/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include "alloc-util.h" #include "chase.h" #include "dirent-util.h" #include "errno-util.h" #include "fd-util.h" #include "fileio.h" #include "filesystems.h" #include "fs-util.h" #include "hash-funcs.h" #include "macro.h" #include "missing_fs.h" #include "missing_magic.h" #include "missing_syscall.h" #include "nulstr-util.h" #include "parse-util.h" #include "stat-util.h" #include "string-util.h" int is_symlink(const char *path) { struct stat info; assert(path); if (lstat(path, &info) < 0) return -errno; return !!S_ISLNK(info.st_mode); } int is_dir_full(int atfd, const char* path, bool follow) { struct stat st; int r; assert(atfd >= 0 || atfd == AT_FDCWD); assert(atfd >= 0 || path); if (path) r = fstatat(atfd, path, &st, follow ? 0 : AT_SYMLINK_NOFOLLOW); else r = fstat(atfd, &st); if (r < 0) return -errno; return !!S_ISDIR(st.st_mode); } int is_device_node(const char *path) { struct stat info; assert(path); if (lstat(path, &info) < 0) return -errno; return !!(S_ISBLK(info.st_mode) || S_ISCHR(info.st_mode)); } int dir_is_empty_at(int dir_fd, const char *path, bool ignore_hidden_or_backup) { _cleanup_close_ int fd = -EBADF; struct dirent *buf; size_t m; if (path) { assert(dir_fd >= 0 || dir_fd == AT_FDCWD); fd = openat(dir_fd, path, O_RDONLY|O_DIRECTORY|O_CLOEXEC); if (fd < 0) return -errno; } else if (dir_fd == AT_FDCWD) { fd = open(".", O_RDONLY|O_DIRECTORY|O_CLOEXEC); if (fd < 0) return -errno; } else { /* Note that DUPing is not enough, as the internal pointer would still be shared and moved * getedents64(). */ assert(dir_fd >= 0); fd = fd_reopen(dir_fd, O_RDONLY|O_DIRECTORY|O_CLOEXEC); if (fd < 0) return fd; } /* Allocate space for at least 3 full dirents, since every dir has at least two entries ("." + * ".."), and only once we have seen if there's a third we know whether the dir is empty or not. If * 'ignore_hidden_or_backup' is true we'll allocate a bit more, since we might skip over a bunch of * entries that we end up ignoring. */ m = (ignore_hidden_or_backup ? 16 : 3) * DIRENT_SIZE_MAX; buf = alloca(m); for (;;) { struct dirent *de; ssize_t n; n = getdents64(fd, buf, m); if (n < 0) return -errno; if (n == 0) break; assert((size_t) n <= m); msan_unpoison(buf, n); FOREACH_DIRENT_IN_BUFFER(de, buf, n) if (!(ignore_hidden_or_backup ? hidden_or_backup_file(de->d_name) : dot_or_dot_dot(de->d_name))) return 0; } return 1; } bool null_or_empty(struct stat *st) { assert(st); if (S_ISREG(st->st_mode) && st->st_size <= 0) return true; /* We don't want to hardcode the major/minor of /dev/null, hence we do a simpler "is this a character * device node?" check. */ if (S_ISCHR(st->st_mode)) return true; return false; } int null_or_empty_path_with_root(const char *fn, const char *root) { struct stat st; int r; assert(fn); /* A symlink to /dev/null or an empty file? * When looking under root_dir, we can't expect /dev/ to be mounted, * so let's see if the path is a (possibly dangling) symlink to /dev/null. */ if (path_equal_ptr(path_startswith(fn, root ?: "/"), "dev/null")) return true; r = chase_and_stat(fn, root, CHASE_PREFIX_ROOT, NULL, &st); if (r < 0) return r; return null_or_empty(&st); } static int fd_is_read_only_fs(int fd) { struct statvfs st; assert(fd >= 0); if (fstatvfs(fd, &st) < 0) return -errno; if (st.f_flag & ST_RDONLY) return true; /* On NFS, fstatvfs() might not reflect whether we can actually write to the remote share. Let's try * again with access(W_OK) which is more reliable, at least sometimes. */ if (access_fd(fd, W_OK) == -EROFS) return true; return false; } int path_is_read_only_fs(const char *path) { _cleanup_close_ int fd = -EBADF; assert(path); fd = open(path, O_CLOEXEC | O_PATH); if (fd < 0) return -errno; return fd_is_read_only_fs(fd); } int files_same(const char *filea, const char *fileb, int flags) { struct stat a, b; assert(filea); assert(fileb); if (fstatat(AT_FDCWD, filea, &a, flags) < 