

SWIG Users Guide

SWIG and Perl5

115

SWIG and Perl5 8
In this chapter, we discuss SWIG’s support of Perl5. While the Perl5 module is one of the earliest
SWIG modules, it has continued to evolve and has been improved greatly with the help of SWIG
users. For the best results, it is recommended that SWIG be used with Perl5.003 or later. Earlier
versions are problematic and SWIG generated extensions may not compile or run correctly.

Preliminaries
In order for this section to make much sense, you will need to have Perl5.002 (or later) installed
on your system. You should also determine if your version of Perl has been configured to use
dynamic loading or not. SWIG will work with or without it, but the compilation process will be
different.

Running SWIG
To build a Perl5 module, run swig using the -perl5 option as follows :

swig -perl5 example.i

This will produce 3 files. The first file, example_wrap.c contains all of the C code needed to
build a Perl5 module. The second file, example.pm contains supporting Perl code needed to
properly load the module into Perl. The third file will be a documentation file (the exact filename
depends on the documentation style). To finish building a module, you will need to compile the
file example_wrap.c and link it with the rest of your program (and possibly Perl itself). There
are several methods for doing this.

Getting the right header files
In order to compile, you will need to use the following Perl5 header files :

#include “Extern.h”
#include “perl.h”
#include “XSUB.h”

These are usually located in a directory like this

/usr/local/lib/perl5/arch-osname/5.003/CORE

The SWIG configuration script will try to find this directory, but it’s not entirely foolproof. You
may have to dig around yourself.
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Perl5

116

Compiling a dynamic module
To compile a dynamically loadable module, you will need to do something like the following,

% gcc example.c
% gcc example_wrap.c -I/usr/local/lib/perl5/arch-osname/5.003/CORE

-Dbool=char -c
% ld -shared example.o example_wrap.o -o example.so # Irix

The name of the shared object file must match the module name used in the SWIG interface file.
If you used ‘%module example’, then the target should be named ‘example.so’, ‘exam-
ple.sl’, or the appropriate name on your system (check the man pages for the linker).

Unfortunately, the process of building dynamic modules varies on every single machine. Both
the C compiler and linker may need special command line options. SWIG tries to guess how to
build dynamic modules on your machine in order to run its example programs. Again, the con-
figure script isn’t foolproof .

Building a dynamic module with MakeMaker
It is also possible to use Perl to build dynamically loadable modules for you using the Make-
Maker utility. To do this, write a simple Perl script such as the following :

File : Makefile.PL
use ExtUtils::MakeMaker;
WriteMakefile(

‘NAME’ => ‘example’, # Name of package
‘LIBS’ => [‘-lm’], # Name of custom libraries
‘OBJECT’ => ‘example.o example_wrap.o’ # Object files

);

Now, to build a module, simply follow these steps :

% perl Makefile.PL
% make
% make install

This is the preferred approach if you building general purpose Perl5 modules for distribution.
More information about MakeMaker can be found in “Programming Perl, 2nd ed.” by Larry
Wall, Tom Christiansen, and Randal Schwartz.

Building a static version of Perl
If you machine does not support dynamic loading, or if you’ve tried to use it without success,
you can build a new version of the Perl interpreter with your SWIG extensions added to it. To
build a static extension, you first need to invoke SWIG as follows :

% swig -perl5 -static example.i

By default SWIG includes code for dynamic loading, but the -static option takes it out.

Next, you will need to supply a main() function that initializes your extension and starts the
Perl interpreter. While, this may sound daunting, SWIG can do this for you automatically as fol-
lows :
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Perl5

117

%module example

extern double My_variable;
extern int fact(int);

// Include code for rebuilding Perl
%include perlmain.i

The same thing can be accomplished by running SWIG as follows :

% swig -perl5 -static -lperlmain.i example.i

The permain.i file inserts Perl’s main() function into the wrapper code and automatically ini-
tializes the SWIG generated module. If you just want to make a quick a dirty module, this may
be the easiest way. By default, the perlmain.i code does not initialize any other Perl exten-
sions. If you need to use other packages, you will need to modify it appropriately. You can do
this by just copying perlmain.i out of the SWIG library, placing it in your own directory, and
modifying it to suit your purposes.

