/* * isohybrid.c: Post process an ISO 9660 image generated with mkisofs or * genisoimage to allow - hybrid booting - as a CD-ROM or as a hard * disk. * * This is based on the original Perl script written by H. Peter Anvin. The * rewrite in C is to avoid dependency on Perl on a system under installation. * * Copyright (C) 2010 P J P * * isohybrid is a free software; you can redistribute it and/or modify it * under the terms of GNU General Public License as published by Free Software * Foundation; either version 2 of the license, or (at your option) any later * version. * * isohybrid is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with isohybrid; if not, see: . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "isohybrid.h" char *prog = NULL; extern int opterr, optind; struct stat isostat; unsigned int padding = 0; uuid_t disk_uuid, part_uuid, iso_uuid; uint8_t mode = 0; enum { VERBOSE = 1 , EFI = 2 , MAC = 4}; /* user options */ uint16_t head = 64; /* 1 <= head <= 256 */ uint8_t sector = 32; /* 1 <= sector <= 63 */ uint8_t entry = 0; /* partition number: 1 <= entry <= 4 */ uint8_t offset = 0; /* partition offset: 0 <= offset <= 64 */ uint16_t type = 0x17; /* partition type: 0 <= type <= 255 */ uint32_t id = 0; /* MBR: 0 <= id <= 0xFFFFFFFF(4294967296) */ uint8_t hd0 = 0; /* 0 <= hd0 <= 2 */ uint8_t partok = 0; /* 0 <= partok <= 1 */ uint16_t ve[16]; uint32_t catoffset = 0; uint32_t c = 0, cc = 0, cs = 0; uint32_t psize = 0, isosize = 0; /* boot catalogue parameters */ uint32_t de_lba = 0; uint16_t de_seg = 0, de_count = 0, de_mbz2 = 0; uint8_t de_boot = 0, de_media = 0, de_sys = 0, de_mbz1 = 0; uint32_t efi_lba = 0, mac_lba = 0; uint16_t efi_count = 0, mac_count = 0; uint8_t efi_boot = 0, efi_media = 0, efi_sys = 0; int apm_parts = 3; uint8_t afp_header[] = { 0x45, 0x52, 0x08, 0x00, 0x00, 0x00, 0x90, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uuid_t efi_system_partition = {0xC1, 0x2A, 0x73, 0x28, 0xF8, 0x1F, 0x11, 0xD2, 0xBA, 0x4B, 0x00, 0xA0, 0xC9, 0x3E, 0xC9, 0x3B}; uuid_t basic_partition = {0xEB,0xD0,0xA0,0xA2,0xB9,0xE5,0x44,0x33,0x87,0xC0,0x68,0xB6,0xB7,0x26,0x99,0xC7}; uuid_t hfs_partition = {0x48, 0x46, 0x53, 0x00, 0x00, 0x00, 0x11, 0xAA, 0xAA, 0x11, 0x00, 0x30, 0x65, 0x43, 0xEC, 0xAC}; uint32_t crc_tab[256] = { 0, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; struct iso_primary_descriptor { uint8_t ignore [80]; uint32_t size; uint8_t ignore2 [44]; uint16_t block_size; }; struct gpt_header { uint64_t signature; uint32_t revision; uint32_t headerSize; uint32_t headerCRC; uint32_t reserved; uint64_t currentLBA; uint64_t backupLBA; uint64_t firstUsableLBA; uint64_t lastUsableLBA; uuid_t diskGUID; uint64_t partitionEntriesLBA; uint32_t numParts; uint32_t sizeOfPartitionEntries; uint32_t partitionEntriesCRC; uint8_t reserved2[420]; }; struct gpt_part_header { uuid_t partTypeGUID; uuid_t partGUID; uint64_t firstLBA; uint64_t lastLBA; uint64_t attributes; uint16_t name[36]; }; #define APM_OFFSET 2048 struct apple_part_header { uint16_t signature; /* expected to be MAC_PARTITION_MAGIC */ uint16_t res1; uint32_t map_count; /* # blocks in partition map */ uint32_t start_block; /* absolute starting block # of partition */ uint32_t block_count; /* number of blocks in partition */ char name[32]; /* partition name */ char type[32]; /* string type description */ uint32_t data_start; /* rel block # of first data block */ uint32_t data_count; /* number of data blocks */ uint32_t status; /* partition status bits */ uint32_t boot_start; uint32_t boot_count; uint32_t boot_load; uint32_t boot_load2; uint32_t boot_entry; uint32_t boot_entry2; uint32_t boot_cksum; char processor[16]; /* Contains 680x0, x=0,2,3,4; or empty */ uint32_t driver_sig; char _padding[372]; }; void usage(void) { printf("Usage: %s [OPTIONS] \n", prog); } void printh(void) { #define FMT "%-18s %s\n" usage(); printf("\n"); printf("Options:\n"); printf(FMT, " -h ", "Number of default geometry heads"); printf(FMT, " -s ", "Number of default geometry sectors"); printf(FMT, " -e --entry", "Specify partition entry number (1-4)"); printf(FMT, " -o --offset", "Specify partition offset (default 0)"); printf(FMT, " -t --type", "Specify partition type (default 0x17)"); printf(FMT, " -i --id", "Specify MBR ID (default random)"); printf(FMT, " -u --uefi", "Build EFI bootable image"); printf(FMT, " -m --mac", "Add AFP table support"); printf("\n"); printf(FMT, " --forcehd0", "Assume we are loaded as disk ID 0"); printf(FMT, " --ctrlhd0", "Assume disk ID 0 if the Ctrl key is pressed"); printf(FMT, " --partok", "Allow booting from within a partition"); printf("\n"); printf(FMT, " -? --help", "Display this help"); printf(FMT, " -v --verbose", "Display verbose output"); printf(FMT, " -V --version", "Display version information"); printf("\n"); printf("Report bugs to \n"); } int check_option(int argc, char *argv[]) { char *err = NULL; int n = 0, ind = 0; const char optstr[] = ":h:s:e:o:t:i:fcp?vV"; struct option lopt[] = \ { { "entry", required_argument, NULL, 'e' }, { "offset", required_argument, NULL, 'o' }, { "type", required_argument, NULL, 't' }, { "id", required_argument, NULL, 'i' }, { "forcehd0", no_argument, NULL, 'f' }, { "ctrlhd0", no_argument, NULL, 'c' }, { "partok", no_argument, NULL, 'p'}, { "uefi", no_argument, NULL, 'u'}, { "mac", no_argument, NULL, 'm'}, { "help", no_argument, NULL, '?' }, { "verbose", no_argument, NULL, 'v' }, { "version", no_argument, NULL, 'V' }, { 0, 0, 0, 0 } }; opterr = mode = 0; while ((n = getopt_long_only(argc, argv, optstr, lopt, &ind)) != -1) { switch (n) { case 'h': head = strtoul(optarg, &err, 0); if (head < 1 || head > 256) errx(1, "invalid head: `%s', 1 <= head <= 256", optarg); break; case 's': sector = strtoul(optarg, &err, 0); if (sector < 1 || sector > 63) errx(1, "invalid sector: `%s', 1 <= sector <= 63", optarg); break; case 'e': entry = strtoul(optarg, &err, 0); if (entry < 1 || entry > 4) errx(1, "invalid entry: `%s', 1 <= entry <= 4", optarg); if (mode & MAC || mode & EFI) errx(1, "setting an entry is unsupported with EFI or Mac"); break; case 'o': offset = strtoul(optarg, &err, 0); if (*err || offset > 64) errx(1, "invalid offset: `%s', 0 <= offset <= 64", optarg); break; case 't': type = strtoul(optarg, &err, 0); if (*err || type > 255) errx(1, "invalid type: `%s', 0 <= type <= 255", optarg); break; case 'i': id = strtoul(optarg, &err, 0); if (*err) errx(1, "invalid id: `%s'", optarg); break; case 'f': hd0 = 1; break; case 'c': hd0 = 2; break; case 'p': partok = 1; break; case 'u': mode |= EFI; if (entry) errx(1, "setting an entry is unsupported with EFI or Mac"); break; case 'm': mode |= MAC; if (entry) errx(1, "setting an entry is unsupported with EFI or Mac"); break; case 'v': mode |= VERBOSE; break; case 'V': printf("%s version %s\n", prog, VERSION); exit(0); case ':': errx(1, "option `-%c' takes an argument", optopt); default: case '?': if (optopt) errx(1, "invalid option `-%c', see --help", optopt); printh(); exit(0); } } return optind; } uint16_t bendian_short(const uint16_t s) { uint16_t r = 1; if (!*(uint8_t *)&r) return s; r = (s & 0x00FF) << 8 | (s & 0xFF00) >> 8; return r; } uint32_t bendian_int(const uint32_t s) { uint32_t r = 1; if (!*(uint8_t *)&r) return s; r = (s & 0x000000FF) << 24 | (s & 0xFF000000) >> 24 | (s & 0x0000FF00) << 8 | (s & 0x00FF0000) >> 8; return r; } uint16_t lendian_short(const uint16_t s) { uint16_t r = 1; if (*(uint8_t *)&r) return s; r = (s & 0x00FF) << 8 | (s & 0xFF00) >> 8; return r; } uint32_t lendian_int(const uint32_t s) { uint32_t r = 1; if (*(uint8_t *)&r) return s; r = (s & 0x000000FF) << 24 | (s & 0xFF000000) >> 24 | (s & 0x0000FF00) << 8 | (s & 0x00FF0000) >> 8; return r; } uint64_t lendian_64(const uint64_t s) { uint64_t r = 1; if (*(uint8_t *)&r) return s; r = (s & 0x00000000000000FFull) << 56 | (s & 0xFF00000000000000ull) >> 56 | (s & 0x000000000000FF00ull) << 40 | (s & 0x00FF000000000000ull) >> 40 | (s & 0x0000000000FF0000ull) << 24 | (s & 0x0000FF0000000000ull) >> 24 | (s & 0x00000000FF000000ull) << 8 | (s & 0x000000FF00000000ull) >> 8; return r; } int check_banner(const uint8_t *buf) { static const char banner[] = "\0CD001\1EL TORITO SPECIFICATION\0\0\0\0" \ "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" \ "\0\0\0\0\0"; if (!buf || memcmp(buf, banner, sizeof(banner) - 1)) return 1; buf += sizeof(banner) - 1; memcpy(&catoffset, buf, sizeof(catoffset)); catoffset = lendian_int(catoffset); return 0; } int check_catalogue(const uint8_t *buf) { int i = 0; for (i = 0, cs = 0; i < 16; i++) { ve[i] = 0; memcpy(&ve[i], buf, sizeof(ve[i])); ve[i] = lendian_short(ve[i]); buf += 2; cs += ve[i]; if (mode & VERBOSE) printf("ve[%d]: %d, cs: %d\n", i, ve[i], cs); } if ((ve[0] != 0x0001) || (ve[15] != 0xAA55) || (cs & 0xFFFF)) return 1; return 0; } int read_catalogue(const uint8_t *buf) { memcpy(&de_boot, buf++, 1); memcpy(&de_media, buf++, 1); memcpy(&de_seg, buf, 2); de_seg = lendian_short(de_seg); buf += 2; memcpy(&de_sys, buf++, 1); memcpy(&de_mbz1, buf++, 1); memcpy(&de_count, buf, 2); de_count = lendian_short(de_count); buf += 2; memcpy(&de_lba, buf, 4); de_lba = lendian_int(de_lba); buf += 4; memcpy(&de_mbz2, buf, 2); de_mbz2 = lendian_short(de_mbz2); buf += 2; if (de_boot != 0x88 || de_media != 0 || (de_seg != 0 && de_seg != 0x7C0) || de_count != 4) return 1; return 0; } int read_efi_section(const uint8_t *buf) { unsigned char header_indicator; unsigned char platform_id; short count; memcpy(&header_indicator, buf++, 1); memcpy(&platform_id, buf++, 1); memcpy(&count, buf, 2); count = lendian_short(count); buf += 2; if (platform_id == 0xef) return 0; return 1; } int read_efi_catalogue(const uint8_t *buf, uint16_t *count, uint32_t *lba) { buf += 6; memcpy(count, buf, 2); *count = lendian_short(*count); buf += 2; memcpy(lba, buf, 4); *lba = lendian_int(*lba); buf += 6; return 0; } void display_catalogue(void) { printf("de_boot: %hhu\n", de_boot); printf("de_media: %hhu\n", de_media); printf("de_seg: %hu\n", de_seg); printf("de_sys: %hhu\n", de_sys); printf("de_mbz1: %hhu\n", de_mbz1); printf("de_count: %hu\n", de_count); printf("de_lba: %u\n", de_lba); printf("de_mbz2: %hu\n", de_mbz2); } int initialise_mbr(uint8_t *mbr) { int i = 0; uint32_t tmp = 0; uint8_t ptype = 0, *rbm = mbr; uint8_t bhead = 0, bsect = 0, bcyle = 0; uint8_t ehead = 0, esect = 0, ecyle = 0; extern unsigned char isohdpfx[][MBRSIZE]; memcpy(mbr, &isohdpfx[hd0 + 3 * partok], MBRSIZE); if (mode & MAC) { memcpy(mbr, afp_header, sizeof(afp_header)); } if (!entry) entry = 1; if (mode & EFI) type = 0; mbr += MBRSIZE; /* offset 432 */ tmp = lendian_int(de_lba * 4); memcpy(mbr, &tmp, sizeof(tmp)); mbr += sizeof(tmp); /* offset 436 */ tmp = 0; memcpy(mbr, &tmp, sizeof(tmp)); mbr += sizeof(tmp); /* offset 440 */ tmp = lendian_int(id); memcpy(mbr, &tmp, sizeof(tmp)); mbr += sizeof(tmp); /* offset 444 */ mbr[0] = '\0'; mbr[1] = '\0'; mbr += 2; /* offset 446 */ ptype = type; psize = c * head * sector - offset; bhead = (offset / sector) % head; bsect = (offset % sector) + 1; bcyle = offset / (head * sector); bsect += (bcyle & 0x300) >> 2; bcyle &= 0xFF; ehead = head - 1; esect = sector + (((cc - 1) & 0x300) >> 2); ecyle = (cc - 1) & 0xFF; for (i = 1; i <= 4; i++) { memset(mbr, 0, 16); if (i == entry) { mbr[0] = 0x80; mbr[1] = bhead; mbr[2] = bsect; mbr[3] = bcyle; mbr[4] = ptype; mbr[5] = ehead; mbr[6] = esect; mbr[7] = ecyle; tmp = lendian_int(offset); memcpy(&mbr[8], &tmp, sizeof(tmp)); tmp = lendian_int(psize); memcpy(&mbr[12], &tmp, sizeof(tmp)); } if (i == 2 && (mode & EFI)) { mbr[0] = 0x0; mbr[1] = 0xfe; mbr[2] = 0xff; mbr[3] = 0xff; mbr[4] = 0xef; mbr[5] = 0xfe; mbr[6] = 0xff; mbr[7] = 0xff; tmp = lendian_int(efi_lba * 4); memcpy(&mbr[8], &tmp, sizeof(tmp)); tmp = lendian_int(efi_count); memcpy(&mbr[12], &tmp, sizeof(tmp)); } if (i == 3 && (mode & MAC)) { mbr[0] = 0x0; mbr[1] = 0xfe; mbr[2] = 0xff; mbr[3] = 0xff; mbr[4] = 0x0; mbr[5] = 0xfe; mbr[6] = 0xff; mbr[7] = 0xff; tmp = lendian_int(mac_lba * 4); memcpy(&mbr[8], &tmp, sizeof(tmp)); tmp = lendian_int(mac_count); memcpy(&mbr[12], &tmp, sizeof(tmp)); } mbr += 16; } mbr[0] = 0x55; mbr[1] = 0xAA; mbr += 2; return mbr - rbm; } void display_mbr(const uint8_t *mbr, size_t len) { unsigned char c = 0; unsigned int i = 0, j = 0; printf("sizeof(MBR): %zu bytes\n", len); for (i = 0; i < len; i++) { if (!(i % 16)) printf("%04d ", i); if (!(i % 8)) printf(" "); c = mbr[i]; printf("%02x ", c); if (!((i + 1) % 16)) { printf(" |"); for (; j <= i; j++) printf("%c", isprint(mbr[j]) ? mbr[j] : '.'); printf("|\n"); } } } uint32_t chksum_crc32 (unsigned char *block, unsigned int length) { register unsigned long crc; unsigned long i; crc = 0xFFFFFFFF; for (i = 0; i < length; i++) { crc = ((crc >> 8) & 0x00FFFFFF) ^ crc_tab[(crc ^ *block++) & 0xFF]; } return (crc ^ 0xFFFFFFFF); } void reverse_uuid(uuid_t uuid) { uint8_t t, *p = (uint8_t *)uuid; t = p[0]; p[0] = p[3]; p[3] = t; t = p[1]; p[1] = p[2]; p[2] = t; t = p[4]; p[4] = p[5]; p[5] = t; t = p[6]; p[6] = p[7]; p[7] = t; } void