; **************************************************************************** ; ; LDLINUX.ASM ; ; A program to boot Linux kernels off an MS-DOS formatted floppy disk. This ; functionality is good to have for installation floppies, where it may ; be hard to find a functional Linux system to run LILO off. ; ; This program allows manipulation of the disk to take place entirely ; from MS-LOSS, and can be especially useful in conjunction with the ; umsdos filesystem. ; ; This file is loaded in stages; first the boot sector at offset 7C00h, ; then the first sector (cluster, really, but we can only assume 1 sector) ; of LDLINUX.SYS at 7E00h and finally the remainder of LDLINUX.SYS at 8000h ; ; Copyright (C) 1994-1998 H. Peter Anvin ; ; This code is free software under the terms of the GNU General Public ; License, version 2, or at your option any later version. ; ; **************************************************************************** ; ; Some semi-configurable constants... change on your own risk ; max_cmd_len equ 2047 ; Must be odd; 2047 is the kernel limit retry_count equ 6 ; How patient are we with the disk? ; ; Should be updated with every release to avoid bootsector/SYS file mismatch ; %define version_str '1.31' ; Must be 4 characters long! ;%define date '1998-01-31' ; Must be 10 characters long! %define date HEX_TIME ; Used while developing %define year '1998' ; ; Debgging stuff ; ; %define debug 1 ; Uncomment to enable debugging ; ; ID for SYSLINUX (reported to kernel) ; syslinux_id equ 031h ; SYSLINUX (3) version 1.x (1) ; ; Segments used by Linux ; real_mode_seg equ 9000h struc real_mode_seg_t resb 20h-($-$$) ; org 20h kern_cmd_magic resw 1 ; Magic # for command line kern_cmd_offset resw 1 ; Offset for kernel command line resb 497-($-$$) ; org 497d bs_setupsecs resb 1 ; Sectors for setup code (0 -> 4) bs_rootflags resw 1 ; Root readonly flag bs_syssize resw 1 bs_swapdev resw 1 ; Swap device (obsolete) bs_ramsize resw 1 ; Ramdisk flags, formerly ramdisk size bs_vidmode resw 1 ; Video mode bs_rootdev resw 1 ; Root device bs_bootsign resw 1 ; Boot sector signature (0AA55h) su_jump resb 1 ; 0EBh su_jump2 resb 1 su_header resd 1 ; New setup code: header su_version resw 1 ; See linux/arch/i386/boot/setup.S su_switch resw 1 su_setupseg resw 1 su_startsys resw 1 su_kver resw 1 ; Kernel version pointer su_loader resb 1 ; Loader ID su_loadflags resb 1 ; Load high flag su_movesize resw 1 su_code32start resd 1 ; Start of code loaded high su_ramdiskat resd 1 ; Start of initial ramdisk su_ramdisklen equ $ ; Length of initial ramdisk su_ramdisklen1 resw 1 su_ramdisklen2 resw 1 su_bsklugeoffs resw 1 su_bsklugeseg resw 1 su_heapend resw 1 resb (8000h-12)-($-$$) ; Were bootsect.S puts it... linux_stack equ $ linux_fdctab equ $ resb 8000h-($-$$) cmd_line_here equ $ ; Should be out of the way endstruc setup_seg equ 9020h struc setup_seg_t org 0h ; as 9020:0000, not 9000:0200 setup_entry equ $ endstruc ; ; Magic number of su_header field ; HEADER_ID equ 'HdrS' ; HdrS (in littleendian hex) ; ; Flags for the su_loadflags field ; LOAD_HIGH equ 01h ; Large kernel, load high CAN_USE_HEAP equ 80h ; Boot loader reports heap size ; ; The following structure is used for "virtual kernels"; i.e. LILO-style ; option labels. The options we permit here are `kernel' and `append ; Since there is no room in the bottom 64K for up to 16 of these, we ; stick them at 8000:0000 and copy them down before we need them. ; ; Note: this structure can be added to, but must be less than 4K in size. ; struc vkernel vk_vname: resb 11 ; Virtual name **MUST BE FIRST!** resb 3 ; Alignment filler vk_rname: resb 11 ; Real name resb 1 ; Filler vk_appendlen: resw 1 vk_append: resb max_cmd_len+1 ; Command line vk_size: equ $ endstruc ; ; Segment assignments in the bottom 640K ; 0000h - main code/data segment (and BIOS segment) ; 9000h - real_mode_seg ; vk_seg equ 8000h ; This is where we stick'em xfer_buf_seg equ 7000h ; Bounce buffer for I/O to high mem ; ; For our convenience: define macros for jump-over-unconditinal jumps ; %macro jmpz 1 jnz %%skip jmp %1 %%skip: %endmacro %macro jmpnz 1 jz %%skip jmp %1 %%skip: %endmacro %macro jmpe 1 jne %%skip jmp %1 %%skip: %endmacro %macro jmpne 1 je %%skip jmp %1 %%skip: %endmacro %macro jmpc 1 jnc %%skip jmp %1 %%skip: %endmacro %macro jmpnc 1 jc %%skip jmp %1 %%skip: %endmacro %macro jmpb 1 jnb %%skip jmp %1 %%skip: %endmacro %macro jmpnb 1 jb %%skip jmp %1 %%skip: %endmacro ; ; Macros similar to res[bwd], but which works in the code segment (after ; section .text) ; %macro zb 1 times %1 db 0 %endmacro %macro zw 1 times %1 dw 0 %endmacro %macro zd 1 times %1 dd 0 %endmacro ; --------------------------------------------------------------------------- ; BEGIN THE BIOS/CODE/DATA SEGMENT ; --------------------------------------------------------------------------- absolute 4*1Eh ; In the interrupt table fdctab equ $ fdctab1 resw 1 fdctab2 resw 1 %ifdef debug org 0100h ..start: ; ; Hook for debugger stuff. This gets automatically removed when ; generating the real thing. ; ; Initialize the registers for debugger operation ; cli mov ax,cs mov ds,ax mov es,ax mov ss,ax mov sp,StackBuf sti cld ; ; Load the actual boot sector so we can copy the data block ; xor ax,ax ; Reset floppy xor dx,dx int 13h mov cx,6 ; Retry count... debug_tryloop: push cx mov bx,trackbuf mov cx,0001h xor dx,dx mov ax,0201h int 13h pop cx jnc debug_okay loop debug_tryloop int 3 ; Halt! (Breakpoint) debug_okay: mov si,trackbuf+0bh mov di,bsBytesPerSec mov cx,33h rep movsb ; ; Save bogus "BIOS floppy block" info to the stack in case we hit kaboom ; push si push si push si ; Writing to the trackbuf is harmless ; ; Copy the BIOS data area ; push ds xor ax,ax mov ds,ax mov si,0400h mov di,si mov cx,0100h rep movsw pop ds ; ; ; A NOP where we can breakpoint, then jump into the code *after* ; the segment register initialization section ; nop jmp debugentrypt %endif absolute 0484h BIOS_vidrows resb 1 ; Number of screen rows absolute 0600h trackbuf equ $ ; Track buffer goes here trackbufsize equ 16384 ; Safe size of track buffer ; trackbuf ends at 4600h absolute 6000h ; Here we keep our BSS stuff StackBuf equ $ ; Start the stack here (grow down) VKernelBuf: resb vk_size ; "Current" vkernel alignb 4 AppendBuf resb max_cmd_len+1 ; append= FKeyName resb 10*16 ; File names for F-key help NumBuf resb 16 ; Buffer to load number NumBufEnd equ NumBuf+15 ; Pointer to last byte in NumBuf RootDir equ $ ; Location of root directory RootDir1 resw 1 RootDir2 resw 1 DataArea equ $ ; Location of data area DataArea1 resw 1 DataArea2 resw 1 FBytes equ $ ; Used by open/getc FBytes1 resw 1 FBytes2 resw 1 RootDirSize resw 1 ; Root dir size in sectors DirScanCtr resw 1 ; Used while searching directory DirBlocksLeft resw 1 ; Ditto EndofDirSec resw 1 ; = trackbuf+bsBytesPerSec-31 RunLinClust resw 1 ; Cluster # for LDLINUX.SYS ClustSize resw 1 ; Bytes/cluster SecPerClust resw 1 ; Same as bsSecPerClust, but a word BufSafe resw 1 ; Clusters we can load into trackbuf BufSafeSec resw 1 ; = how many sectors? BufSafeBytes resw 1 ; = how many bytes? EndOfGetCBuf resw 1 ; = getcbuf+BufSafeBytes HighMemSize resw 1 ; High memory (K) KernelClust resw 1 ; Kernel size in clusters KernelK resw 1 ; Kernel size in kilobytes InitRDClust resw 1 ; Ramdisk size in clusters InitRDat resw 1 ; Load address (x256) ClustPerMoby resw 1 ; Clusters per 64K FClust resw 1 ; Number of clusters in open/getc file FNextClust resw 1 ; Pointer to next cluster in d:o FPtr resw 1 ; Pointer to next char in buffer CmdOptPtr resw 1 ; Pointer to first option on cmd line KernelCNameLen resw 1 ; Length of unmangled kernel name InitRDCNameLen resw 1 ; Length of unmangled initrd name NextCharJump resw 1 ; Routine to interpret next print char HiLoadAddr resw 1 ; Address pointer for high load loop TextAttrBX equ $ TextAttribute resb 1 ; Text attribute for message file TextPage resb 1 ; Active display page CursorDX equ $ CursorCol resb 1 ; Cursor column for message file CursorRow resb 1 ; Cursor row for message file ScreenSize equ $ VidCols resb 1 ; Columns on screen-1 VidRows