relevant bits of the * address and checking for aliasing. * This test will find single-bit * address failures such as stuck-high, * stuck-low, and shorted pins. The base * address and size of the region are * selected by the caller. * Notes: For best results, the selected base * address should have enough LSB 0's to * guarantee single address bit changes. * For example, to test a 64-Kbyte * region, select a base address on a * 64-Kbyte boundary. Also, select the * region size as a power-of-two if at * all possible. * * Returns: 0 if the test succeeds, 1 if the test fails. */ pattern = (vu_long) 0xaaaaaaaa; anti_pattern = (vu_long) 0x55555555; debug("%s:%d: length = 0x%.8lx\n", __func__, __LINE__, num_words); /* * Write the default pattern at each of the * power-of-two offsets. */ for (offset = 1; offset < num_words; offset <<= 1) addr[offset] = pattern; /* * Check for address bits stuck high. */ test_offset = 0; addr[test_offset] = anti_pattern; for (offset = 1; offset < num_words; offset <<= 1) { temp = addr[offset]; if (temp != pattern) { printf("\nFAILURE: Address bit stuck high @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx\n", start_addr + offset*sizeof(vu_long), pattern, temp); errs++; if (ctrlc()) return -1; } } addr[test_offset] = pattern; WATCHDOG_RESET(); /* * Check for addr bits stuck low or shorted. */ for (test_offset = 1; test_offset < num_words; test_offset <<= 1) { addr[test_offset] = anti_pattern; for (offset = 1; offset < num_words; offset <<= 1) { temp = addr[offset]; if ((temp != pattern) && (offset != test_offset)) { printf("\nFAILURE: Address bit stuck low or" " shorted @ 0x%.8lx: expected 0x%.8lx," " actual 0x%.8lx\n", start_addr + offset*sizeof(vu_long), pattern, temp); errs++; if (ctrlc()) return -1; } } addr[test_offset] = pattern; } /* * Description: Test the integrity of a physical * memory device by performing an * increment/decrement test over the * entire region. In the process every * storage bit in the device is tested * as a zero and a one. The base address * and the size of the region are * selected by the caller. * * Returns: 0 if the test succeeds, 1 if the test fails. */ num_words++; /* * Fill memory with a known pattern. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); addr[offset] = pattern; } /* * Check each location and invert it for the second pass. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); temp = addr[offset]; if (temp != pattern) { printf("\nFAILURE (read/write) @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", start_addr + offset*sizeof(vu_long), pattern, temp); errs++; if (ctrlc()) return -1; } anti_pattern = ~pattern; addr[offset] = anti_pattern; } /* * Check each location for the inverted pattern and zero it. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); anti_pattern = ~pattern; temp = addr[offset]; if (temp != anti_pattern) { printf("\nFAILURE (read/write): @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", start_addr + offset*sizeof(vu_long), anti_pattern, temp); errs++; if (ctrlc()) return -1; } addr[offset] = 0; } return errs; } static int compare_regions(volatile unsigned long *bufa, volatile unsigned long *bufb, size_t count) { volatile unsigned long *p1 = bufa; volatile unsigned long *p2 = bufb; int