/* SPDX-License-Identifier: LGPL-2.1-or-later */ #pragma once #if !SD_BOOT # include #endif #include #include #include #include #include #define _align_(x) __attribute__((__aligned__(x))) #define _alignas_(x) __attribute__((__aligned__(alignof(x)))) #define _alignptr_ __attribute__((__aligned__(sizeof(void *)))) #define _cleanup_(x) __attribute__((__cleanup__(x))) #define _const_ __attribute__((__const__)) #define _deprecated_ __attribute__((__deprecated__)) #define _destructor_ __attribute__((__destructor__)) #define _hidden_ __attribute__((__visibility__("hidden"))) #define _likely_(x) (__builtin_expect(!!(x), 1)) #define _malloc_ __attribute__((__malloc__)) #define _noinline_ __attribute__((noinline)) #define _noreturn_ _Noreturn #define _packed_ __attribute__((__packed__)) #define _printf_(a, b) __attribute__((__format__(printf, a, b))) #define _public_ __attribute__((__visibility__("default"))) #define _pure_ __attribute__((__pure__)) #define _retain_ __attribute__((__retain__)) #define _returns_nonnull_ __attribute__((__returns_nonnull__)) #define _section_(x) __attribute__((__section__(x))) #define _sentinel_ __attribute__((__sentinel__)) #define _unlikely_(x) (__builtin_expect(!!(x), 0)) #define _unused_ __attribute__((__unused__)) #define _used_ __attribute__((__used__)) #define _warn_unused_result_ __attribute__((__warn_unused_result__)) #define _weak_ __attribute__((__weak__)) #define _weakref_(x) __attribute__((__weakref__(#x))) #ifdef __clang__ # define _alloc_(...) #else # define _alloc_(...) __attribute__((__alloc_size__(__VA_ARGS__))) #endif #if __GNUC__ >= 7 || (defined(__clang__) && __clang_major__ >= 10) # define _fallthrough_ __attribute__((__fallthrough__)) #else # define _fallthrough_ #endif #define XSTRINGIFY(x) #x #define STRINGIFY(x) XSTRINGIFY(x) #ifndef __COVERITY__ # define VOID_0 ((void)0) #else # define VOID_0 ((void*)0) #endif #define ELEMENTSOF(x) \ (__builtin_choose_expr( \ !__builtin_types_compatible_p(typeof(x), typeof(&*(x))), \ sizeof(x)/sizeof((x)[0]), \ VOID_0)) #define XCONCATENATE(x, y) x ## y #define CONCATENATE(x, y) XCONCATENATE(x, y) #if SD_BOOT _noreturn_ void efi_assert(const char *expr, const char *file, unsigned line, const char *function); #ifdef NDEBUG #define assert(expr) #define assert_not_reached() __builtin_unreachable() #else #define assert(expr) ({ _likely_(expr) ? VOID_0 : efi_assert(#expr, __FILE__, __LINE__, __func__); }) #define assert_not_reached() efi_assert("Code should not be reached", __FILE__, __LINE__, __func__) #endif #define static_assert _Static_assert #define assert_se(expr) ({ _likely_(expr) ? VOID_0 : efi_assert(#expr, __FILE__, __LINE__, __func__); }) #endif /* This passes the argument through after (if asserts are enabled) checking that it is not null. */ #define ASSERT_PTR(expr) _ASSERT_PTR(expr, UNIQ_T(_expr_, UNIQ), assert) #define ASSERT_SE_PTR(expr) _ASSERT_PTR(expr, UNIQ_T(_expr_, UNIQ), assert_se) #define _ASSERT_PTR(expr, var, check) \ ({ \ typeof(expr) var = (expr); \ check(var); \ var; \ }) #define ASSERT_NONNEG(expr) \ ({ \ typeof(expr) _expr_ = (expr), _zero = 0; \ assert(_expr_ >= _zero); \ _expr_; \ }) #define ASSERT_SE_NONNEG(expr) \ ({ \ typeof(expr) _expr_ = (expr), _zero = 0; \ assert_se(_expr_ >= _zero); \ _expr_; \ }) #define assert_cc(expr) static_assert(expr, #expr) #define UNIQ_T(x, uniq) CONCATENATE(__unique_prefix_, CONCATENATE(x, uniq)) #define UNIQ __COUNTER__ /* Note that this works differently from pthread_once(): this macro does * not synchronize code execution, i.e. code that is run conditionalized * on this macro will run concurrently to all other code conditionalized * the same way, there's no ordering or completion enforced. */ #define ONCE __ONCE(UNIQ_T(_once_, UNIQ)) #define __ONCE(o) \ ({ \ static bool (o) = false; \ __atomic_exchange_n(&(o), true, __ATOMIC_SEQ_CST); \ }) #undef MAX #define MAX(a, b) __MAX(UNIQ, (a), UNIQ, (b)) #define __MAX(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ }) #define IS_UNSIGNED_INTEGER_TYPE(type) \ (__builtin_types_compatible_p(typeof(type), unsigned char) || \ __builtin_types_compatible_p(typeof(type), unsigned short) || \ __builtin_types_compatible_p(typeof(type), unsigned) || \ __builtin_types_compatible_p(typeof(type), unsigned long) || \ __builtin_types_compatible_p(typeof(type), unsigned long long)) #define IS_SIGNED_INTEGER_TYPE(type) \ (__builtin_types_compatible_p(typeof(type), signed char) || \ __builtin_types_compatible_p(typeof(type), signed short) || \ __builtin_types_compatible_p(typeof(type), signed) || \ __builtin_types_compatible_p(typeof(type), signed long) || \ __builtin_types_compatible_p(typeof(type), signed long long)) /* Evaluates to (void) if _A or _B are not constant or of different types (being integers of different sizes * is also OK as long as the signedness matches) */ #define CONST_MAX(_A, _B) \ (__builtin_choose_expr( \ __builtin_constant_p(_A) && \ __builtin_constant_p(_B) && \ (__builtin_types_compatible_p(typeof(_A), typeof(_B)) || \ (IS_UNSIGNED_INTEGER_TYPE(_A) && IS_UNSIGNED_INTEGER_TYPE(_B)) || \ (IS_SIGNED_INTEGER_TYPE(_A) && IS_SIGNED_INTEGER_TYPE(_B))), \ ((_A) > (_B)) ? (_A) : (_B), \ VOID_0)) /* takes two types and returns the size of the larger one */ #define MAXSIZE(A, B) (sizeof(union _packed_ { typeof(A) a; typeof(B) b; })) #define MAX3(x, y, z) \ ({ \ const typeof(x) _c = MAX(x, y); \ MAX(_c, z); \ }) #define MAX4(x, y, z, a) \ ({ \ const typeof(x) _d = MAX3(x, y, z); \ MAX(_d, a); \ }) #undef MIN #define MIN(a, b) __MIN(UNIQ, (a), UNIQ, (b)) #define __MIN(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) < UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ }) /* evaluates to (void) if _A or _B are not constant or of different types */ #define CONST_MIN(_A, _B) \ (__builtin_choose_expr( \ __builtin_constant_p(_A) && \ __builtin_constant_p(_B) && \ __builtin_types_compatible_p(typeof(_A), typeof(_B)), \ ((_A) < (_B)) ? (_A) : (_B), \ VOID_0)) #define MIN3(x, y, z) \ ({ \ const typeof(x) _c = MIN(x, y); \ MIN(_c, z); \ }) /* Returns true if the passed integer is a positive power of two */ #define CONST_ISPOWEROF2(x) \ ((x) > 0 && ((x) & ((x) - 1)) == 0) #define ISPOWEROF2(x) \ __builtin_choose_expr( \ __builtin_constant_p(x), \ CONST_ISPOWEROF2(x), \ ({ \ const typeof(x) _x = (x); \ CONST_ISPOWEROF2(_x); \ })) #define LESS_BY(a, b) __LESS_BY(UNIQ, (a), UNIQ, (b)) #define __LESS_BY(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) - UNIQ_T(B, bq) : 0; \ }) #define CMP(a, b) __CMP(UNIQ, (a), UNIQ, (b)) #define __CMP(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) < UNIQ_T(B, bq) ? -1 : \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? 