resb 1 ; Rows on screen-1 RetryCount resb 1 ; Used for disk access retries KbdFlags resb 1 ; Check for keyboard escapes MNameBuf resb 11 ; Generic mangled file name buffer KernelName resb 11 ; Mangled name for kernel InitRD resb 11 ; initrd= mangled name KernelCName resb 13 ; Unmangled kernel name InitRDCName resb 13 ; Unmangled initrd name section .text org 7C00h bootsec equ $ jmp short start ; 2 bytes nop ; 1 byte ; ; "Superblock" follows -- it's in the boot sector, so it's already ; loaded and ready for us ; bsOemName db 'SYSLINUX' ; The SYS command sets this, so... bsBytesPerSec zw 1 bsSecPerClust zb 1 bsResSectors zw 1 bsFATs zb 1 bsRootDirEnts zw 1 bsSectors zw 1 bsMedia zb 1 bsFATsecs zw 1 bsSecPerTrack zw 1 bsHeads zw 1 bsHiddenSecs equ $ bsHidden1 zw 1 bsHidden2 zw 1 bsHugeSectors equ $ bsHugeSec1 zw 1 bsHugeSec2 zw 1 bsDriveNumber zb 1 bsReserved1 zb 1 bsBootSignature zb 1 ; 29h if the following fields exist bsVolumeID zd 1 bsVolumeLabel zb 11 bsFileSysType zb 8 ; Must be FAT12 for this version ; ; Note we don't check the constraints above now; we did that at install ; time (we hope!) ; floppy_table equ $ ; No sense in wasting memory, overwrite start start: cli ; No interrupts yet, please xor ax,ax mov es,ax mov ss,ax mov sp,StackBuf ; Just below BSS ; ; Now sautee the BIOS floppy info block to that it will support decent- ; size transfers; the floppy block is 11 bytes and is stored in the ; INT 1Eh vector (brilliant waste of resources, eh?) ; ; Of course, if BIOSes had been properly programmed, we wouldn't have ; had to waste precious boot sector space with this code. ; mov bx,fdctab lds si,[ss:bx] ; DS:SI -> original push ds ; Save on stack in case push si ; we have to bail push bx mov cx,6 ; 12 bytes mov di,floppy_table push di cld rep movsw ; Faster to move words pop di mov ds,ax ; Now we can point DS to here, too mov cl,[bsSecPerTrack] ; Patch the sector count mov [di+4],cl ; mov byte ptr [di+9],0Fh ; I have no clue what this does??? mov [bx+2],ax ; Segment 0 mov [bx],di ; offset floppy_block ; ; Ready to enable interrupts, captain ; sti ; ; Reset floppy system to load new parameter block ; xor dx,dx int 13h ; AH = 00h already ; ; Now we have to do some arithmetric to figure out where things are located. ; If Microsoft had had brains they would already have done this for us, ; and stored it in the superblock at format time, but here we go, ; wasting precious boot sector space again... ; debugentrypt: mov al,[bsFATs] ; Number of FATs jmpc kaboom ; If the floppy init failed ; (too far to be above the mov) cbw ; Clear AH mul byte [bsFATsecs] ; Get the size of the FAT area add ax,[bsHidden1] ; Add hidden sectors adc dx,[bsHidden2] add ax,[bsResSectors] ; And reserved sectors (why two?) adc dx,byte 0 mov [RootDir1],ax ; Location of root directory mov [RootDir2],dx mov [DataArea1],ax mov [DataArea2],dx push ax push dx mov ax,32 ; Size of a directory entry mul word [bsRootDirEnts] mov bx,[bsBytesPerSec] add ax,bx ; Round up, not down dec ax div bx ; Now we have the size of the root dir mov [RootDirSize],ax mov [DirScanCtr],ax add bx,trackbuf-31 mov [EndofDirSec],bx ; End of a single directory sector add [DataArea1],ax ; Now we have the location of the adc word [DataArea2],byte 0 ; first data cluster ; ; Now the fun begins. We have to search the root directory for ; LDLINUX.SYS and load the first sector, so we have a little more ; space to have fun with. Then we can go chasing through the FAT. ; Joy!! ; sd_nextsec: pop dx pop ax push ax push dx mov bx,trackbuf call getonesec mov si,trackbuf sd_nextentry: cmp byte [si],0 ; Directory high water mark jz_kaboom: jz kaboom mov di,ldlinux_sys mov cx,11 push si repe cmpsb pop si je found_it add si,byte 32 ; Distance to next cmp si,[EndofDirSec] jb sd_nextentry add ax,byte 1 adc dx,byte 0 dec word [DirScanCtr] jnz sd_nextsec ; ; kaboom: write a message and bail out. ; kaboom: mov si,bailmsg call writestr ; Returns with AL = 0 cbw ; Sets AH = 0 (shorter than XOR) int 16h ; Wait for keypress mov sp,StackBuf-2*3 ; Reset stack pop si ; BIOS floppy block address cli pop word [si] ; Restore location pop word [si+2] sti int 19h ; And try once more to boot... norge: jmp short norge ; If int 19h returned... oh boy... ; ; found_it: now we compute the location of the first sector, then ; load it and JUMP (since we're almost out of space) ; found_it: pop ax pop ax mov al,[bsSecPerClust] cbw ; We won't have 128 sec/cluster mov bp,ax ; Load an entire cluster mov bx,[si+26] ; First cluster push bx ; Remember which cluster it was dec bx ; First cluster is cluster 2 dec bx mul bx add ax,[DataArea1] adc dx,[DataArea2] mov bx,ldlinux_magic call getlinsec mov si,bs_magic mov di,ldlinux_magic mov cx,[magic_len] repe cmpsb ; Make sure that the bootsector jne kaboom jmp ldlinux_ent ; matches LDLINUX.SYS ; ; writestr: write a null-terminated string to the console ; writestr: wstr_1: lodsb and al,al jz return mov ah,0Eh ; Write to screen as TTY mov bx,0007h ; White on black, current page int 10h jmp short wstr_1 ; ; disk_error: decrement the retry count and bail if zero ; disk_error: dec si ; SI holds the disk retry counter jz kaboom xchg ax,bx ; Shorter than MOV pop bx pop cx pop dx jmp short disk_try_again ; ; getonesec: like getlinsec, but pre-sets the count to 1 ; getonesec: mov bp,1 ; Fall through to getlinsec ; ; getlinsec: load a sequence of BP floppy sector given by the linear sector ; number in DX:AX into the buffer at ES:BX. We try to optimize ; by loading up to a whole track at a time, but the user ; is responsible for not crossing a 64K boundary. ; (Yes, BP is weird for a count, but it was available...) ; ; On return, BX points to the first byte after the transferred ; block. ; getlinsec: mov si,[bsSecPerTrack] div si ; Convert linear to sector/track mov cx,dx ; Save sector xor dx,dx ; 32-bit track number div word [bsHeads] ; Convert track to head/cyl ; ; Now we have AX = cyl, DX = head, CX = sector (0-based) ; for the very first sector, SI = bsSecPerTrack ; gls_nexttrack: push si push bp sub si,cx ; Sectors left on track cmp bp,si jna gls_lasttrack mov bp,si ; No more than a trackful, please! gls_lasttrack: push ax ; Cylinder # push dx ; Head # push bp ; Number of sectors we're transferring push cx mov cl,6 ; Because IBM was STOOPID shl ah,cl ; and thought 8 bits was enough ; then thought 10 bits was enough... pop cx ; Sector # inc cx ; Sector numbers are 1-based or cl,ah mov ch,al mov dh,dl mov dl,[bsDriveNumber] xchg ax,bp ; Sector to transfer count ; (xchg shorter than mov) mov ah,02h ; Read it! ; ; Do the disk transfer... save the registers in case we fail :( ; mov si,retry_count ; # of times to retry a disk access disk_try_again: push dx push cx push bx push ax push si int 13h pop si pop bx jc disk_error ; ; It seems the following test fails on some machines (buggy BIOS?) ; ; cmp al,bl ; Check that we got what we asked for ; jne disk_error ; ; Disk access successful ; pop bx ; Buffer location pop si ; Not needed anymore pop si ; Neither is this pop si ; Sector transferred count mov ax,si ; Reduce sector left count mul word [bsBytesPerSec] ; Figure out how much to advance ptr add bx,ax ; Update buffer location pop dx ; Head # pop ax ; Cyl # inc dx ; Next track on cyl cmp dx,[bsHeads] ; Was this the last one? jb gls_nonewcyl inc ax ; If so, new cylinder xor dx,dx ; First head on new cylinder gls_nonewcyl: pop bp ; Sectors left to transfer xor cx,cx ; First sector on new track sub bp,si ; Reduce with # of sectors just read pop si ja gls_nexttrack return: ret bailmsg db 'Boot failed: change disks and press any key', 0Dh, 0Ah, 0 bs_checkpt equ $ ; Must be <= 1E5h zb 1E3h-($-$$) bs_magic equ $ ; The following 32 bytes should ; match ldlinux_magic ldlinux_sys db 'LDLINUX SYS' ; Looks like this in the root dir db ' ' bs_version db version_str db ' ' bs_date db date magic_len equ $-bs_magic bootsignature dw 0AA55h ; ; =========================================================================== ; End of boot sector ; =========================================================================== ; Start of LDLINUX.SYS ; =========================================================================== ; ; This "magic number" works well with the "type" command... :-) ; ldlinux_magic db 'LDLINUX' missing_dot db ' ' db 'SYS ', version_str, ' ', date magic_eof db 0Dh, 0Ah, 01Ah zb 220h-($-$$) ldlinux_ent: ; ; The boot sector left the cluster number of this first LDLINUX.SYS ; sector on the stack. We'll need it later, so we should pop it off ; pop word [RunLinClust] ; ; Tell the user we got this far ; mov si,crlf call writestr mov byte [missing_dot],'.' mov byte [magic_eof],0 mov si,ldlinux_magic call writestr ; ; Remember, the boot sector loaded only the first cluster of LDLINUX.SYS. ; We can really only rely on a single sector having been loaded. Hence ; we should load the FAT into RAM and start chasing pointers... ; mov bx,FAT ; Where it goes in memory mov ax,[bsHidden1] ; Hidden sectors mov dx,[bsHidden2] add ax,[bsResSectors] ; plus reserved sectors = FAT adc dx,0 mov bp,[bsFATsecs] ; Sectors/FAT call getlinsec ; Load it in... ; ; Fine, now we have the FAT in memory. How big is a cluster, really? ; Also figure out how many clusters will fit in an 8K buffer, and how ; many sectors and bytes that is ; mov al,[bsSecPerClust] ; We do this in the boot xor ah,ah ; sector, too, but there mov [SecPerClust],ax ; wasn't space to save it mul word [bsBytesPerSec] mov [ClustSize],ax ; Bytes/cluster mov bx,ax mov ax,trackbufsize xor dx,dx div bx mov [BufSafe],ax ; # of cluster in trackbuf mul word [SecPerClust] mov [BufSafeSec],ax mul word [bsBytesPerSec] mov [BufSafeBytes],ax add ax,getcbuf ; getcbuf is same size as mov [EndOfGetCBuf],ax ; trackbuf, for simplicity ; ; Now we read the rest of LDLINUX.SYS. Don't bother loading the first ; cluster again, though. ; mov bx,ldlinux_magic add bx,[ClustSize] mov si,[RunLinClust] call nextcluster xor dx,dx mov ax,ldlinux_len-1 ; To be on the safe side add ax,[ClustSize] div word [ClustSize] ; the number of clusters dec ax ; We've already read one jz all_read_jmp mov cx,ax call getfssec ; ; All loaded up ; all_read_jmp: mov si,copyright_str call writestr jmp all_read ; ; ----------------------------------------------------------------------------- ; Subroutines that have to be in the first sector ; ----------------------------------------------------------------------------- ; ; getfssec: Get multiple clusters from a file, given the starting cluster. ; ; This routine makes sure the subtransfers do not cross a 64K boundary, ; and will correct the situation if it does, UNLESS *sectors* cross ; 64K boundaries. ; ; ES:BX -> Buffer ; SI -> Starting cluster number (2-based) ; CX -> Cluster count (0FFFFh = until end of file) ; ; 386 check getfssec: getfragment: xor bp,bp ; Fragment sector count mov ax,si ; Get sector address dec ax ; Convert to 0-based dec ax mul word [SecPerClust] add ax,[DataArea1] adc dx,[DataArea2] getseccnt: ; See if we can read > 1 clust add bp,[SecPerClust] dec cx ; Reduce clusters left to find mov di,si ; Predict next cluster inc di call nextcluster jc gfs_eof ; At EOF? jcxz endfragment ; Or was it the last we wanted? cmp si,di ; Is file continuous? jz getseccnt ; Yes, we can get endfragment: clc ; Not at EOF gfs_eof: pushf ; Remember EOF or not push si push cx gfs_getchunk: push ax push dx mov ax,es ; Check for 64K boundaries. shl ax,1 ; This really belongs in shl ax,1 ; getlinsec, but it would shl ax,1 ; make it not fit in the boot shl ax,1 ; sector. add ax,bx xor dx,dx neg ax jnz gfs_partseg inc dx ; Full 64K segment gfs_partseg: div word [bsBytesPerSec] ; How many sectors fit? mov si,bp sub si,ax ; Compute remaining sectors jbe gfs_lastchunk mov bp,ax pop dx pop ax push si ; Save remaining sector count push ax ; Save position push dx push bp ; Save sectors to transfer call getlinsec pop bp pop dx pop ax add ax,bp ; Advance sector pointer adc dx,0 pop bp ; Load remaining sector counter jmp gfs_getchunk gfs_lastchunk: pop dx pop ax call getlinsec pop cx pop si popf jcxz gfs_return ; If we hit the count limit jnc getfragment ; If we didn't hit EOF gfs_return: ret ; ; nextcluster: Advance a cluster pointer in SI to the next cluster ; pointed at in the FAT tables (note: FAT12 assumed) ; Sets CF on return if end of file. ; nextcluster: push bx mov bx,si ; Multiply by 3/2 shr bx,1 pushf ; CF now set if odd add si,bx mov si,[FAT+si] popf jnc nc_even shr si,1 ; Needed for odd only shr si,1 shr si,1 shr si,1 nc_even: and si,0FFFh cmp si,0FF0h ; Clears CF if at end of file cmc ; But we want it SET... pop bx nc_return: ret ; ; Debug routine ; %ifdef debug safedumpregs: cmp word [Debug_Magic],0D00Dh jnz nc_return jmp dumpregs %endif ; ; Data that has to be in the first sector ; copyright_str db ' Copyright (C) 1994-', year, ' H. Peter Anvin' crlf db 0Dh, 0Ah, 0 rl_checkpt equ $ ; Must be <= 400h ; ---------------------------------------------------------------------------- ; End of code and data that have to be in the first sector ; ---------------------------------------------------------------------------- all_read: ; ; Check that no moron is trying to boot Linux on a 286 or so. According ; to Intel, the way to check is to see if the high 4 bits of the FLAGS ; register are either all stuck at 1 (8086/8088) or all stuck at 0 ; (286 in real mode), if not it is a 386 or higher. They didn't ; say how to check for a 186/188, so I *hope* it falls out as a 8086 ; or 286 in this test. ; ; Also, provide an escape route in case it doesn't work. ; check_escapes: mov ah,02h ; Check keyboard flags int 16h mov [KbdFlags],al ; Save for boot prompt check test al,04h ; Ctrl->skip 386 check jnz skip_checks test_8086: pushf ; Get flags pop ax and ax,0FFFh ; Clear top 4 bits push ax ; Load into FLAGS popf pushf ; And load back pop ax and ax,0F000h ; Get top 4 bits cmp ax,0F000h ; If set -> 8086/8088 je not_386 test_286: pushf ; Get flags pop ax or ax,0F000h ; Set top 4 bits push ax popf pushf pop ax and ax,0F000h ; Get top 4 bits jnz is_386 ; If not clear -> 386 not_386: mov si,err_not386 call writestr jmp kaboom is_386: .386 ; Now we know it's a 386 ; ; Now check that there is at least 608K of low (DOS) memory ; (608K = 9800h segments) ; int 12h cmp ax,608 jae enough_ram mov si,err_noram call writestr jmp kaboom enough_ram: skip_checks: ; ; Initialization that does not need to go into the any of the pre-load ; areas ; mov al,[BIOS_vidrows] and al,al jnz vidrows_is_ok mov al,25 ; No vidrows in BIOS, assume 25 vidrows_is_ok: mov [VidRows],al mov ah,0fh int 10h ; Read video state mov [TextPage],bh dec ah ; Store count-1 (same as rows) mov [VidCols],ah ; ; Now we're all set to start with our *real* business. First load the ; configuration file (if any) and parse it. ; ; In previous versions I avoided using 32-bit registers because of a ; rumour some BIOSes clobbered the upper half of 32-bit registers at ; random. I figure, though, that if there are any of those still left ; they probably won't be trying to install Linux on them... ; ; The code is still ripe with 16-bitisms, though. Not worth the hassle ; to take'm out. ; mov si,linuxauto_cmd ; Default command: "linux auto" mov di,default_cmd mov cx,linuxauto_len rep movsb ; ; Load configuration file ; mov di,syslinux_cfg call open jmpz no_config_file parse_config: call getkeyword jmpc end_config_file ; Config file loaded cmp ax,'de' ; DEfault je pc_default cmp ax,'ap' ; APpend je pc_append cmp ax,'ti' ; TImeout jmpe pc_timeout cmp ax,'pr' ; PRompt jmpe pc_prompt cmp ax,'di' ; DIsplay jmpe pc_display cmp ax,'la' ; LAbel jmpe pc_label cmp ax,'ke' ; KErnel je pc_kernel cmp ax,'im' ; IMplicit jmpe pc_implicit cmp al,'f' ; F-key jmpe pc_fkey jmp parse_config pc_default: mov di,default_cmd ; "default" command call getline mov si,auto_cmd ; add "auto"+null mov cx,auto_len rep movsb jmp parse_config pc_append: cmp word [VKernelCtr],0 ; "append" command ja pc_append_vk mov di,AppendBuf call getline sub di,AppendBuf pc_app1: mov [AppendLen],di jmp parse_config pc_append_vk: mov di,VKernelBuf+vk_append ; "append" command (vkernel) call getline sub di,VKernelBuf+vk_append cmp di,2 jne pc_app2 cmp byte [VKernelBuf+vk_append],'-' jne