0) return log_debug_errno(errno, "Cannot stat %s: %m", filea); if (fstatat(AT_FDCWD, fileb, &b, flags) < 0) return log_debug_errno(errno, "Cannot stat %s: %m", fileb); return stat_inode_same(&a, &b); } bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) { assert(s); assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type)); return F_TYPE_EQUAL(s->f_type, magic_value); } int fd_is_fs_type(int fd, statfs_f_type_t magic_value) { struct statfs s; if (fstatfs(fd, &s) < 0) return -errno; return is_fs_type(&s, magic_value); } int path_is_fs_type(const char *path, statfs_f_type_t magic_value) { struct statfs s; if (statfs(path, &s) < 0) return -errno; return is_fs_type(&s, magic_value); } bool is_temporary_fs(const struct statfs *s) { return fs_in_group(s, FILESYSTEM_SET_TEMPORARY); } bool is_network_fs(const struct statfs *s) { return fs_in_group(s, FILESYSTEM_SET_NETWORK); } int fd_is_temporary_fs(int fd) { struct statfs s; if (fstatfs(fd, &s) < 0) return -errno; return is_temporary_fs(&s); } int fd_is_network_fs(int fd) { struct statfs s; if (fstatfs(fd, &s) < 0) return -errno; return is_network_fs(&s); } int path_is_temporary_fs(const char *path) { struct statfs s; if (statfs(path, &s) < 0) return -errno; return is_temporary_fs(&s); } int path_is_network_fs(const char *path) { struct statfs s; if (statfs(path, &s) < 0) return -errno; return is_network_fs(&s); } int stat_verify_regular(const struct stat *st) { assert(st); /* Checks whether the specified stat() structure refers to a regular file. If not returns an appropriate error * code. */ if (S_ISDIR(st->st_mode)) return -EISDIR; if (S_ISLNK(st->st_mode)) return -ELOOP; if (!S_ISREG(st->st_mode)) return -EBADFD; return 0; } int fd_verify_regular(int fd) { struct stat st; assert(fd >= 0); if (fstat(fd, &st) < 0) return -errno; return stat_verify_regular(&st); } int verify_regular_at(int dir_fd, const char *path, bool follow) { struct stat st; assert(dir_fd >= 0 || dir_fd == AT_FDCWD); assert(path); if (fstatat(dir_fd, path, &st, (isempty(path) ? AT_EMPTY_PATH : 0) | (follow ? 0 : AT_SYMLINK_NOFOLLOW)) < 0) return -errno; return stat_verify_regular(&st); } int stat_verify_directory(const struct stat *st) { assert(st); if (S_ISLNK(st->st_mode)) return -ELOOP; if (!S_ISDIR(st->st_mode)) return -ENOTDIR; return 0; } int fd_verify_directory(int fd) { struct stat st; assert(fd >= 0); if (fstat(fd, &st) < 0) return -errno; return stat_verify_directory(&st); } int proc_mounted(void) { int r; /* A quick check of procfs is properly mounted */ r = path_is_fs_type("/proc/", PROC_SUPER_MAGIC); if (r == -ENOENT) /* not mounted at all */ return false; return r; } bool stat_inode_same(const struct stat *a, const struct stat *b) { /* Returns if the specified stat structure references the same (though possibly modified) inode. Does * a thorough check, comparing inode nr, backing device and if the inode is still of the same type. */ return a && b && (a->st_mode & S_IFMT) != 0 && /* We use the check for .st_mode if the structure was ever initialized */ ((a->st_mode ^ b->st_mode) & S_IFMT) == 0 && /* same inode type */ a->st_dev == b->st_dev && a->st_ino == b->st_ino; } bool stat_inode_unmodified(const struct stat *a, const struct stat *b) { /* Returns if the specified stat structures reference the same, unmodified inode. This check tries to * be reasonably careful when detecting changes: we check both inode and mtime, to cater for file * systems where mtimes are fixed to 0 (think: ostree/nixos type installations). We also check file * size, backing device, inode type and if this refers to a device not the major/minor. * * Note that we don't care if file attributes such as ownership or access mode change, this here is * about contents of the file. The purpose here is to detect file contents changes, and nothing * else. */ return stat_inode_same(a, b) && a->st_mtim.tv_sec == b->st_mtim.tv_sec && a->st_mtim.tv_nsec == b->st_mtim.tv_nsec && (!S_ISREG(a->st_mode) || a->st_size == b->st_size) && /* if regular file, compare file size */ (!