/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include "networkd-can.h" #include "networkd-link.h" #include "networkd-network.h" #include "networkd-setlink.h" #include "parse-util.h" #include "string-util.h" #define CAN_TERMINATION_DEFAULT_OHM_VALUE 120 int can_set_netlink_message(Link *link, sd_netlink_message *m) { int r; assert(link); assert(link->network); assert(m); r = sd_netlink_message_set_flags(m, NLM_F_REQUEST | NLM_F_ACK); if (r < 0) return r; r = sd_netlink_message_open_container(m, IFLA_LINKINFO); if (r < 0) return r; r = sd_netlink_message_open_container_union(m, IFLA_INFO_DATA, link->kind); if (r < 0) return r; if (link->network->can_bitrate > 0) { struct can_bittiming bt = { .bitrate = link->network->can_bitrate, .sample_point = link->network->can_sample_point, .sjw = link->network->can_sync_jump_width, }; log_link_debug(link, "Setting bitrate = %u bit/s", bt.bitrate); if (link->network->can_sample_point > 0) log_link_debug(link, "Setting sample point = %u.%u%%", bt.sample_point / 10, bt.sample_point % 10); else log_link_debug(link, "Using default sample point"); r = sd_netlink_message_append_data(m, IFLA_CAN_BITTIMING, &bt, sizeof(bt)); if (r < 0) return r; } else if (link->network->can_time_quanta_ns > 0) { struct can_bittiming bt = { .tq = link->network->can_time_quanta_ns, .prop_seg = link->network->can_propagation_segment, .phase_seg1 = link->network->can_phase_buffer_segment_1, .phase_seg2 = link->network->can_phase_buffer_segment_2, .sjw = link->network->can_sync_jump_width, }; log_link_debug(link, "Setting time quanta = %"PRIu32" nsec", bt.tq); r = sd_netlink_message_append_data(m, IFLA_CAN_BITTIMING, &bt, sizeof(bt)); if (r < 0) return r; } if (link->network->can_data_bitrate > 0) { struct can_bittiming bt = { .bitrate = link->network->can_data_bitrate, .sample_point = link->network->can_data_sample_point, .sjw = link->network->can_data_sync_jump_width, }; log_link_debug(link, "Setting data bitrate = %u bit/s", bt.bitrate); if (link->network->can_data_sample_point > 0) log_link_debug(link, "Setting data sample point = %u.%u%%", bt.sample_point / 10, bt.sample_point % 10); else log_link_debug(link, "Using default data sample point"); r = sd_netlink_message_append_data(m, IFLA_CAN_DATA_BITTIMING, &bt, sizeof(bt)); if (r < 0) return r; } else if (link->network->can_data_time_quanta_ns > 0) { struct can_bittiming bt = { .tq = link->network->can_data_time_quanta_ns, .prop_seg = link->network->can_data_propagation_segment, .phase_seg1 = link->network->can_data_phase_buffer_segment_1, .phase_seg2 = link->network->can_data_phase_buffer_segment_2, .sjw = link->network->can_data_sync_jump_width, }; log_link_debug(link, "Setting data time quanta = %"PRIu32" nsec", bt.tq); r = sd_netlink_message_append_data(m, IFLA_CAN_DATA_BITTIMING, &bt, sizeof(bt)); if (r < 0) return r; } if (link->network->can_restart_us > 0) { uint64_t restart_ms; if (link->network->can_restart_us == USEC_INFINITY) restart_ms = 0; else restart_ms = DIV_ROUND_UP(link->network->can_restart_us, USEC_PER_MSEC); log_link_debug(link, "Setting restart = %s", FORMAT_TIMESPAN(restart_ms * 1000, MSEC_PER_SEC)); r = sd_netlink_message_append_u32(m, IFLA_CAN_RESTART_MS, restart_ms); if (r < 0) return r; } if (link->network->can_control_mode_mask != 0) { struct can_ctrlmode cm = { .mask = link->network->can_control_mode_mask, .flags = link->network->can_control_mode_flags, }; r = sd_netlink_message_append_data(m, IFLA_CAN_CTRLMODE, &cm, sizeof(cm)); if (r < 0) return r; } if (link->network->can_termination_set) { log_link_debug(link, "Setting can-termination to '%u'.", link->network->can_termination); r = sd_netlink_message_append_u16(m, IFLA_CAN_TERMINATION, link->network->can_termination); if (r < 0) return r; } r = sd_netlink_message_close_container(m); if (r < 0) return r; r = sd_netlink_message_close_container(m); if (r < 0) return r; return 0; } int config_parse_can_bitrate( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint32_t *br = ASSERT_PTR(data); uint64_t sz; int r; assert(filename); assert(lvalue); assert(rvalue); r = parse_size(rvalue, 1000, &sz); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse can bitrate '%s', ignoring: %m", rvalue); return 0; } /* Linux uses __u32 for bitrates, so the value should not exceed that. */ if (sz <= 0 || sz > UINT32_MAX) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Bit rate out of permitted range 1...4294967295"); return 0; } *br = (uint32_t) sz; return 0; } int config_parse_can_time_quanta( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { nsec_t val, *tq = ASSERT_PTR(data); int r; assert(filename); assert(lvalue); assert(rvalue); r = parse_nsec(rvalue, &val); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse can time quanta '%s', ignoring: %m", rvalue); return 0; } /* Linux uses __u32 for bitrates, so the value should not exceed that. */ if (val <= 0 || val > UINT32_MAX) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Time quanta out of permitted range 1...4294967295"); return 0; } *tq = val; return 0; } int config_parse_can_restart_usec( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { usec_t usec, *restart_usec = ASSERT_PTR(data); int r; assert(filename); assert(lvalue); assert(rvalue); r = parse_sec(rvalue, &usec); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse CAN restart sec '%s', ignoring: %m", rvalue); return 0; } if (usec != USEC_INFINITY && DIV_ROUND_UP(usec, USEC_PER_MSEC) > UINT32_MAX) { log_syntax(unit, LOG_WARNING, filename, line, 0, "CAN RestartSec= must be in the range 0...%"PRIu32"ms, ignoring: %s", UINT32_MAX, rvalue); return 0; } *restart_usec = usec; return 0; } int config_parse_can_control_mode( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { Network *network = ASSERT_PTR(userdata); uint32_t mask = ltype; int r; assert(filename); assert(lvalue); assert(rvalue); assert(mask != 0); if (isempty(rvalue)) { network->can_control_mode_mask &= ~mask; network->can_control_mode_flags &= ~mask; return 0; } r = parse_boolean(rvalue); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse CAN control mode '%s', ignoring: %s", lvalue, rvalue); return 0; } network->can_control_mode_mask |= mask; SET_FLAG(network->can_control_mode_flags, mask, r); return 0; } int config_parse_can_termination( const char* unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { Network *network = userdata; int r; assert(filename); assert(lvalue); assert(rvalue); assert(data); if (isempty(rvalue)) { network->can_termination_set = false; return 0; } /* Note that 0 termination ohm value means no termination resistor, and there is no conflict * between parse_boolean() and safe_atou16() when Termination=0. However, Termination=1 must be * treated as 1 ohm, instead of true (and then the default ohm value). So, we need to parse the * string with safe_atou16() at first. */ r = safe_atou16(rvalue, &network->can_termination); if (r < 0) { r = parse_boolean(rvalue); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse CAN termination value, ignoring: %s", rvalue); return 0; } network->can_termination = r ? CAN_TERMINATION_DEFAULT_OHM_VALUE : 0; } network->can_termination_set = true; return 0; }