To build your new Perl executable, follow the exact same procedure as for a dynamic module,
but change the link line as follows :

% ld example.o example_wrap.o -L/usr/local/lib/perl5/arch/5.003/CORE \
-lperl -lsocket -lnsl -lm -o myperl

This will produce a new version of Perl called myperl. It should be functionality identical to
Perl with your C/C++ extension added to it. Depending on your machine, you may need to link
with additional libraries such as -lsocket, -lnsl, -ldl, etc...

Compilation problems and compiling with C++
In some cases, you may get alot of error messages about the ‘bool’ datatype when compiling a
SWIG module. If you experience this problem, you can try the following :

• Use -DHAS_BOOL when compiling the SWIG wrapper code
• Or use -Dbool=char when compiling.

Compiling dynamic modules for C++ is also a tricky business. When compiling C++ modules,
you may need to link using the C++ compiler such as :

unix > c++ -shared example_wrap.o example.o -o example.so

It may also be necessary to link against the libgcc.a, libg++.a, and libstdc++.a libraries
(assuming g++). C++ may also complain about one line in the Perl header file “perl.h” and the
invalid use of the “explicit” keyword. To work around this problem, put the option -Dex-
plicit= in your compiler flags.

If all else fails, put on your wizard cap and start looking around in the header files. Once you’ve
figured out how to get one module to compile, you can compile just about all other modules.
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Perl5

118

Building Perl Extensions under Windows 95/NT
Building a SWIG extension to Perl under Windows 95/NT is roughly similar to the process used
with Unix. Normally, you will want to produce a DLL that can be loaded into the Perl inter-
preter. This section assumes you are using SWIG with Microsoft Visual C++ 4.x although the
procedure may be similar with other compilers. SWIG currently supports the ActiveWare Perl
for Win32 port and Perl 5.004. If using the ActiveWare version, all Perl extensions must be com-
piled using C++!

Running SWIG from Developer Studio
If you are developing your application within Microsoft developer studio, SWIG can be invoked
as a custom build option. The process roughly requires these steps :

• Open up a new workspace and use the AppWizard to select a DLL project.
• Add both the SWIG interface file (the .i file), any supporting C files, and the name of the

wrapper file that will be created by SWIG (ie. example_wrap.c). Note : If using C++,
choose a different suffix for the wrapper file such as example_wrap.cxx. Don’t worry if
the wrapper file doesn’t exist yet--Developer studio will keep a reference to it around.

• Select the SWIG interface file and go to the settings menu. Under settings, select the
“Custom Build” option.

• Enter “SWIG” in the description field.
• Enter “swig -perl5 -o $(ProjDir)\$(InputName)_wrap.cxx $(Input-

Path)” in the “Build command(s) field”
• Enter “$(ProjDir)\$(InputName)_wrap.cxx” in the “Output files(s) field”.
• Next, select the settings for the entire project and go to “C++:Preprocessor”. Add the

include directories for your Perl 5 installation under “Additional include directories”.
• Define the symbols WIN32 and MSWIN32 under preprocessor options. If using the

ActiveWare port, also define the symbol PERL_OBJECT. Note that all extensions to the
ActiveWare port must be compiled with the C++ compiler since Perl has been encapsu-
lated in a C++ class.

• Finally, select the settings for the entire project and go to “Link Options”. Add the Perl
library file to your link libraries. For example “perl.lib”. Also, set the name of the output
file to match the name of your Perl module (ie. example.dll).

• Build your project.

Now, assuming all went well, SWIG will be automatically invoked when you build your project.
Any changes made to the interface file will result in SWIG being automatically invoked to pro-
duce a new version of the wrapper file. To run your new Perl extension, simply run Perl and use
the use command as normal. For example :

DOS > perl
use example;
$a = example::fact(4);
print “$a\n”;

It appears that DLL’s will work if they are placed in the current working directory. To make a
generally DLL available, it should be place (along with its support files) in the
Lib\Auto\[module] sub-directory of the Perl directory where [module] is the name of your
module.
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Perl5

119

Using NMAKE
Alternatively, SWIG extensions can be built by writing a Makefile for NMAKE. To do this, make
sure the environment variables for MSVC++ are available and the MSVC++ tools are in your
path. Now, just write a short Makefile like this :

Makefile for building an ActiveWare Perl for Win32 extension
Note : Extensions must be compiled with the C++ compiler!