pc_app2 mov di,0 ; If "append -" -> null string pc_app2: mov [VKernelBuf+vk_appendlen],di jmp parse_config pc_kernel: cmp word [VKernelCtr],0 ; "kernel" command jmpe parse_config ; (vkernel only) mov di,trackbuf push di call getline pop si mov di,VKernelBuf+vk_rname call mangle_name jmp parse_config pc_timeout: call getint ; "timeout" command jmpc parse_config mov ax,0D215h ; There are approx 1.D215h mul bx ; clock ticks per 1/10 s add bx,dx mov [KbdTimeOut],bx jmp parse_config pc_display: mov di,trackbuf push di call getline ; Get filename to display pop si mov di,MNameBuf ; Mangled name buffer push di call mangle_name ; Mangle file name pop di call searchdir ; Search for file jmpz parse_config ; File not found? call get_msg_file ; Load and display file pc_parse_config: jmp parse_config pc_prompt: call getint ; "prompt" command jc pc_parse_config mov [ForcePrompt],bx jmp short pc_parse_config pc_implicit: call getint ; "implicit" command jc pc_parse_config mov [AllowImplicit],bx jmp short pc_parse_config pc_fkey: sub ah,'1' jnb pc_fkey1 mov ah,9 ; F10 pc_fkey1: xor cx,cx mov cl,ah push cx mov ax,1 shl ax,cl or [FKeyMap], ax ; Mark that we have this loaded mov di,trackbuf push di call getline ; Get filename to display pop si pop di shl di,4 ; Multiply number by 16 add di,FKeyName call mangle_name ; Mangle file name jmp short pc_parse_config pc_label: call commit_vk ; Commit any current vkernel mov di,trackbuf ; Get virtual filename push di call getline pop si mov di,VKernelBuf+vk_vname call mangle_name ; Mangle virtual name inc word [VKernelCtr] ; One more vkernel mov si,VKernelBuf+vk_vname ; By default, rname == vname mov di,VKernelBuf+vk_rname mov cx,11 rep movsb mov si,AppendBuf ; Default append==global append mov di,VKernelBuf+vk_append mov cx,[AppendLen] mov [VKernelBuf+vk_appendlen],cx rep movsb jmp short pc_parse_config ; ; commit_vk: Store the current VKernelBuf into buffer segment ; commit_vk: cmp word [VKernelCtr],0 je cvk_ret ; No VKernel = return cmp word [VKernelCtr],16 ; Above limit? ja cvk_overflow mov di,[VKernelCtr] dec di shl di,12 ; 4K/buffer mov si,VKernelBuf mov cx,1024 ; = 4K bytes push es push word vk_seg pop es rep movsd ; Copy to buffer segment pop es cvk_ret: ret cvk_overflow: mov word [VKernelCtr],16 ; No more than 16, please ret ; ; End of configuration file ; end_config_file: call commit_vk ; Commit any current vkernel no_config_file: ; ; Check whether or not we are supposed to display the boot prompt. ; check_for_key: cmp word [ForcePrompt],0 ; Force prompt? jnz enter_command test byte [KbdFlags],5Bh ; Caps, Scroll, Shift, Alt jmpz auto_boot ; If neither, default boot enter_command: mov si,boot_prompt call writestr mov di,command_line ; ; get the very first character -- we can either time ; out, or receive a character press at this time. Some dorky BIOSes stuff ; a return in the buffer on bootup, so wipe the keyboard buffer first. ; clear_buffer: mov ah,1 ; Check for pending char int 16h jz get_char_time xor ax,ax ; Get char int 16h jmp clear_buffer get_char_time: mov cx,[KbdTimeOut] and cx,cx jz get_char ; Timeout == 0 -> no timeout inc cx ; The first loop will happen ; immediately as we don't ; know the appropriate DX value time_loop: push cx tick_loop: push dx mov ah,1 ; Check for pending keystroke int 16h jnz get_char_pop xor ax,ax int 1Ah ; Get time "of day" pop ax cmp dx,ax ; Has the timer advanced? je tick_loop pop cx loop time_loop ; If so, decrement counter jmp command_done ; Timeout! get_char_pop: pop eax ; Clear the stack get_char: xor ax,ax ; Get char int 16h and al,al jz func_key cmp al,' ' ; ASCII? jb not_ascii ja enter_char cmp di,command_line ; Space must not be first je get_char enter_char: cmp di,max_cmd_len+command_line ; Check there's space jnb get_char stosb ; Save it call writechr ; Echo to screen jmp get_char not_ascii: cmp al,0Dh ; Enter je command_done cmp al,08h ; Backspace jne get_char cmp di,command_line ; Make sure there is anything je get_char ; to erase dec di ; Unstore one character mov si,wipe_char ; and erase it from the screen call writestr jmp get_char func_key: push di cmp ah,68 ; F10 ja get_char sub ah,59 ; F1 jb get_char mov cl,ah shr ax,4 ; Convert to x16 mov bx,1 shl bx,cl and bx,[FKeyMap] jz get_char ; Undefined F-key mov di,ax add di,FKeyName call searchdir jz fk_nofile call get_msg_file jmp fk_wrcmd fk_nofile: mov si,crlf call writestr fk_wrcmd: mov si,boot_prompt call writestr pop di ; Command line write pointer push di mov byte [di],0 ; Null-terminate command line mov si,command_line call writestr ; Write command line so far pop di jmp get_char auto_boot: mov si,default_cmd mov di,command_line mov cx,(max_cmd_len+4) >> 2 rep movsd jmp load_kernel command_done: mov si,crlf call writestr cmp di,command_line ; Did we just hit return? je auto_boot xor al,al ; Store a final null stosb load_kernel: ; Load the kernel now ; ; First we need to mangle the kernel name the way DOS would... ; mov si,command_line mov di,KernelName push si push di call mangle_name pop di pop si ; ; Fast-forward to first option (we start over from the beginning, since ; mangle_name doesn't necessarily return a consistent ending state.) ; clin_non_wsp: lodsb cmp al,' ' ja clin_non_wsp clin_is_wsp: and al,al jz clin_opt_ptr lodsb cmp al,' ' jbe clin_is_wsp clin_opt_ptr: dec si ; Point to first nonblank mov [CmdOptPtr],si ; Save ptr to first option ; ; Now check if it is a "virtual kernel" ; mov cx,[VKernelCtr] push ds push word vk_seg pop ds cmp cx,0 je not_vk xor si,si ; Point to first vkernel vk_check: pusha mov cx,11 repe cmpsb ; Is this it? je vk_found popa add si,4096 ; 4K per vkernel structure loop vk_check not_vk: pop ds ; ; Not a "virtual kernel" - check that's OK and construct the command line ; cmp word [AllowImplicit],0 je bad_implicit push es push si push di mov di,real_mode_seg mov es,di mov si,AppendBuf mov di,cmd_line_here mov cx,AppendLen rep movsb mov [CmdLinePtr],di pop di pop si pop es ; ; Find the kernel on disk ; get_kernel: mov si,KernelName mov di,KernelCName call unmangle_name ; Get human form sub di,KernelCName mov [KernelCNameLen],di mov di,KernelName ; Search on disk call searchdir jnz kernel_good bad_kernel: mov si,err_notfound ; Complain about missing kernel call writestr mov si,KernelCName call writestr mov si,crlf jmp abort_load ; Ask user for clue ; ; bad_implicit: The user entered a nonvirtual kernel name, with "implicit 0" ; bad_implicit: mov si,KernelName ; For the error message mov di,KernelCName call unmangle_name jmp bad_kernel ; ; vk_found: We *are* using a "virtual kernel" ; vk_found: popa push di mov di,VKernelBuf mov cx,vk_size >> 2 rep movsd push es ; Restore old DS pop ds push es push word real_mode_seg pop es mov di,cmd_line_here mov si,VKernelBuf+vk_append mov cx,[VKernelBuf+vk_appendlen] rep movsb mov [CmdLinePtr],di ; Where to add rest of cmd pop es pop di ; DI -> KernelName push di mov si,VKernelBuf+vk_rname mov cx,11 rep movsb pop di jmp get_kernel ; ; kernel_corrupt: Called if the kernel file does not seem healthy ; kernel_corrupt: mov si,err_notkernel jmp abort_load kernel_good: ; ; This is it! We have a name (and location on the disk)... let's load ; that sucker!! ; ; A Linux kernel consists of three parts: boot sector, setup code, and ; kernel code. The boot sector is never executed when using an external ; booting utility, but it contains some status bytes that are necessary. ; The boot sector and setup code together form exactly 5 sectors that ; should be loaded at 9000:0. The subsequent code should be loaded ; at 1000:0. For simplicity, we load the whole thing at 0F60:0, and ; copy the latter stuff afterwards. ; ; NOTE: In the previous code I have avoided making any assumptions regarding ; the size of a sector, in case this concept ever gets extended to other ; media like CD-ROM (not that a CD-ROM would be bloody likely to use a FAT ; filesystem, of course). However, a "sector" when it comes to Linux booting ; stuff means 512 bytes *no matter what*, so here I am using that piece ; of knowledge. ; ; First check that our kernel is at least 64K and less than 8M (if