errs = 0; size_t i; for (i = 0; i < count; i++, p1++, p2++) { if (*p1 != *p2) { printf("FAILURE: 0x%08lx != 0x%08lx (delta=0x%08lx -> bit %ld) at offset 0x%08lx\n", (unsigned long)*p1, (unsigned long)*p2, *p1 ^ *p2, __ffs(*p1 ^ *p2), (unsigned long)(i * sizeof(unsigned long))); errs++; } } return errs; } static ulong test_bitflip_comparison(volatile unsigned long *bufa, volatile unsigned long *bufb, size_t count) { volatile unsigned long *p1 = bufa; volatile unsigned long *p2 = bufb; unsigned int j, k; unsigned long q; size_t i; int max; int errs = 0; max = sizeof(unsigned long) * 8; for (k = 0; k < max; k++) { q = 0x00000001L << k; for (j = 0; j < 8; j++) { WATCHDOG_RESET(); q = ~q; p1 = (volatile unsigned long *)bufa; p2 = (volatile unsigned long *)bufb; for (i = 0; i < count; i++) *p1++ = *p2++ = (i % 2) == 0 ? q : ~q; errs += compare_regions(bufa, bufb, count); } if (ctrlc()) return -1UL; } return errs; } static ulong mem_test_quick(vu_long *buf, ulong start_addr, ulong end_addr, vu_long pattern, int iteration) { vu_long *end; vu_long *addr; ulong errs = 0; ulong incr, length; ulong val, readback; /* Alternate the pattern */ incr = 1; if (iteration & 1) { incr = -incr; /* * Flip the pattern each time to make lots of zeros and * then, the next time, lots of ones. We decrement * the "negative" patterns and increment the "positive" * patterns to preserve this feature. */ if (pattern & 0x80000000) pattern = -pattern; /* complement & increment */ else pattern = ~pattern; } length = (end_addr - start_addr) / sizeof(ulong); end = buf + length; printf("\rPattern %08lX Writing..." "%12s" "\b\b\b\b\b\b\b\b\b\b", pattern, ""); for (addr = buf, val = pattern; addr < end; addr++) { WATCHDOG_RESET(); *addr = val; val += incr; } puts("Reading..."); for (addr = buf, val = pattern; addr < end; addr++) { WATCHDOG_RESET(); readback = *addr; if (readback != val) { ulong offset = addr - buf; printf("\nMem error @ 0x%08X: " "found %08lX, expected %08lX\n", (uint)(uintptr_t)(start_addr + offset*sizeof(vu_long)), readback, val); errs++; if (ctrlc()) return -1; } val += incr; } return errs; } /* * Perform a memory test. A more complete alternative test can be * configured using CONFIG_SYS_ALT_MEMTEST. The complete test loops until * interrupted by ctrl-c or by a failure of one of the sub-tests. */ static int do_mem_mtest(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { ulong start, end; vu_long scratch_space; vu_long *buf, *dummy = &scratch_space; ulong iteration_limit = 0; ulong count = 0; ulong errs = 0; /* number of errors, or -1 if interrupted */ ulong pattern = 0; int iteration; start = CONFIG_SYS_MEMTEST_START; end = CONFIG_SYS_MEMTEST_END; if (argc > 1) if (strict_strtoul(argv[1], 16, &start) < 0) return CMD_RET_USAGE; if (argc > 2) if (strict_strtoul(argv[2], 16, &end) < 0) return CMD_RET_USAGE; if (argc > 3) if (strict_strtoul(argv[3], 16, &pattern) < 0) return CMD_RET_USAGE; if (argc > 4) if (strict_strtoul(argv[4], 16, &iteration_limit) < 0) return CMD_RET_USAGE; if (end < start) { printf("Refusing to do empty test\n"); return -1; } printf("Testing %08lx ... %08lx:\n", start, end); debug("%s:%d: start %#08lx end %#08lx\n", __func__, __LINE__, start, end); buf = map_sysmem(start, end - start); for (iteration = 0; !iteration_limit || iteration < iteration_limit; iteration++) { if (ctrlc()) { errs = -1UL; break; } printf("Iteration: %6d\r", iteration + 1); debug("\n"); if (IS_ENABLED(CONFIG_SYS_ALT_MEMTEST)) { errs = mem_test_alt(buf, start, end, dummy); if (errs == -1UL) break; count += errs; errs = test_bitflip_comparison(buf, buf + (end - start) / 2, (end - start) / sizeof(unsigned long)); } else { errs = mem_test_quick(buf, start, end, pattern, iteration); } if (errs == -1UL) break; count += errs; } unmap_sysmem((void *)buf); if (errs == -1UL) { /* Memory test was aborted - write a newline to finish off */ putc('\n'); } printf("Tested %d iteration(s) with %lu errors.\n", iteration, count); return errs != 0; } #endif /* CONFIG_CMD_MEMTEST */ /* Modify memory. * * Syntax: * mm{.b, .w, .l, .q} {addr} */ static int mod_mem(struct cmd_tbl *cmdtp, int incrflag, int flag, int argc, char *const argv[]) { ulong addr; #if MEM_SUPPORT_64BIT_DATA u64 i; #else ulong i; #endif int nbytes, size; void *ptr = NULL; if (argc != 2) return CMD_RET_USAGE; bootretry_reset_cmd_timeout(); /* got a good command to get here */ /* We use the last specified parameters, unless new ones are * entered. */ addr = mm_last_addr; size = mm_last_size; if ((flag & CMD_FLAG_REPEAT) == 0) { /* New command specified. Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; } /* Print the address, followed by value. Then accept input for * the next value. A non-converted value exits. */ do { ptr = map_sysmem(addr, size); printf("%08lx:", addr); if (size == 4) printf(" %08x", *((u32 *)ptr)); #if MEM_SUPPORT_64BIT_DATA else if (size == 8) printf(" %016llx", *((u64 *)ptr)); #endif else if (size == 2) printf(" %04x", *((u16 *)ptr)); else printf(" %02x", *((u8 *)ptr)); nbytes = cli_readline(" ? "); if (nbytes == 0 || (nbytes == 1 && console_buffer[0] == '-')) { /* pressed as only input, don't modify current * location and move to next. "-" pressed will go back. */ if (incrflag) addr += nbytes ? -size : size; nbytes = 1; /* good enough to not time out */ bootretry_reset_cmd_timeout(); } #ifdef CONFIG_BOOT_RETRY_TIME else if (nbytes == -2) { break; /* timed out, exit the command */ } #endif else { char *endp; #if MEM_SUPPORT_64BIT_DATA i = simple_strtoull(console_buffer, &endp, 16); #else i = simple_strtoul(console_buffer, &endp, 16); #endif nbytes = endp - console_buffer; if (nbytes) { /* good enough to not time out */ bootretry_reset_cmd_timeout(); if (size == 4) *((u32 *)ptr) = i; #if MEM_SUPPORT_64BIT_DATA else if (size == 8) *((u64 *)ptr) = i; #endif else if (size == 2) *((u16 *)ptr) = i; else *((u8 *)ptr) = i; if (incrflag) addr += size; } } } while (nbytes); if (ptr) unmap_sysmem(ptr); mm_last_addr = addr; mm_last_size = size; return 0; } #ifdef CONFIG_CMD_CRC32 static int do_mem_crc(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int flags = 0; int ac; char * const *av; if (argc < 3) return CMD_RET_USAGE; av = argv + 1; ac = argc - 1; #ifdef CONFIG_CRC32_VERIFY if (strcmp(*av, "-v") == 0) { flags |= HASH_FLAG_VERIFY | HASH_FLAG_ENV; av++; ac--; } #endif return hash_command("crc32", flags, cmdtp, flag, ac, av); } #endif #ifdef CONFIG_CMD_RANDOM static int do_random(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { unsigned long addr, len; unsigned long seed; // NOT INITIALIZED ON PURPOSE unsigned int *buf, *start; unsigned char *buf8; unsigned int i; if (argc < 3 || argc > 4) return CMD_RET_USAGE; len = simple_strtoul(argv[2], NULL, 16); addr = simple_strtoul(argv[1], NULL, 16); if (argc == 4) { seed = simple_strtoul(argv[3], NULL, 16); if (seed == 0) { printf("The seed cannot be 0. Using 0xDEADBEEF.