initialise_gpt(uint8_t *gpt, uint32_t current, uint32_t alternate, int primary) { struct gpt_header *header = (struct gpt_header *)gpt; struct gpt_part_header *part; int hole = 0; int gptsize = 128 / 4 + 2; if (mac_lba) { /* 2048 bytes per partition, plus round to 2048 boundary */ hole = (apm_parts * 4) + 2; } if (primary) { uuid_generate(disk_uuid); reverse_uuid(disk_uuid); } header->signature = lendian_64(0x5452415020494645ull); header->revision = lendian_int(0x010000); header->headerSize = lendian_int(0x5c); header->currentLBA = lendian_64(current); header->backupLBA = lendian_64(alternate); header->firstUsableLBA = lendian_64(gptsize + hole); header->lastUsableLBA = lendian_64((isostat.st_size + padding)/512 - gptsize); if (primary) header->partitionEntriesLBA = lendian_64(0x02 + hole); else header->partitionEntriesLBA = lendian_64(current - (128 / 4)); header->numParts = lendian_int(0x80); header->sizeOfPartitionEntries = lendian_int(0x80); memcpy(header->diskGUID, disk_uuid, sizeof(uuid_t)); if (primary) gpt += sizeof(struct gpt_header) + hole * 512; else gpt -= header->sizeOfPartitionEntries * header->numParts; part = (struct gpt_part_header *)gpt; if (primary) { uuid_generate(part_uuid); uuid_generate(iso_uuid); reverse_uuid(part_uuid); reverse_uuid(iso_uuid); } memcpy(part->partGUID, iso_uuid, sizeof(uuid_t)); memcpy(part->partTypeGUID, basic_partition, sizeof(uuid_t)); part->firstLBA = lendian_64(0); part->lastLBA = lendian_64(psize); memcpy(part->name, "ISOHybrid ISO", 28); gpt += sizeof(struct gpt_part_header); part++; memcpy(part->partGUID, part_uuid, sizeof(uuid_t)); memcpy(part->partTypeGUID, basic_partition, sizeof(uuid_t)); part->firstLBA = lendian_64(efi_lba * 4); part->lastLBA = lendian_64(part->firstLBA + efi_count - 1); memcpy(part->name, "ISOHybrid", 20); gpt += sizeof(struct gpt_part_header); if (mac_lba) { gpt += sizeof(struct gpt_part_header); part++; memcpy(part->partGUID, part_uuid, sizeof(uuid_t)); memcpy(part->partTypeGUID, hfs_partition, sizeof(uuid_t)); part->firstLBA = lendian_64(mac_lba * 4); part->lastLBA = lendian_64(part->firstLBA + mac_count - 1); memcpy(part->name, "ISOHybrid", 20); part--; } part--; header->partitionEntriesCRC = lendian_int (chksum_crc32((uint8_t *)part, header->numParts * header->sizeOfPartitionEntries)); header->headerCRC = lendian_int(chksum_crc32((uint8_t *)header, header->headerSize)); } void initialise_apm(uint8_t *gpt, uint32_t start) { struct apple_part_header *part = (struct apple_part_header *)gpt; part->signature = bendian_short(0x504d); part->map_count = bendian_int(apm_parts); part->start_block = bendian_int(1); part->block_count = bendian_int(0x10); strcpy(part->name, "Apple"); strcpy(part->type, "Apple_partition_map"); part->data_start = bendian_int(0); part->data_count = bendian_int(10); part->status = bendian_int(0x03); part = (struct apple_part_header *)(gpt + 2048); part->signature = bendian_short(0x504d); part->map_count = bendian_int(3); part->start_block = bendian_int(efi_lba); part->block_count = bendian_int(efi_count); strcpy(part->name, "EFI"); strcpy(part->type, "Apple_HFS"); part->data_start = bendian_int(0); part->data_count = bendian_int(efi_count); part->status = bendian_int(0x33); part = (struct apple_part_header *)(gpt + 4096); if (mac_lba) { part->signature = bendian_short(0x504d); part->map_count = bendian_int(3); part->start_block = bendian_int(mac_lba); part->block_count = bendian_int(mac_count); strcpy(part->name, "EFI"); strcpy(part->type, "Apple_HFS"); part->data_start = bendian_int(0); part->data_count = bendian_int(mac_count); part->status = bendian_int(0x33); } else { part->signature = bendian_short(0x504d); part->map_count = bendian_int(3); part->start_block = bendian_int((start/2048) + 10); part->block_count = bendian_int(efi_lba - start/2048 - 10); strcpy(part->name, "ISO"); strcpy(part->type, "Apple_Free"); part->data_start = bendian_int(0); part->data_count = bendian_int(efi_lba - start/2048 - 10); part->status = bendian_int(0x01); } } int main(int argc, char *argv[]) { int i = 0; FILE *fp = NULL; uint8_t *buf = NULL, *bufz = NULL; int cylsize = 0, frac = 0; size_t orig_gpt_size, free_space, gpt_size; struct iso_primary_descriptor descriptor; prog = strcpy(alloca(strlen(argv[0]) + 1), argv[0]); i = check_option(argc, argv); argc -= i; argv += i; if (!argc) { usage(); return 1; } if ((mode & EFI) && offset) errx(1, "%s: --offset is invalid with UEFI images\n", argv[0]); srand(time(NULL) << (getppid() << getpid())); if (!(fp = fopen(argv[0], "r+"))) err(1, "could not open file `%s'", argv[0]); if (fseek(fp, (16 << 11), SEEK_SET)) err(1, "%s: seek error - 0", argv[0]); if (fread(&descriptor, sizeof(char), sizeof(descriptor), fp) != sizeof(descriptor)) err(1, "%s: read error - 0", argv[0]); if (fseek(fp, 17 * 2048, SEEK_SET)) err(1, "%s: seek error - 1", argv[0]); bufz = buf = calloc(BUFSIZE, sizeof(char)); if (fread(buf, sizeof(char), BUFSIZE, fp) != BUFSIZE) err(1, "%s", argv[0]); if (check_banner(buf)) errx(1, "%s: could not find boot record", argv[0]); if (mode & VERBOSE) printf("catalogue offset: %d\n", catoffset); if (fseek(fp, catoffset * 2048, SEEK_SET)) err(1, "%s: seek error - 2", argv[0]); buf = bufz; memset(buf, 0, BUFSIZE); if (fread(buf, sizeof(char), BUFSIZE, fp) != BUFSIZE) err(1, "%s", argv[0]); if (check_catalogue(buf)) errx(1, "%s: invalid boot catalogue", argv[0]); buf += sizeof(ve); if (read_catalogue(buf)) errx(1, "%s: unexpected boot catalogue parameters", argv[0]); if (mode & VERBOSE) display_catalogue(); buf += 32; if (mode & EFI) { if (!read_efi_section(buf)) { buf += 32; if (!read_efi_catalogue(buf, &efi_count, &efi_lba) && efi_lba) { offset = 0; } else { errx(1, "%s: invalid efi catalogue", argv[0]); } } else { errx(1, "%s: unable to find efi image", argv[0]); } } buf += 32; if (mode & MAC) { if (!read_efi_section(buf)) { buf += 32; if (!read_efi_catalogue(buf, &mac_count, &mac_lba) && mac_lba) { offset = 0; } else { errx(1, "%s: invalid efi catalogue", argv[0]); } } else { errx(1, "%s: unable to find mac efi image", argv[0]); } } if (fseek(fp, (de_lba * 2048 + 0x40), SEEK_SET)) err(1, "%s: seek error - 3", argv[0]); buf = bufz; memset(buf, 0, BUFSIZE); if (fread(buf, sizeof(char), 4, fp) != 4) err(1, "%s", argv[0]); if (memcmp(buf, "\xFB\xC0\x78\x70", 4)) errx(1, "%s: boot loader does not have an isolinux.bin hybrid " \ "signature. Note that isolinux-debug.bin does not support " \ "hybrid booting", argv[0]); if (stat(argv[0], &isostat)) err(1, "%s", argv[0]); isosize = lendian_int(descriptor.size) * lendian_short(descriptor.block_size); free_space = isostat.st_size - isosize; cylsize = head * sector * 512; frac = isostat.st_size % cylsize; padding = (frac > 0) ? cylsize - frac : 0; if (mode & VERBOSE) printf("imgsize: %zu, padding: %d\n", (size_t)isostat.st_size, padding); cc = c = ( isostat.st_size + padding) / cylsize; if (c > 1024) { warnx("Warning: more than 1024 cylinders: %d", c); warnx("Not all BIOSes will be able to boot this device"); cc = 1024; } if (!id) { if (fseek(fp, 440, SEEK_SET)) err(1, "%s: seek error - 4", argv[0]); if (fread(&id, 1, 4, fp) != 4) err(1, "%s: read error", argv[0]); id = lendian_int(id); if (!id) { if (mode & VERBOSE) printf("random "); id = rand(); } } if (mode & VERBOSE) printf("id: %u\n", id); buf = bufz; memset(buf, 0, BUFSIZE); i = initialise_mbr(buf); if (mode & VERBOSE) display_mbr(buf, i); if (fseek(fp, 0, SEEK_SET)) err(1, "%s: seek error - 5", argv[0]); if (fwrite(buf, sizeof(char), i, fp) != (size_t)i) err(1, "%s: write error - 1", argv[0]); if (efi_lba) { reverse_uuid(basic_partition); reverse_uuid(hfs_partition); /* 512 byte header, 128 entries of 128 bytes */ orig_gpt_size = gpt_size = 512 + (128 * 128); /* Leave space for the APM if necessary */ if (mac_lba) gpt_size += (4 * 2048); buf = calloc(gpt_size, sizeof(char)); memset(buf, 0, gpt_size); /* * We need to ensure that we have enough space for the secondary GPT. * Unlike the primary, this doesn't need a hole for the APM. We still * want to be 1MB aligned so just bump the padding by a megabyte. */ if (free_space < orig_gpt_size && padding < orig_gpt_size) { padding += 1024 * 1024; } /* * Determine the size of the ISO filesystem. This will define the size * of the partition that covers it. */ psize = isosize / 512; /* * Primary GPT starts at sector 1, secondary GPT starts at 1 sector * before the end of the image */ initialise_gpt(buf, 1, (isostat.st_size + padding - 1024) / 512, 1); if (fseek(fp, 512, SEEK_SET)) err(1, "%s: seek error - 6", argv[0]); if (fwrite(buf, sizeof(char), gpt_size, fp) != (size_t)gpt_size) err(1, "%s: write error - 2", argv[0]); } if (mac_lba) { /* Apple partition entries filling 2048 bytes each */ int apm_size = apm_parts * 2048; buf = realloc(buf, apm_size); memset(buf, 0, apm_size); initialise_apm(buf, APM_OFFSET); fseek(fp, APM_OFFSET, SEEK_SET); fwrite(buf, sizeof(char), apm_size, fp); } if (padding) { if (fsync(fileno(fp))) err(1, "%s: could not synchronise", argv[0]); if (ftruncate(fileno(fp), isostat.st_size + padding)) err(1, "%s: could not add padding bytes", argv[0]); } if (efi_lba) { buf = realloc(buf, orig_gpt_size); memset(buf, 0, orig_gpt_size); buf += orig_gpt_size - sizeof(struct gpt_header); initialise_gpt(buf, (isostat.st_size + padding - 1024) / 512, 1, 0); /* Shift back far enough to write the 128 GPT entries */ buf -= 128 * sizeof(struct gpt_part_header); /* * Seek far enough back that the gpt header is 512 bytes before the * end of the image */ if (fseek(fp, (isostat.st_size + padding) - orig_gpt_size - 512, SEEK_SET)) err(1, "%s: seek error - 8", argv[0]); if (fwrite(buf, sizeof(char), orig_gpt_size, fp) != orig_gpt_size) err(1, "%s: write error - 4", argv[0]); } free(buf); fclose(fp); return 0; }