(S_ISCHR(a->st_mode) || S_ISBLK(a->st_mode)) || a->st_rdev == b->st_rdev); /* if device node, also compare major/minor, because we can */ } bool statx_inode_same(const struct statx *a, const struct statx *b) { /* Same as stat_inode_same() but for struct statx */ return a && b && FLAGS_SET(a->stx_mask, STATX_TYPE|STATX_INO) && FLAGS_SET(b->stx_mask, STATX_TYPE|STATX_INO) && (a->stx_mode & S_IFMT) != 0 && ((a->stx_mode ^ b->stx_mode) & S_IFMT) == 0 && a->stx_dev_major == b->stx_dev_major && a->stx_dev_minor == b->stx_dev_minor && a->stx_ino == b->stx_ino; } bool statx_mount_same(const struct new_statx *a, const struct new_statx *b) { if (!a || !b) return false; /* if we have the mount ID, that's all we need */ if (FLAGS_SET(a->stx_mask, STATX_MNT_ID) && FLAGS_SET(b->stx_mask, STATX_MNT_ID)) return a->stx_mnt_id == b->stx_mnt_id; /* Otherwise, major/minor of backing device must match */ return a->stx_dev_major == b->stx_dev_major && a->stx_dev_minor == b->stx_dev_minor; } int statx_fallback(int dfd, const char *path, int flags, unsigned mask, struct statx *sx) { static bool avoid_statx = false; struct stat st; if (!avoid_statx) { if (statx(dfd, path, flags, mask, sx) < 0) { if (!ERRNO_IS_NOT_SUPPORTED(errno) && errno != EPERM) return -errno; /* If statx() is not supported or if we see EPERM (which might indicate seccomp * filtering or so), let's do a fallback. Not that on EACCES we'll not fall back, * since that is likely an indication of fs access issues, which we should * propagate */ } else return 0; avoid_statx = true; } /* Only do fallback if fstatat() supports the flag too, or if it's one of the sync flags, which are * OK to ignore */ if ((flags & ~(AT_EMPTY_PATH|AT_NO_AUTOMOUNT|AT_SYMLINK_NOFOLLOW| AT_STATX_SYNC_AS_STAT|AT_STATX_FORCE_SYNC|AT_STATX_DONT_SYNC)) != 0) return -EOPNOTSUPP; if (fstatat(dfd, path, &st, flags & (AT_EMPTY_PATH|AT_NO_AUTOMOUNT|AT_SYMLINK_NOFOLLOW)) < 0) return -errno; *sx = (struct statx) { .stx_mask = STATX_TYPE|STATX_MODE| STATX_NLINK|STATX_UID|STATX_GID| STATX_ATIME|STATX_MTIME|STATX_CTIME| STATX_INO|STATX_SIZE|STATX_BLOCKS, .stx_blksize = st.st_blksize, .stx_nlink = st.st_nlink, .stx_uid = st.st_uid, .stx_gid = st.st_gid, .stx_mode = st.st_mode, .stx_ino = st.st_ino, .stx_size = st.st_size, .stx_blocks = st.st_blocks, .stx_rdev_major = major(st.st_rdev), .stx_rdev_minor = minor(st.st_rdev), .stx_dev_major = major(st.st_dev), .stx_dev_minor = minor(st.st_dev), .stx_atime.tv_sec = st.st_atim.tv_sec, .stx_atime.tv_nsec = st.st_atim.tv_nsec, .stx_mtime.tv_sec = st.st_mtim.tv_sec, .stx_mtime.tv_nsec = st.st_mtim.tv_nsec, .stx_ctime.tv_sec = st.st_ctim.tv_sec, .stx_ctime.tv_nsec = st.st_ctim.tv_nsec, }; return 0; } int xstatfsat(int dir_fd, const char *path, struct statfs *ret) { _cleanup_close_ int fd = -EBADF; assert(dir_fd >= 0 || dir_fd == AT_FDCWD); assert(path); assert(ret); fd = xopenat(dir_fd, path, O_PATH|O_CLOEXEC|O_NOCTTY, 0); if (fd < 0) return fd; return RET_NERRNO(fstatfs(fd, ret)); } void inode_hash_func(const struct stat *q, struct siphash *state) { siphash24_compress(&q->st_dev, sizeof(q->st_dev), state); siphash24_compress(&q->st_ino, sizeof(q->st_ino), state); } int inode_compare_func(const struct stat *a, const struct stat *b) { int r; r = CMP(a->st_dev, b->st_dev); if (r != 0) return r; return CMP(a->st_ino, b->st_ino); } DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(inode_hash_ops, struct stat, inode_hash_func, inode_compare_func, free); const char* inode_type_to_string(mode_t m) { /* Returns a short string for the inode type. We use the same name as the underlying macros for each * inode type. */ switch (m & S_IFMT) { case S_IFREG: return "reg"; case S_IFDIR: return "dir"; case S_IFCHR: return "chr"; case S_IFBLK: return "blk"; case S_IFIFO: return "fifo"; case S_IFSOCK: return "sock"; } return NULL; }