\n"); seed = 0xDEADBEEF; } } else { seed = get_timer(0) ^ rand(); } srand(seed); start = map_sysmem(addr, len); buf = start; for (i = 0; i < (len / 4); i++) *buf++ = rand(); buf8 = (unsigned char *)buf; for (i = 0; i < (len % 4); i++) *buf8++ = rand() & 0xFF; unmap_sysmem(start); printf("%lu bytes filled with random data\n", len); return CMD_RET_SUCCESS; } #endif /**************************************************/ U_BOOT_CMD( md, 3, 1, do_mem_md, "memory display", "[.b, .w, .l" HELP_Q "] address [# of objects]" ); U_BOOT_CMD( mm, 2, 1, do_mem_mm, "memory modify (auto-incrementing address)", "[.b, .w, .l" HELP_Q "] address" ); U_BOOT_CMD( nm, 2, 1, do_mem_nm, "memory modify (constant address)", "[.b, .w, .l" HELP_Q "] address" ); U_BOOT_CMD( mw, 4, 1, do_mem_mw, "memory write (fill)", "[.b, .w, .l" HELP_Q "] address value [count]" ); U_BOOT_CMD( cp, 4, 1, do_mem_cp, "memory copy", "[.b, .w, .l" HELP_Q "] source target count" ); U_BOOT_CMD( cmp, 4, 1, do_mem_cmp, "memory compare", "[.b, .w, .l" HELP_Q "] addr1 addr2 count" ); #ifdef CONFIG_CMD_CRC32 #ifndef CONFIG_CRC32_VERIFY U_BOOT_CMD( crc32, 4, 1, do_mem_crc, "checksum calculation", "address count [addr]\n - compute CRC32 checksum [save at addr]" ); #else /* CONFIG_CRC32_VERIFY */ U_BOOT_CMD( crc32, 5, 1, do_mem_crc, "checksum calculation", "address count [addr]\n - compute CRC32 checksum [save at addr]\n" "-v address count crc\n - verify crc of memory area" ); #endif /* CONFIG_CRC32_VERIFY */ #endif #ifdef CONFIG_CMD_MEMINFO static int do_mem_info(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { puts("DRAM: "); print_size(gd->ram_size, "\n"); return 0; } #endif U_BOOT_CMD( base, 2, 1, do_mem_base, "print or set address offset", "\n - print address offset for memory commands\n" "base off\n - set address offset for memory commands to 'off'" ); U_BOOT_CMD( loop, 3, 1, do_mem_loop, "infinite loop on address range", "[.b, .w, .l" HELP_Q "] address number_of_objects" ); #ifdef CONFIG_LOOPW U_BOOT_CMD( loopw, 4, 1, do_mem_loopw, "infinite write loop on address range", "[.b, .w, .l" HELP_Q "] address number_of_objects data_to_write" ); #endif /* CONFIG_LOOPW */ #ifdef CONFIG_CMD_MEMTEST U_BOOT_CMD( mtest, 5, 1, do_mem_mtest, "simple RAM read/write test", "[start [end [pattern [iterations]]]]" ); #endif /* CONFIG_CMD_MEMTEST */ #ifdef CONFIG_CMD_MX_CYCLIC U_BOOT_CMD( mdc, 4, 1, do_mem_mdc, "memory display cyclic", "[.b, .w, .l" HELP_Q "] address count delay(ms)" ); U_BOOT_CMD( mwc, 4, 1, do_mem_mwc, "memory write cyclic", "[.b, .w, .l" HELP_Q "] address value delay(ms)" ); #endif /* CONFIG_CMD_MX_CYCLIC */ #ifdef CONFIG_CMD_MEMINFO U_BOOT_CMD( meminfo, 3, 1, do_mem_info, "display memory information", "" ); #endif #ifdef CONFIG_CMD_RANDOM U_BOOT_CMD( random, 4, 0, do_random, "fill memory with random pattern", " []\n" " - Fill 'len' bytes of memory starting at 'addr' with random data\n" ); #endif