1 : 0; \ }) #undef CLAMP #define CLAMP(x, low, high) __CLAMP(UNIQ, (x), UNIQ, (low), UNIQ, (high)) #define __CLAMP(xq, x, lowq, low, highq, high) \ ({ \ const typeof(x) UNIQ_T(X, xq) = (x); \ const typeof(low) UNIQ_T(LOW, lowq) = (low); \ const typeof(high) UNIQ_T(HIGH, highq) = (high); \ UNIQ_T(X, xq) > UNIQ_T(HIGH, highq) ? \ UNIQ_T(HIGH, highq) : \ UNIQ_T(X, xq) < UNIQ_T(LOW, lowq) ? \ UNIQ_T(LOW, lowq) : \ UNIQ_T(X, xq); \ }) /* [(x + y - 1) / y] suffers from an integer overflow, even though the * computation should be possible in the given type. Therefore, we use * [x / y + !!(x % y)]. Note that on "Real CPUs" a division returns both the * quotient and the remainder, so both should be equally fast. */ #define DIV_ROUND_UP(x, y) __DIV_ROUND_UP(UNIQ, (x), UNIQ, (y)) #define __DIV_ROUND_UP(xq, x, yq, y) \ ({ \ const typeof(x) UNIQ_T(X, xq) = (x); \ const typeof(y) UNIQ_T(Y, yq) = (y); \ (UNIQ_T(X, xq) / UNIQ_T(Y, yq) + !!(UNIQ_T(X, xq) % UNIQ_T(Y, yq))); \ }) #define CASE_F_1(X) case X: #define CASE_F_2(X, ...) case X: CASE_F_1( __VA_ARGS__) #define CASE_F_3(X, ...) case X: CASE_F_2( __VA_ARGS__) #define CASE_F_4(X, ...) case X: CASE_F_3( __VA_ARGS__) #define CASE_F_5(X, ...) case X: CASE_F_4( __VA_ARGS__) #define CASE_F_6(X, ...) case X: CASE_F_5( __VA_ARGS__) #define CASE_F_7(X, ...) case X: CASE_F_6( __VA_ARGS__) #define CASE_F_8(X, ...) case X: CASE_F_7( __VA_ARGS__) #define CASE_F_9(X, ...) case X: CASE_F_8( __VA_ARGS__) #define CASE_F_10(X, ...) case X: CASE_F_9( __VA_ARGS__) #define CASE_F_11(X, ...) case X: CASE_F_10( __VA_ARGS__) #define CASE_F_12(X, ...) case X: CASE_F_11( __VA_ARGS__) #define CASE_F_13(X, ...) case X: CASE_F_12( __VA_ARGS__) #define CASE_F_14(X, ...) case X: CASE_F_13( __VA_ARGS__) #define CASE_F_15(X, ...) case X: CASE_F_14( __VA_ARGS__) #define CASE_F_16(X, ...) case X: CASE_F_15( __VA_ARGS__) #define CASE_F_17(X, ...) case X: CASE_F_16( __VA_ARGS__) #define CASE_F_18(X, ...) case X: CASE_F_17( __VA_ARGS__) #define CASE_F_19(X, ...) case X: CASE_F_18( __VA_ARGS__) #define CASE_F_20(X, ...) case X: CASE_F_19( __VA_ARGS__) #define GET_CASE_F(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,NAME,...) NAME #define FOR_EACH_MAKE_CASE(...) \ GET_CASE_F(__VA_ARGS__,CASE_F_20,CASE_F_19,CASE_F_18,CASE_F_17,CASE_F_16,CASE_F_15,CASE_F_14,CASE_F_13,CASE_F_12,CASE_F_11, \ CASE_F_10,CASE_F_9,CASE_F_8,CASE_F_7,CASE_F_6,CASE_F_5,CASE_F_4,CASE_F_3,CASE_F_2,CASE_F_1) \ (__VA_ARGS__) #define IN_SET(x, first, ...) \ ({ \ bool _found = false; \ /* If the build breaks in the line below, you need to extend the case macros. We use typeof(+x) \ * here to widen the type of x if it is a bit-field as this would otherwise be illegal. */ \ static const typeof(+x) __assert_in_set[] _unused_ = { first, __VA_ARGS__ }; \ assert_cc(ELEMENTSOF(__assert_in_set) <= 20); \ switch (x) { \ FOR_EACH_MAKE_CASE(first, __VA_ARGS__) \ _found = true; \ break; \ default: \ break; \ } \ _found; \ }) /* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time * resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */ #define TAKE_GENERIC(var, type, nullvalue) \ ({ \ type *_pvar_ = &(var); \ type _var_ = *_pvar_; \ type _nullvalue_ = nullvalue; \ *_pvar_ = _nullvalue_; \ _var_; \ }) #define TAKE_PTR_TYPE(ptr, type) TAKE_GENERIC(ptr, type, NULL) #define TAKE_PTR(ptr) TAKE_PTR_TYPE(ptr, typeof(ptr)) #define TAKE_STRUCT_TYPE(s, type) TAKE_GENERIC(s, type, {}) #define TAKE_STRUCT(s) TAKE_STRUCT_TYPE(s, typeof(s)) /* * STRLEN - return the length of a string literal, minus the trailing NUL byte. * Contrary to strlen(), this is a constant expression. * @x: a string literal. */ #define STRLEN(x) (sizeof(""x"") - sizeof(typeof(x[0]))) #define mfree(memory) \ ({ \ free(memory); \ (typeof(memory)) NULL; \ }) static inline size_t ALIGN_TO(size_t l, size_t ali) { assert(ISPOWEROF2(ali)); if (l > SIZE_MAX - (ali - 1)) return SIZE_MAX; /* indicate overflow */ return ((l + ali - 1) & ~(ali - 1)); } #define ALIGN2(l) ALIGN_TO(l, 2) #define ALIGN4(l) ALIGN_TO(l, 4) #define ALIGN8(l) ALIGN_TO(l, 8) #define ALIGN2_PTR(p) ((void*) ALIGN2((uintptr_t) p)) #define ALIGN4_PTR(p) ((void*) ALIGN4((uintptr_t) p)) #define ALIGN8_PTR(p) ((void*) ALIGN8((uintptr_t) p)) #define ALIGN(l) ALIGN_TO(l, sizeof(void*)) #define ALIGN_PTR(p) ((void*) ALIGN((uintptr_t) (p))) /* Checks if the specified pointer is aligned as appropriate for the specific type */ #define IS_ALIGNED16(p) (((uintptr_t) p) % alignof(uint16_t) == 0) #define IS_ALIGNED32(p) (((uintptr_t) p) % alignof(uint32_t) == 0) #define IS_ALIGNED64(p) (((uintptr_t) p) % alignof(uint64_t) == 0) /* Same as ALIGN_TO but callable in constant contexts. */ #define CONST_ALIGN_TO(l, ali) \ __builtin_choose_expr( \ __builtin_constant_p(l) && \ __builtin_constant_p(ali) && \ CONST_ISPOWEROF2(ali) && \ (l <= SIZE_MAX - (ali - 1)), /* overflow? */ \ ((l) + (ali) - 1) & ~((ali) - 1), \ VOID_0) /* Similar to ((t *) (void *) (p)) to cast a pointer. The macro asserts that the pointer has a suitable * alignment for type "t". This exists for places where otherwise "-Wcast-align=strict" would issue a * warning or if you want to assert that the cast gives a pointer of suitable alignment. */ #define CAST_ALIGN_PTR(t, p) \ ({ \ const void *_p = (p); \ assert(((uintptr_t) _p) % alignof(t) == 0); \ (t *) _p; \ }) #define UPDATE_FLAG(orig, flag, b) \ ((b) ? ((orig) | (flag)) : ((orig) & ~(flag))) #define SET_FLAG(v, flag, b) \ (v) = UPDATE_FLAG(v, flag, b) #define FLAGS_SET(v, flags) \ ((~(v) & (flags)) == 0) /* Declare a flexible array usable in a union. * This is essentially a work-around for a pointless constraint in C99 * and might go away in some future version of the standard. * * See https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=3080ea5553cc909b000d1f1d964a9041962f2c5b */ #define DECLARE_FLEX_ARRAY(type, name) \ struct { \ dummy_t __empty__ ## name; \ type name[]; \ }