SRCS = example.cxx
IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE = $(IFILE)_wrap.cxx

Location of the Visual C++ tools (32 bit assumed)

TOOLS = c:\msdev
TARGET = example.dll
CC = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = -I$(TOOLS)\include
MACHINE = IX86

C Library needed to build a DLL

DLLIBC = msvcrt.lib oldnames.lib

Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib
winspool.lib

Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)

Linker options
LOPT = -debug:full -debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO /
MACHINE:$(MACHINE) -entry:_DllMainCRTStartup@12 -dll

C compiler flags

CFLAGS = /Z7 /Od /c /W3 /nologo

Perl 5.004
PERL_INCLUDE = -Id:\perl5\lib\CORE
PERLLIB = d:\perl5\lib\CORE\perl.lib
PERLFLAGS = /DWIN32 /DMSWIN32 /DWIN32IO_IS_STDIO

ActiveWare
PERL_INCLUDE = -Id:\perl -Id:\perl\inc
PERL_LIB = d:\perl\Release\perl300.lib
PERLFLAGS = /DWIN32 /DMSWIN32 /DPERL_OBJECT

perl::
..\..\swig -perl5 -o $(WRAPFILE) $(INTERFACE)
$(CC) $(CFLAGS) $(PERLFLAGS) $(PERL_INCLUDE) $(SRCS) $(WRAPFILE)
set LIB=$(TOOLS)\lib
$(LINK) $(LOPT) -out:example.dll $(LIBS) $(PERLLIB) example.obj

example_wrap.obj
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Perl5

120

To build the extension, run NMAKE (note that you may be to run vcvars32 before doing this to
set the correct environment variables). This is a simplistic Makefile, but hopefully its enough to
get you started.

Modules, packages, and classes
When you create a SWIG extension, everything gets thrown together into a single Perl5 module.
The name of the module is determined by the %module directive. To use the module, do the fol-
lowing :

% perl5
use example; # load the example module
print example::fact(4),”\n” # Call a function in it
24

Usually, a module consists of a collection of code that is contained within a single file. A package,
on the other hand, is the Perl equivalent of a namespace. A package is alot like a module, except
that it is independent of files. Any number of files may be part of the same package--or a package
may be broken up into a collection of modules if you prefer to think about it in this way.

By default, SWIG installs its functions into a package with the same name as the module. This
can be changed by giving SWIG the -package option :

% swig -perl5 -package FooBar example.i

In this case, we still create a module called ‘example’, but all of the functions in that module will
be installed into the package ‘FooBar.’ For example :

use example; # Load the module like before
print FooBar::fact(4),”\n”; # Call a function in package FooBar

Perl supports object oriented programming using packages. A package can be thought of as a
namespace for a class containing methods and data. The reader is well advised to consult “Pro-
gramming Perl, 2nd Ed.” by Wall, Christiansen, and Schwartz for most of the gory details.

Basic Perl interface

Functions
C functions are converted into new Perl commands (or subroutines). Default/optional argu-
ments are also allowed. An interface file like this :

%module example
int foo(int a);
double bar (double, double b = 3.0);
...

Will be used in Perl like this :

use example;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 121
$a = &example::foo(2);
$b = &example::bar(3.5,-1.5);
$c = &example::bar(3.5); # Use default argument for 2nd parameter

Okay, this is pretty straightforward...enough said.

Global variables
Global variables are handled using pure magic--well, Perl’s magic variable mechanism that is. In
a nutshell, it is possible to make certain Perl variables “magical” by attaching methods for get-
ting and setting values among other things. SWIG generates a pair of functions for accessing C
global variables and attaches them to a Perl variable of the same name. Thus, an interface like
this

%module example;
...
double Spam;
...

is accessed as follows :

use example;
print $example::Spam,”\n”;
$example::Spam = $example::Spam + 4
... etc ...

SWIG supports global variables of all C datatypes including pointers and complex objects.

Constants
Constants are created as read-only magical variables and operate in exactly the same manner.

Pointers
SWIG represents pointers as blessed references. A blessed reference is the same as a Perl refer-
ence except that it has additional information attached to it indicating what kind of reference it
is. That is, if you have a C declaration like this :

Matrix *new_Matrix(int n, int m);

SWIG will return a value as if you had done this :

$ptr = new_Matrix(int n, int m); # Save pointer return result
bless $ptr, “MatrixPtr”; # Bless it as a MatrixPtr

SWIG uses the “blessing” to check the datatype of various pointers. In the event of a mismatch,
an error or warning message will be generated.