it is ; more than 8M, we need to change the logic for loading it anyway...) ; load_it: cmp dx,80h ; 8 megs ja kernel_corrupt and dx,dx jz kernel_corrupt kernel_sane: push ax push dx push si mov si,loading_msg call cwritestr ; ; Now start transferring the kernel ; push word real_mode_seg pop es push ax push dx div word [ClustSize] ; # of clusters total and dx,dx ; Round up setnz dl movzx dx,dl add ax,dx mov [KernelClust],ax pop dx pop ax add ax,1023 adc dx,0 mov bx,1024 div bx ; Get number of kilobytes mov [KernelK],ax ; ; Now, if we transfer these straight, we'll hit 64K boundaries. Hence we ; have to see if we're loading more than 64K, and if so, load it step by ; step. ; mov dx,1 ; 10000h xor ax,ax div word [ClustSize] mov [ClustPerMoby],ax ; Clusters/64K ; ; Start by loading the bootsector/setup code, to see if we need to ; do something funky. It should fit in the first 32K (loading 64K won't ; work since we might have funny stuff up near the end of memory). ; If we have larger than 32K clusters, yes, we're hosed. ; call abort_check ; Check for abort key mov cx,[ClustPerMoby] shr cx,1 ; Half a moby sub [KernelClust],cx xor bx,bx pop si ; Cluster pointer on stack call getfssec jc kernel_corrupt ; Failure in first 32K cmp word [es:bs_bootsign],0AA55h jne kernel_corrupt ; Boot sec signature missing cmp byte [es:su_jump], 0EBh ; Jump opcode jne kernel_corrupt ; ; Get the BIOS' idea of what the size of high memory is ; push si ; Save our cluster pointer! mov ah,88h int 15h cmp ax,14*1024 ; Don't trust memory >15M jna hms_ok mov ax,14*1024 hms_ok: mov [HighMemSize],ax ; ; Construct the command line (append options have already been copied) ; mov word [es:kern_cmd_magic],0A33Fh ; Command line magic no mov word [es:kern_cmd_offset],cmd_line_here mov di,[CmdLinePtr] mov si,boot_image ; BOOT_IMAGE= mov cx,boot_image_len rep movsb mov si,KernelCName ; Unmangled kernel name mov cx,[KernelCNameLen] rep movsb mov al,' ' ; Space stosb mov si,[CmdOptPtr] ; Options from user input mov cx,(kern_cmd_len+3) >> 2 rep movsd ; %ifdef debug push ds ; DEBUG DEBUG DEBUG push es pop ds mov si,offset cmd_line_here call cwritestr pop ds mov si,offset crlf call cwritestr %endif ; ; Scan through the command line for anything that looks like we might be ; interested in. The original version of this code automatically assumed ; the first option was BOOT_IMAGE=, but that is no longer certain. ; mov si,cmd_line_here mov byte [initrd_flag],0 push es pop ds get_next_opt: lodsb and al,al jmpz cmdline_end cmp al,' ' jbe get_next_opt dec si mov eax,[si] cmp eax,'vga=' je is_vga_cmd cmp eax,'mem=' je is_mem_cmd push es ; Save ES->real_mode_seg push cs pop es ; Set ES <- normal DS mov di,initrd_cmd mov cx,initrd_cmd_len repe cmpsb jne not_initrd mov di,InitRD push si ; mangle_dir mangles si call mangle_name ; Mangle ramdisk name pop si cmp byte [InitRD],' ' ; Null filename? seta byte [initrd_flag] ; Set flag if not not_initrd: pop es ; Restore ES->real_mode_seg skip_this_opt: lodsb ; Load from command line cmp al,' ' ja skip_this_opt dec si jmp get_next_opt is_vga_cmd: add si,4 mov eax,[si] mov bx, -1 cmp eax, 'norm' ; vga=normal je vc0 and eax, 0ffffffh ; 3 bytes mov bx, -2 cmp eax, 'ext' ; vga=ext je vc0 mov bx, -3 cmp eax, 'ask' ; vga=ask je vc0 call parseint ; vga= jc skip_this_opt ; Not an integer vc0: mov [es:bs_vidmode],bx ; Set video mode jmp skip_this_opt is_mem_cmd: add si,4 call parseint jc skip_this_opt ; Not an integer shr ebx,10 ; Convert to kilobytes sub ebx,1024 ; Don't count first meg cmp ebx,14*1024 ; Only trust < 15M point jna memcmd_fair mov bx,14*1024 memcmd_fair: mov [HighMemSize],bx jmp skip_this_opt cmdline_end: push cs ; Restore standard DS pop ds ; ; Now check if we have a large kernel, which needs to be loaded high ; cmp dword [es:su_header],HEADER_ID ; New setup code ID jmpne old_kernel ; Old kernel, load low cmp word [es:su_version],0200h ; Setup code version 2.0 jmpb old_kernel ; Old kernel, load low cmp word [es:su_version],0201h ; Version 2.01+? jb new_kernel ; If 2.00, skip this step mov word [es:su_heapend],linux_stack ; Set up the heap or byte [es:su_loadflags],80h ; Let the kernel know we cared ; ; We definitely have a new-style kernel. Let the kernel know who we are, ; and that we are clueful ; new_kernel: mov byte [es:su_loader],syslinux_id ; Show some ID ; ; Now see if we have an initial RAMdisk; if so, do requisite computation ; test byte [initrd_flag],1 jz nk_noinitrd push es ; ES->real_mode_seg push ds pop es ; We need ES==DS mov si,InitRD mov di,InitRDCName call unmangle_name ; Create human-readable name sub di,InitRDCName mov [InitRDCNameLen],di mov di,InitRD call searchdir ; Look for it in directory pop es jz initrd_notthere mov [initrd_ptr],si ; Save cluster pointer mov [es:su_ramdisklen1],ax ; Ram disk length mov [es:su_ramdisklen2],dx div word [ClustSize] and dx,dx ; Round up setnz dl movzx dx,dl add ax,dx mov [InitRDClust],ax ; Ramdisk clusters mov eax,[es:su_ramdisklen] shr eax,10 ; Convert to kilobytes mov dx,[HighMemSize] ; End of memory add dx,1024 ; Add "low" memory sub dx,ax ; Subtract size of ramdisk and dx,0ffc0h ; Round down to 64K boundary shl dx,2 ; Convert to 256-byte blocks mov [InitRDat],dx ; Load address call loadinitrd ; Load initial ramdisk ; ; About to load the kernel, so print the kernel signon ; nk_noinitrd: mov si,KernelCName ; Print kernel name part of call cwritestr ; "Loading" message mov si,dotdot_msg ; Print dots call cwritestr test byte [es:su_loadflags],LOAD_HIGH ; Is high load flag set? jnz high_kernel ; Yes, load high jmp low_kernel ; No, load low initrd_notthere: mov si,err_noinitrd call writestr mov si,InitRDCName call writestr mov si,crlf jmp abort_load ; ; If we get here, we need to load kernel high ; no_high_mem: mov si,err_nohighmem ; Error routine jmp abort_load high_kernel: mov ax,[HighMemSize] cmp ax,[KernelK] jb no_high_mem ; Not enough high memory ; ; Move the stuff beyond the setup code to high memory at 100000h ; mov bx,1 ; 1 boot sector add bl,[es:bs_setupsecs] ; Plus setup sectors sbb bh,0 shl bx,1 ; Convert to 256-byte blocks mov ax,1080h ; 108000h = 1M + 32K sub ax,bx ; Adjust pointer to 2nd block mov [HiLoadAddr],ax shl bx,8 ; Convert to a byte address mov cx,4000h ; Cheating! Copy all 32K mov di,1000h ; Copy to address 100000h call upload ; Transfer to high memory ; push word xfer_buf_seg ; Segment 7000h is xfer buffer pop es high_load_loop: mov si,dot_msg ; Progress report call cwritestr call abort_check mov cx,[KernelClust] cmp cx,[ClustPerMoby] jna high_last_moby mov cx,[ClustPerMoby] high_last_moby: sub [KernelClust],cx xor bx,bx ; Load at offset 0 pop si ; Restore cluster pointer call getfssec push si ; Save cluster pointer pushf ; Save EOF xor bx,bx mov di,[HiLoadAddr] ; Destination address mov cx,8000h ; Cheating - transfer 64K call upload ; Transfer to high memory popf ; Restore EOF jc high_load_done ; If EOF we are done add word [HiLoadAddr],100h ; Point to next 64K cmp word [KernelClust],0 ; Are we done? jne high_load_loop ; Apparently not high_load_done: pop si ; No longer needed push word real_mode_seg pop es jmp load_done ; ; Load an older kernel. Older kernels always have 4 setup sectors, can't have ; initrd, and are always laoded low. ; old_kernel: test byte [initrd_flag],1 ; Old kernel can't have initrd jz low_kernel mov si,err_oldkernel jmp abort_load ; An old kernel is always loaded low... low_kernel: ; ; Low kernel: check that it will fit as a low kernel, ; save the vkernel buffers into high memory in case we abort the ; load, then transfer the kernel to low memory ; cmp word [KernelK],512 ; 512K maximum jna low_kernel_ok jmp kernel_corrupt low_kernel_ok: push es mov bx,vk_seg mov es,bx xor bx,bx mov di,1000h ; 100000h mov cx,8000h ; 64K call upload pop es mov byte [VKernelsHigh],1 ; VKernels now in high memory ; ; Transfer the already loaded protected-mode code down, then load the rest ; mov bx,1 ; 1 boot sector add bl,[es:bs_setupsecs] ; Plus setup sectors sbb bh,0 shl bx,5 ; Convert to a paragraph number push bx ; Save paragraph add bx,real_mode_seg push ds ; Save DS mov ds,bx