To check to see if a value is the NULL pointer, use the defined() command :

if (defined($ptr)) {
print “Not a NULL pointer.”;

} else {
print “Is a NULL pointer.”;

}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 122
To create a NULL pointer, you should pass the undef value to a function.

The “value” of a Perl reference is not the same as the underlying C pointer that SWIG wrapper
functions return. Suppose that $a and $b are two references that point to the same C object. In
general, $a and $b will be different--since they are different references. Thus, it is a mistake to
check the equality of $a and $b to check the equality of two C pointers. The correct method to
check equality of C pointers is to dereference them as follows :

if ($$a == $$b) {
print “a and b point to the same thing in C”;

} else {
print “a and b point to different objects.”;

}

It is easy to get burned by references in more subtle ways. For example, if you are storing a hash
table of objects, it may be best to use the actual C pointer value rather than the Perl reference as a
key. Since each Perl reference to the same C object may be different, it would be impossible to
find anything in the hash without this. As a general rule, the best way to avoid problems with
references is to make sure hash tables, comparisons, and other pointer operations use the value
of the reference (ie. $$a), not the reference itself.

Structures and C++ classes
For structures and classes, SWIG produces a set of accessor functions for member functions and
member data. For example :

%module vector

class Vector {
public:

double x,y,z;
Vector();
~Vector();
double magnitude();

};

This gets turned into the following collection of Perl functions :
vector::Vector_x_get($obj);
vector::Vector_x_set($obj,$x);
vector::Vector_y_get($obj);
vector::Vector_y_set($obj,$y);
vector::Vector_z_get($obj);
vector::Vector_z_set($obj,$z);
vector::new_Vector();
vector::delete_Vector($obj);
vector::Vector_magnitude($obj);

To use the class, simply use these functions. As it turns out, SWIG has a mechanism for creating
shadow classes that hides these functions and uses an object oriented interface instead--keep
reading.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 123
A simple Perl example
In the next few sections, use of the Perl5 module will be illustrated through a series of increas-
ingly complex examples. In the example, we will write some simple graph algorithms to illus-
trate how C and Perl can interact with each other.

Graphs
A directed graph is simply a collection of nodes (or vertices) that are connected to each other by
a collection of edges :

A graph

To represent simple graphs, we can use the following C data structures :

/* File : graph.h */
/* Simple data structures for directed graph of Nodes and Edges */

struct Edge;
typedef struct Node {
 int v; /* Vertex number */
 struct Edge *adj; /* Adjacency List */
} Node;

typedef struct Edge {
 Node *node; /* Connecting Node */
 double w; /* Weight (optional) */
 struct Edge *next; /* Next edge */
} Edge;

Each node contains a unique number v for identifying it, and a linked list of other nodes that are
nearby. This linked list is managed by the Edge structure. Associated with each edge is an
optional weighting factor. This could be something like miles between cities, bandwidth, or
some other numerical property about a particular link. Okay, enough talk about data structures
for now.

To construct nodes and add edges, we can use the following C code :

/* File : graph.c */
/* Directed graph functions */

#include "graph.h"
static int node_count = 0; /* Number of nodes created */
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 124
/* Create a new Node */
Node *new_Node() {
 Node *node;
 node = (Node *) malloc(sizeof(Node));
 node->v = node_count++; /* Bump up the count */
 node->adj = (Edge *) 0;
 return node;
}

/* Add an "edge" to another node. */

Edge *Node_addedge(Node *mynode, Node *othernode, double w) {
 Edge *edge;
 edge = (Edge *) malloc(sizeof(Edge));
 edge->node = othernode;
 edge->w = w;
 edge->next = mynode->adj; /* add to my adjacency list */
 mynode->adj = edge;
 return edge;
}

A simple SWIG interface file
So far, the code doesn’t do much, but it’s enough to wrap into Perl5 module. Since the C code is
fairly simple right now, we can do this by creating the following interface file :

%module graph
%{
#include “graph.h”
%}
%include graph.h // Get structure definition
%include graph.c // Get support functions

We’ll call our module “graph” and simply read in both the files graph.h and graph.c to build
an interface.