mov ax,1000h ; New kernel start at... mov es,ax xor si,si xor di,di mov cx,2000h ; Cheating: copy 32K rep movsd ; Copy down non-setup code pop ds pop bx ; Segment count of setup mov ax,1800h ; Paragraph for moby 2 if ; setup is 0K sub ax,bx ; AX now = this moby segment loadmoby: mov si,dot_msg call cwritestr call abort_check pop si ; Restore cluster pointer mov cx,[KernelClust] cmp cx,[ClustPerMoby] jna last_moby mov cx,[ClustPerMoby] last_moby: sub [KernelClust],cx xor bx,bx ; Load at zero mov es,ax ; Segment address push ax ; Save segment address call getfssec pop ax jc load_done cmp word [KernelClust],0 jz load_done push si ; Save cluster pointer add ax,1000h ; Advance to next moby jmp loadmoby ; ; This is where both the high and low load routines end up after having ; loaded ; load_done: mov ax,real_mode_seg mov es,ax mov si,dot_msg call cwritestr ; ; If the default root device is set to FLOPPY (0000h), change to ; /dev/fd0 (0200h) ; cmp word [es:bs_rootdev],0 jne root_not_floppy mov word [es:bs_rootdev],0200h root_not_floppy: ; ; Copy the disk table to high memory, then re-initialize the floppy ; controller ; mov si,floppy_table mov di,linux_fdctab mov cx,3 ; 12 bytes push di rep movsd pop di cli mov [fdctab1],di ; Save new floppy tab pos mov [fdctab2],es sti xor ax,ax xor dx,dx int 13h ; ; Linux wants the floppy motor shut off before starting the kernel, ; at least bootsect.S seems to imply so ; kill_motor: mov dx,03F2h xor al,al out dx,al ; ; Now we're as close to be done as we can be and still use our normal ; routines, print a CRLF to end the row of dots ; call abort_check ; Last chance!! mov si,crlf call writestr ; ; If we're debugging, wait for a keypress so we can read any debug messages ; %ifdef debug xor ax,ax int 16h %endif ; ; Set up segment registers and the Linux real-mode stack ; mov ax,real_mode_seg mov ds,ax mov es,ax mov fs,ax mov gs,ax cli mov ss,ax mov sp,linux_stack sti ; ; We're done... now RUN THAT KERNEL!!!! ; jmp setup_seg:setup_entry ; ; cwritestr: write a null-terminated string to the console, saving ; registers on entry (we can't use this in the boot sector, ; since we haven't verified 386-ness yet) ; cwritestr: pusha cwstr_1: lodsb and al,al jz cwstr_2 mov ah,0Eh ; Write to screen as TTY mov bx,0007h ; White on black, current page int 10h jmp short cwstr_1 cwstr_2: popa ret ; ; Load RAM disk into high memory ; loadinitrd: push es ; Save ES on entry mov ax,real_mode_seg mov es,ax mov si,[initrd_ptr] and si,si mov di,[InitRDat] ; initrd load address movzx eax,di shl eax,8 ; Convert to bytes mov [es:su_ramdiskat],eax ; Offset for ram disk push si mov si,InitRDCName ; Write ramdisk name call cwritestr mov si,dotdot_msg ; Write dots call cwritestr rd_load_loop: mov si,dot_msg ; Progress report call cwritestr pop si ; Restore cluster pointer call abort_check mov cx,[InitRDClust] cmp cx,[ClustPerMoby] jna rd_last_moby mov cx,[ClustPerMoby] rd_last_moby: sub [InitRDClust],cx xor bx,bx ; Load at offset 0 push word xfer_buf_seg ; Bounce buffer segment pop es call getfssec push si ; Save cluster pointer pushf ; Remember EOF mov si,prot_xfer_gdt xor bx,bx mov di,[InitRDat] mov cx,8000h ; Always transfer 64K call upload popf jc rd_load_done ; EOF? add word [InitRDat],100h ; Point to next 64K cmp word [InitRDClust],0 ; Are we done? jne rd_load_loop ; Apparently not rd_load_done: pop si ; Clean up the stack mov si,crlf_msg call writestr mov si,loading_msg ; Write new "Loading " for call writestr ; the benefit of the kernel pop es ; Restore original ES ret ; ; upload: upload a chunk of data to high memory ; es:bx = source address ; di = linear target address (x 256) ; cx = count (words) - max 8000h for now ; upload: pushad push es mov eax,09300000h ; Compute linear base [93h in field mov ax,es ; right beyond the 3-byte address shl eax,4 ; field! movzx ebx,bx add eax,ebx mov dword [px_src_low],eax ul_dl: push cs ; Set ES=CS (=DS) pop es mov [px_dst],di ; Save destination address push cx ; Save count xor eax,eax mov di,px_wipe_1 mov cx,4 stosd mov di,px_wipe_2 mov cx,4 stosd pop cx mov si,prot_xfer_gdt mov ah,87h int 15h jc ul_error pop es popad ret ul_error: pop ax ; Leave ES=CS (=DS) popad mov si,err_highload jmp abort_load ; ; download: same as upload, except si = linear source address (x 256) ; currently used only to recover the vkernels in case of an ; aborted low-kernel load (don't you love corner cases?) ; download: pushad push es mov byte [px_src_low],0 mov [px_src],si jmp ul_dl ; ; GDT for protected-mode transfers (int 15h AH=87h). Note that the low ; 8 bits are set to zero in all transfers, so they never change in this ; block. ; align 4 prot_xfer_gdt equ $ px_wipe_1 times 16 db 0 ; Reserved dw 0FFFFh ; Limit: 64K px_src_low db 0 ; Low 8 bits of source address px_src dw 0 ; High 16 bits of source address db 93h ; Segment access flags dw 0 ; Reserved dw 0FFFFh ; Limit: 64K px_dst_low db 00h ; Low 8 bits of destination address px_dst dw 0 ; High 16 bits of destination address db 93h ; Segment access flags dw 0 ; Reserved px_wipe_2 times 16 db 0 ; Reserved ; ; abort_check: let the user abort with or ; abort_check: pusha ac1: mov ah,1 ; Check for pending keystroke int 16h jz ac_ret ; If no pending keystroke xor ax,ax ; Load pending keystroke int 16h cmp al,27 ; aborts (DOS geeks) je ac2 cmp al,3 ; So does Ctrl-C (UNIX geeks) jne ac1 ; Unknown key... try again ac2: ; If we get here, ABORT! mov si,aborted_msg ; Fall through to abort_load ; ; abort_load: Called by various routines which wants to print a fatal ; error message and return to the command prompt. Since this ; may happen at just about any stage of the boot process, assume ; our state is messed up, and just reset the segment registers ; and the stack forcibly. ; ; SI = offset (in _text) of error message to print ; abort_load: mov ax,cs ; Restore CS = DS = ES mov ds,ax mov es,ax cli mov sp,StackBuf-2*3 ; Reset stack mov ss,ax ; Just in case... sti call writestr ; Expects SI -> error msg cmp byte [VKernelsHigh],0 je al_ok mov si,1000h ; VKernels stashed high mov di,vk_seg ; Recover shr di,4 mov cx,8000h call download mov byte [VKernelsHigh],0 al_ok: jmp enter_command ; Return to command prompt ; ; End of abort_check ; ac_ret: popa ret ; ; searchdir: Search the root directory for a pre-mangled filename in ; DS:DI. This routine is similar to the one in the boot ; sector, but is a little less Draconian when it comes to ; error handling, plus it reads the root directory in ; larger chunks than a sector at a time (which is probably ; a waste of coding effort, but I like to do things right). ; ; NOTE: This file considers finding a zero-length file an ; error. This is so we don't have to deal with that special ; case elsewhere in the program (most loops have the test ; at the end). ; ; If successful: ; ZF clear ; SI = cluster # for the first cluster ; DX:AX = file length in bytes ; If unsuccessful ; ZF set ; searchdir: mov ax,[bsRootDirEnts] mov [DirScanCtr],ax mov ax,[RootDirSize] mov [DirBlocksLeft],ax mov ax,[RootDir1] mov dx,[RootDir2] scan_group: mov bp,[DirBlocksLeft] and bp,bp jz dir_return cmp bp,[BufSafeSec] jna load_last mov bp,[BufSafeSec] load_last: sub [DirBlocksLeft],bp push ax push dx mov ax,[bsBytesPerSec] mul bp add ax,trackbuf-31 mov [EndofDirSec],ax ; End of loaded pop dx pop ax push bp ; Save number of sectors push ax ; Save present location push dx push di ; Save name mov bx,trackbuf call getlinsec pop di pop dx pop ax pop bp mov si,trackbuf dir_test_name: cmp byte [si],0 ; Directory high water mark je dir_return ; Failed test byte [si+11],010h ; Check it really is a file jnz dir_not_this push di push si mov cx,11 ; Filename = 11 bytes repe cmpsb pop si pop di je dir_success dir_not_this: add si,32 dec word [DirScanCtr] jz dir_return ; Out of it... cmp si,[EndofDirSec] jb dir_test_name add ax,bp ; Increment linear sector number adc dx,0 jmp scan_group dir_success: mov ax,[si+28] ; Length of file mov dx,[si+30] mov si,[si+26] ; Cluster pointer mov bx,ax or bx,dx ; Sets ZF iff DX:AX is zero dir_return: ret ; ; writechr: Write a single character in AL to the screen without ; mangling any registers ; writechr: pusha mov ah,0Eh mov bx,0007h ; white text on this page int 10h popa ret ; ; get_msg_file: Load a text file and write its contents to the screen, ; interpreting color codes. Is called with SI and DX:AX ; set by routine searchdir ; get_msg_file: mov word [NextCharJump],msg_putchar ; State machine for color mov byte [TextAttribute],07h ; Default grey on white pusha mov bh,[TextPage] mov ah,03h ; Read cursor position int 10h mov [CursorDX],dx popa get_msg_chunk: push ax ; DX:AX = length of file push dx mov bx,trackbuf mov cx,[BufSafe] call getfssec pop dx pop ax push si ; Save current cluster mov si,trackbuf mov cx,[BufSafeBytes] ; No more than many bytes print_msg_file: push cx push ax push dx lodsb cmp al,1Ah ; ASCII EOF? je msg_done_pop call [NextCharJump] ; Do what shall be done pop dx pop ax pop cx sub ax,1 sbb dx,0 mov bx,ax or bx,dx jz msg_done loop print_msg_file pop si jmp get_msg_chunk msg_done_pop: add sp,6 ; Lose 3 words on the stack msg_done: pop si ret msg_putchar: ; Normal character cmp al,0Fh ; ^O = color code follows je msg_ctrl_o cmp al,0Dh ; Ignore je msg_ignore cmp al,0Ah ; = newline je msg_newline cmp al,0Ch ; = clear screen je msg_formfeed mov bx,[TextAttrBX] mov ah,09h ; Write character/attribute mov cx,1 ; One character only int 10h ; Write to screen mov al,[CursorCol] inc ax cmp al,[VidCols] ja msg_newline mov [CursorCol],al msg_gotoxy: mov bh,[TextPage] mov dx,[CursorDX] mov ah,02h ; Set cursor position int 10h msg_ignore: ret msg_ctrl_o: ; ^O = color code follows mov word [NextCharJump],msg_setbg ret msg_newline: ; Newline char or end of line mov byte [CursorCol],0 mov al,[CursorRow] inc ax cmp al,[VidRows] ja msg_scroll mov [CursorRow],al jmp msg_gotoxy msg_scroll: xor cx,cx ; Upper left hand corner mov dx,[ScreenSize] mov [CursorRow],dh ; New cursor at the bottom mov bh,[TextAttribute] mov ax,0601h ; Scroll up one line int 10h jmp msg_gotoxy msg_formfeed: ; Form feed character xor cx,cx mov [CursorDX],cx ; Upper lefthand corner mov dx,[ScreenSize] mov bh,[TextAttribute] mov ax,0600h ; Clear screen region int 10h jmp msg_gotoxy msg_setbg: ; Color background character call unhexchar jc msg_color_bad shl al,4 mov [TextAttribute],al mov word [NextCharJump],msg_setfg ret msg_setfg: ; Color foreground character call unhexchar jc msg_color_bad or [TextAttribute],al ; setbg set foreground to 0 mov word [NextCharJump],msg_putchar ret msg_color_bad: mov byte [TextAttribute],07h ; Default attribute mov word [NextCharJump],msg_putchar ret ; ; open,getc: Load a file a character at a time for parsing in a manner ; similar to the C library getc routine. Only one simultaneous ; use is supported. Note: "open" trashes the trackbuf. ; ; open: Input: mangled filename in DS:DI ; Output: ZF set on file not found or zero length ; ; getc: Output: CF set on end of file ; Character loaded in AL ; open: call searchdir jz open_return pushf mov [FBytes1],ax mov [FBytes2],dx add ax,[ClustSize] adc dx,0 sub ax,1 sbb dx,0 div word [ClustSize] mov [FClust],ax ; Number of clusters mov [FNextClust],si ; Cluster pointer mov ax,[EndOfGetCBuf] ; Pointer at end of buffer -> mov [FPtr],ax ; nothing loaded yet popf ; Restore no ZF open_return: ret ; getc: mov ecx,[FBytes] jecxz getc_end mov si,[FPtr] cmp si,[EndOfGetCBuf] jb getc_loaded ; Buffer empty -- load another set mov cx,[FClust] cmp cx,[BufSafe] jna getc_oksize mov cx,[BufSafe] getc_oksize: sub [FClust],cx ; Reduce remaining clusters mov si,[FNextClust] mov bx,getcbuf push bx push es ; ES may be != DS, save old ES push ds ; Trackbuf is in DS, not ES pop es call getfssec ; Load a trackbuf full of data mov [FNextClust],si ; Store new next pointer pop es ; Restore ES pop si ; SI -> newly loaded data getc_loaded: lodsb ; Load a byte mov [FPtr],si ; Update next byte pointer dec dword [FBytes] ; Update bytes left counter (CF = 1) getc_end: cmc ; Set CF = 1 on EOF, 0 if not ret ; ; ungetc: Push a character (in AL) back into the getc buffer ; Note: if more than one byte is pushed back, this may cause ; bytes to be written below the getc buffer boundary. If there ; is a risk for this to occur, the getcbuf base address should ; be moved up. ; ungetc: mov si,[FPtr] dec si mov [si],al mov [FPtr],si inc dword [FBytes] ret ; ; skipspace: Skip leading whitespace using "getc". If we hit end-of-line ; or end-of-file, return with carry set; ZF = true of EOF ; ZF = false for EOLN; otherwise CF = ZF = 0. ; ; Otherwise AL = first character after whitespace ; skipspace: skipspace_loop: call getc jc skipspace_eof cmp al,1Ah ; DOS EOF je skipspace_eof cmp al,0Ah je skipspace_eoln cmp al,' ' jbe skipspace_loop ret ; CF = ZF = 0 skipspace_eof: cmp al,al ; Set ZF stc ; Set CF ret skipspace_eoln: add al,0FFh ; Set CF, clear ZF ret ; ; getkeyword: Get a keyword from the current "getc" file; only the two ; first characters are considered significant. ; ; Lines beginning with ASCII characters 33-47 are treated ; as comments and ignored; other lines are checked for ; validity by scanning through the keywd_table. ; ; The keyword and subsequent whitespace is skipped. ; ; On EOF, CF = 1; otherwise, CF = 0, AL:AH = lowercase char pair ; getkeyword: gkw_find: call skipspace jz gkw_eof ; end of file jc gkw_find ; end of line: try again cmp al,'0' jb gkw_skipline ; skip comment line push ax call getc pop bx jc gkw_eof mov bh,al ; Move character pair into BL:BH or bx,2020h ; Lower-case it mov si,keywd_table gkw_check: lodsw and ax,ax jz gkw_badline ; Bad keyword, write message cmp ax,bx jne gkw_check push ax gkw_skiprest: call getc jc gkw_eof_pop cmp al,'0' ja gkw_skiprest call ungetc call skipspace jz gkw_eof_pop jc gkw_missingpar ; Missing parameter after keyword call ungetc ; Return character to buffer clc ; Successful return gkw_eof_pop: pop ax gkw_eof: ret ; CF = 1 on all EOF conditions gkw_missingpar: pop ax mov si,err_noparm call writestr jmp gkw_find gkw_badline_pop: pop ax gkw_badline: mov si,err_badcfg call writestr jmp gkw_find gkw_skipline: cmp al,10 ; Scan for LF je gkw_find call getc jc gkw_eof jmp gkw_skipline ; ; getint: Load an integer from the getc file. ; Return CF if error; otherwise return integer in EBX ; getint: mov di,NumBuf gi_getnum: cmp di,[NumBufEnd] ; Last byte in NumBuf jae gi_loaded push di call getc pop di jc gi_loaded stosb cmp al,'-' jnb gi_getnum call ungetc ; Unget non-numeric gi_loaded: mov byte [di],0 mov si,NumBuf ; Fall through to parseint ; ; parseint: Convert an integer to a number in EBX ; Get characters from string in DS:SI ; Return CF on error ; DS:SI points to first character after number ; ; Syntaxes accepted: [-]dec, [-]0+oct, [-]0x+hex, val+K, val+M ; parseint: push eax push ecx push bp xor eax,eax ; Current digit (keep eax == al) mov ebx,eax ; Accumulator mov ecx,ebx ; Base xor bp,bp ; Used for negative flag pi_begin: lodsb cmp al,'-' jne pi_not_minus xor bp,1 ; Set unary minus flag jmp pi_begin pi_not_minus: cmp al,'0' jb pi_err je pi_octhex cmp al,'9' ja pi_err mov cl,10 ; Base = decimal jmp pi_foundbase pi_octhex: lodsb cmp al,'0' jb pi_km ; Value is zero or al,20h ; Downcase cmp al,'x' je pi_ishex cmp al,'7' ja pi_err mov cl,8 ; Base = octal jmp pi_foundbase pi_ishex: mov al,'0' ; No numeric value accrued yet mov cl,16 ; Base = hex pi_foundbase: call unhexchar jc pi_km ; Not a (hex) digit cmp al,cl jae pi_km ; Invalid for base imul ebx,ecx ; Multiply accumulated by base add ebx,eax ; Add current digit lodsb jmp pi_foundbase pi_km: dec si ; Back up to last non-numeric lodsb or al,20h cmp al,'k' je pi_isk cmp al,'m' je pi_ism dec si ; Back up pi_fini: and bp,bp jz pi_ret ; CF=0! neg ebx ; Value was negative pi_done: clc pi_ret: pop bp pop ecx pop eax ret pi_err: stc jmp pi_ret pi_isk: shl ebx,10 ; x 2^10 jmp pi_done pi_ism: shl ebx,20 ; x 2^20 jmp pi_done ; ; unhexchar: Convert a hexadecimal digit in AL to the equivalent number; ; return CF=1 if not a hex digit ; unhexchar: cmp al,'0' jb uxc_err cmp al,'9' ja uxc_1 sub al,'0' ; CF=0 ret uxc_1: cmp al,'A' jb uxc_err cmp al,'F' ja uxc_2 sub al,'A'-10 ; CF=0 ret uxc_2: cmp al,'a' jb uxc_err cmp al,'f' ja uxc_err sub al,'a'-10 ; CF=0 ret uxc_err: stc ret ; ; ; getline: Get a command line, converting control characters to spaces ; and collapsing streches to one; a space is appended to the ; end of the string, unless the line is empty. ; The line is terminated by ^J, ^Z or EOF and is written ; to ES:DI. On return, DI points to first char after string. ; CF is set if we hit EOF. ; getline: call skipspace mov dl,1 ; Empty line -> empty string. jz gl_eof ; eof jc gl_eoln ; eoln call ungetc gl_fillloop: push dx push di call getc pop di pop dx jc gl_ret ; CF set! cmp al,' ' jna gl_ctrl xor dx,dx gl_store: stosb jmp gl_fillloop gl_ctrl: cmp al,10 je gl_ret ; CF clear! cmp al,26 je gl_eof and dl,dl jnz gl_fillloop ; Ignore multiple spaces mov al,' ' ; Ctrl -> space inc dx jmp gl_store gl_eoln: clc ; End of line is not end of file jmp gl_ret gl_eof: stc gl_ret: pushf ; We want the last char to be space! and dl,dl jnz gl_xret mov al,' ' stosb gl_xret: popf ret %ifdef debug ; This code for debugging only ; ; dumpregs: Dumps the contents of all registers ; assume ds:_text, es:NOTHING, fs:NOTHING, gs:NOTHING dumpregs proc near ; When calling, IP is on stack pushf ; Store flags pusha push ds push es push fs push gs push cs ; Set DS <- CS pop ds cld ; Clear direction flag mov si,offset crlf call writestr mov bx,sp add bx,26 mov si,offset regnames mov cx,2 ; 2*7 registers to dump dump_line: push cx mov cx,7 ; 7 registers per line dump_reg: push cx mov cx,4 ; 4 characters/register name wr_reg_name: lodsb call writechr loop wr_reg_name mov ax,ss:[bx] dec bx dec bx call writehex pop cx loop dump_reg mov al,0Dh ; call writechr mov al,0Ah ; call writechr pop cx loop dump_line pop gs pop fs pop es pop ds popa ; Restore the remainder popf ; Restore flags ret dumpregs endp regnames db ' IP: FL: AX: CX: DX: BX: SP: BP: SI: DI: DS: ES: FS: GS:' ; ; writehex: Writes a 16-bit hexadecimal number (in AX) ; writehex proc near push bx push cx mov cx,4 ; 4 numbers write_hexdig: xor bx,bx push cx mov cx,4 ; 4 bits/digit xfer_digit: shl ax,1 rcl bx,1 loop xfer_digit push ax mov ax,bx or al,'0' cmp al,'9' jna ok_digit add al,'A'-'0'-10 ok_digit: call writechr pop ax pop cx loop write_hexdig pop cx pop bx ret writehex endp debug_magic dw 0D00Dh %endif ; debug ; ; mangle_name: Mangle a DOS filename pointed to by DS:SI into a buffer pointed ; to by ES:DI; ends on encountering any whitespace ; mangle_name: mov cx,11 ; # of bytes to write mn_loop: lodsb cmp al,' ' ; If control or space, end jna mn_end cmp al,'.' ; Period -> space-fill je mn_is_period cmp al,'a' jb mn_not_lower cmp al,'z' ja mn_not_uslower sub al,020h jmp short mn_not_lower mn_is_period: mov al,' ' ; We need to space-fill mn_period_loop: cmp cx,3 ; If <= 3 characters left jbe mn_loop ; Just ignore it stosb ; Otherwise, write a period loop mn_period_loop ; Dec CX and (always) jump mn_not_uslower: cmp al,ucase_low jb mn_not_lower cmp al,ucase_high ja mn_not_lower mov bx,ucase_tab-ucase_low cs xlatb mn_not_lower: stosb loop mn_loop ; Don't continue if too long mn_end: mov al,' ' ; Space-fill name rep stosb ; Doesn't do anything if CX=0 ret ; Done ; ; Upper-case table for extended characters; this is technically code page 865, ; but code page 437 users will probably not miss not being able to use the ; cent sign in kernel images too much :-) ; ; The table only covers the range 129 to 164; the rest we can deal with. ; ucase_low equ 129 ucase_high equ 164 ucase_tab db 154, 144, 'A', 142, 'A', 143, 128, 'EEEIII' db 142, 143, 144, 146, 146, 'O', 153, 'OUUY', 153, 154 db 157, 156, 157, 158, 159, 'AIOU', 165 ; ; unmangle_name: Does the opposite of mangle_name; converts a DOS-mangled ; filename to the conventional representation. This is needed ; for the BOOT_IMAGE= parameter for the kernel. ; NOTE: A 13-byte buffer is mandatory, even if the string is ; known to be shorter. ; ; DS:SI -> input mangled file name ; ES:DI -> output buffer ; ; On return, DI points to the first byte after the output name, ; which is set to a null byte. ; unmangle_name: push si ; Save pointer to original name mov cx,8 mov bp,di un_copy_body: lodsb call lower_case stosb cmp al,' ' jbe un_cb_space mov bp,di ; Position of last nonblank+1 un_cb_space: loop un_copy_body mov di,bp mov al,'.' ; Don't save stosb mov cx,3 un_copy_ext: lodsb call lower_case stosb cmp al,' ' jbe un_ce_space mov bp,di un_ce_space: loop un_copy_ext mov di,bp mov byte [es:di], 0 pop si ret ; ; lower_case: Lower case a character in AL ; lower_case: cmp al,'A' jb lc_ret cmp al,'Z' ja lc_1 or al,20h ret lc_1: cmp al,lcase_low jb lc_ret cmp al,lcase_high ja lc_ret push bx mov bx,lcase_tab-lcase_low cs xlatb pop bx lc_ret: ret ; ; Lower-case table for codepage 865 ; lcase_low equ 128 lcase_high equ 165 lcase_tab db 135, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138 db 139, 140, 141, 132, 134, 130, 145, 145, 147, 148, 149 db 150, 151, 152, 148, 129, 155, 156, 155, 158, 159, 160 db 161, 162, 163, 164, 164 ; ; Various initialized or semi-initialized variables ; boot_prompt db 'boot: ',0 wipe_char db 08h, ' ', 08h, 0 err_notfound db 'Could not find kernel image: ',0 err_notkernel db 0Dh, 0Ah, 'Invalid or corrupt kernel image: ',0 err_not386 db 'It appears your computer uses a 286 or lower CPU.' db 0Dh, 0Ah db 'You cannot run Linux unless you have a 386 or higher CPU' db 0Dh, 0Ah db 'in your machine. If you get this message in error, hold' db 0Dh, 0Ah db 'down the Ctrl key while booting, and I will take your' db 0Dh, 0Ah db 'word for it.', 0Dh, 0Ah, 0 err_noram db 'It appears your computer has less than 608K of low ("DOS")' db 0Dh, 0Ah db 'RAM. Linux needs at least this amount to boot. If you get' db 0Dh, 0Ah db 'this message in error, hold down the Ctrl key while' db 0Dh, 0Ah db 'booting, and I will take your word for it.', 0Dh, 0Ah, 0 err_badcfg db 'Unknown keyword in syslinux.cfg.', 0Dh, 0Ah, 0 err_noparm db 'Missing parameter in syslinux.cfg.', 0Dh, 0Ah, 0 err_noinitrd db 0Dh, 0Ah, 'Could not find ramdisk image: ', 0 err_nohighmem db 'Not enough memory to load specified kernel.', 0Dh, 0Ah, 0 err_highload db 0Dh, 0Ah, 'Kernel transfer failure.', 0Dh, 0Ah, 0 err_oldkernel db 'Cannot load a ramdisk with an old kernel image.' db 0Dh, 0Ah, 0 loading_msg db 'Loading ', 0 dotdot_msg db '.' dot_msg db '.', 0 aborted_msg db ' aborted.' ; Fall through to crlf_msg! crlf_msg db 0Dh, 0Ah, 0 syslinux_cfg db 'SYSLINUXCFG' ; ; Command line options we'd like to take a look at ; ; mem= and vga= are handled as normal 32-bit integer values initrd_cmd db 'initrd=' initrd_cmd_len equ 7 ; ; Config file keyword table ; align 2 keywd_table db 'ap' ; append db 'de' ; default db 'ti' ; timeout db 'di' ; display db 'pr' ; prompt db 'la' ; label db 'ke' ; kernel db 'im' ; implicit db 'f1' ; F1 db 'f2' ; F2 db 'f3' ; F3 db 'f4' ; F4 db 'f5' ; F5 db 'f6' ; F6 db 'f7' ; F7 db 'f8' ; F8 db 'f9' ; F9 db 'f0' ; F10 dw 0 ; ; Misc initialized (data) variables ; AppendLen dw 0 ; Bytes in append= command KbdTimeOut dw 0 ; Keyboard timeout (if any) FKeyMap dw 0 ; Bitmap for F-keys loaded CmdLinePtr dw cmd_line_here ; Command line advancing pointer initrd_flag equ $ initrd_ptr dw 0 ; Initial ramdisk pointer/flag VKernelCtr dw 0 ; Number of registered vkernels ForcePrompt dw 0 ; Force prompt AllowImplicit dw 1 ; Allow implicit kernels VKernelsHigh db 0 ; vkernel buffers in high memory ; ; Stuff for the command line; we do some trickery here with equ to avoid ; tons of zeros appended to our file and wasting space ; linuxauto_cmd db 'linux ' auto_cmd db 'auto',0 linuxauto_len equ $-linuxauto_cmd auto_len equ $-auto_cmd boot_image db 'BOOT_IMAGE=' boot_image_len equ $-boot_image align 4 ; For the good of REP MOVSD command_line equ $ default_cmd equ $+(max_cmd_len+2) ldlinux_end equ default_cmd+(max_cmd_len+1) kern_cmd_len equ ldlinux_end-command_line ldlinux_len equ ldlinux_end-ldlinux_magic ; ; Put the FAT right after the code, aligned on a sector boundary ; end_of_code equ (ldlinux_end-bootsec)+7C00h FAT equ (end_of_code + 511) & 0FE00h ; ; Put getc buffer right after FAT (the FAT buffer is 6K, the max size ; of a 12-bit FAT) ; getcbuf equ FAT+6*1024