Sample Perl Script
Once compiled, we can now start using our new module. All of the C functions found in
graph.h and graph.c can be called normally . Even though we are using pointers, this is not
a problem. Here is a very simple script :

Perl code to use our graph code

use graph;
package graph;

Create some nodes
$n0 = new_Node();
$n1 = new_Node();
$n2 = new_Node();

Make some edges
Node_addedge($n0,$n1,0); # 0 -> 1
Node_addedge($n0,$n2,0); # 0 -> 2

0

1

2

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 125
Node_addedge($n1,$n2,0); # 1 -> 2
Node_addedge($n2,$n0,0); # 2 -> 0

A procedure to print out a node and its adjacency list
sub print_node {

my $node = shift;
 print "Node : ", Node_v_get($node), ", Adj : ";
 my $adj = Node_adj_get($node);
 while (defined($adj)) { # This checks for a NULL pointer

my $anode = Edge_node_get($adj);
my $v = Node_v_get($anode);
print "$v ";
$adj = Edge_next_get($adj); # Move to next node

 }
 print "\n";
}

Print out node information
print_node($n0);
print_node($n1);
print_node($n2);

When executed, this script produces the following output :

Node : 0, Adj : 2 1
Node : 1, Adj : 2
Node : 2, Adj : 0

While our two C functions are used in the script, SWIG also created a collection of accessor func-
tions for managing the two C data structures. The functions Node_v_get(),
Node_adj_get(), Edge_node_get(), and Edge_next_get() are used to access the corre-
sponding members of our Node and Edge structures. As arguments, these functions simply
take a pointer to the corresponding structure.

There are a few other things to notice about the code.

• Pointers to complex objects are manipulated like ordinary scalar values, but in reality
they are blessed references. For all practical purposes, you should think of them as funny
opaque objects (in other words, don’t worry about it).

• To check for a NULL pointer, use the expression defined($ptr). This will return true
if a pointer is non-NULL, false if it isn’t. In our example, we use this to walk down a
linked list of pointers until we reach a NULL value.

Even though the original C code was rather useless by itself, we have used it to build a simple
graph in Perl along with a debugging function for printing out node information. In fact, with-
out making any modifications to the C code, we can use this to build up something more com-
plex such as a database of cities and mileages.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 126
Some cities and mileages

Here’s a slightly more complicated Perl script to read in the above mileage table and turn it into
a graph:

Read a file with cities into a graph

use graph;
package graph;

%Cities = (); # Hash table mapping cities to nodes
%Nodes = (); # Mapping of Node indicies to cities
sub read_cities {
 my $filename = shift;
 open(CITIES,$filename);
 while (<CITIES>) {

chop;
my @a = split(/, +/);
my $node1;
my $node2;
Check to see if a given city is already a node
if (!exists $Cities{$a[0]}) {

 $node1 = new_Node();
 $Cities{$a[0]} = $node1;
 my $node_num = Node_v_get($node1);
 $Nodes{$node_num} = $a[0];

} else {
 $node1 = $Cities{$a[0]};

}
if (!exists $Cities{$a[1]}) {

 $node2 = new_Node();
 $Cities{$a[1]} = $node2;
 my $node_num = Node_v_get($node2);
 $Nodes{$node_num} = $a[1];

} else {
 $node2 = $Cities{$a[1]};

}
Add edges
Node_addedge($node1,$node2,$a[2]);
Node_addedge($node2,$node1,$a[2]);

 }
}

Denver, Cheyenne, 100
Denver, Santa Fe, 362
Denver, Kansas City, 600
Santa Fe, Albuquerque, 55
Santa Fe, Durango, 214
...
Durango, Moab, 160
Moab, Salt Lake City, 237
Moab, Denver, 310
Cheyenne, Salt Lake City, 436
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 127
sub print_near {
 my $city = shift;
 if (exists $Cities{$city}) {

my $node = $Cities{$city};
print "Cities near $city : ";
my $adj = Node_adj_get($node);
while (defined($adj)) {

 my $anode = Edge_node_get($adj);
 my $v = Node_v_get($anode);
 print $Nodes{$v},", ";

 $adj = Edge_next_get($adj);
}

 }
 print "\n";
}
read_cities("cities");
print_near("Denver");
print_near("Las Vegas");

This produces the following output :

Cities near Denver : Moab, Kansas City, Santa Fe, Cheyenne, Albuquerque,
Cities near Las Vegas : Flagstaff, Los Angeles, Moab, Salt Lake City,

In this example, we are using the same functions as before, but we are now introducing two Perl
hash tables. The %Cities hash is used to associate city names with a corresponding node in the
graph. The %Nodes hash does exactly the opposite---mapping node numbers back to the names
of cities. Both of these will come in quite handy for mapping things between the Perl world and
the C world later.

Before proceeding, let’s stop and summarize what we have done. Given a couple of very sim-
ple C data structures for a graph, we have written a program that can read in a mileage table,
construct a weighted graph of the data and print out a list of the cities that are nearby other cit-
ies. Yet, the C code knows nothing about the Perl interface or this whole mileage program
we’ve built up around it. While we could have written the entire program in C, we would have
had to write a main program, some code to read the input file, and a hash table structure to keep
track of the mapping between nodes and cities. Perl, on the other hand, is very good at manag-
ing these tasks.

Accessing arrays and other strange objects
Now let’s add some new functionality to our graph program from the previous example. In this
case, we’ll add a depth-first search algorithm to see if two nodes are connected to each other
(possibly through many other nodes in-between).

We’ll first add the following constants to the file graph.h

/* File : graph.h */
...
#define MAX_NODES 1000
#define UNSEEN -1

Now, a modified version of graph.c :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 128
/* File : graph.c */
/* Directed graph functions */

#include <stdio.h>
#include "graph.h"

int node_count = 0; /* Number of nodes created */
int seen[MAX_NODES]; /* Used by the search function */

...

/* Function to search for node with given vertex number */
static int visit(Node *n,int v) {
 Edge *e;

 if (seen[n->v] != UNSEEN) return UNSEEN; /* Cycle detected */
 if (n->v == v) return 1; /* Match found */
 e = n->adj;
 while (e) {
 seen[n->v] = e->node->v;
 if (visit(e->node,v) > 0) return 1;
 e = e->next;
 }
 return 0;
}

/* Depth-first search for a given node */
int Node_search(Node *start, int v) {
 int i;

 for (i = 0; i < node_count; i++)
 seen[i] = UNSEEN;
 return visit(start,v);
}

The idea here is simple, the function Node_search() takes a starting node and starts looking
for a node with given vertex. Upon startup, the search function clears an array of values indicat-
ing whether a node has been seen or not. While this array is primarily used to detect cycles, it
can also be used to store the path between two nodes as we proceed through the algorithm.
Upon exit, we can then use the array to figure out how we got between the starting and ending
node. Of course, this leads us to the question of how we access this array in Perl.

As a general rule, handling arrays is somewhat problematic since the mapping between arrays
and pointers may not be what you expect (even in C) and there is not necessarily a natural map-
ping between arrays in C and arrays in Perl (for example, if we’ve got a C array with 1 million
elements in it, we almost certainly wouldn’t want to convert it to a Perl array!).

To access our array, we will write a C helper function that allows us to access invidual elements.
However, rather than adding this function to the C code, we can insert it directly into our SWIG
interface file. We will also strip the function names out of the .c file and put their prototypes in
the header file :

%module graph
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 129
%{
#include "graph.h"
%}
%include graph.h

%inline %{
/* Get seen value for a particular node */
int get_seen(int index) {
 extern int node_count;
 extern int seen[];
 if ((index < 0) || (index >= node_count)) return -1;
 else return seen[index];
}
%}

This interface file illustrates one of the key points about SWIG--even though SWIG uses C syn-
tax, wrapping arbitrary C code doesn’t always result in a good interface. Almost any significant
package will require the use of a few “helper” functions to get at certain data structures or to
change the way in which a function is called.

With our new C search function, we can now write a Perl function to find a route between two
cities. This function simply takes the names of two cities, uses the Cities hash to look up their
nodes and calls the C Node_search() function. Afterwards, we walk through the seen[]
array using our helper function and print the route.

sub find_route {
 my $start = shift;
 my $dest = shift;
 # Lookup nodes from names
 if ((!exists $Cities{$start}) || (!exists $Cities{$dest})) {

return;
 }
 my $node1 = $Cities{$start};
 my $node2 = $Cities{$dest};
 print "$start --> $dest :\n";

 # Depth first search for a route between cities
 my $found = Node_search($node1,Node_v_get($node2));
 if ($found) {

$v = Node_v_get($node1);
while ($v != $UNSEEN) {
 print " $Nodes{$v}\n";
 $v = get_seen($v);
}

 } else {
print " You can't get there from here\n";

 }
}

read_cities("cities");
find_route("Salt Lake City","Denver");

Of course, depth first search isn’t very good at finding an optimal route---obviously this output
must be the very scenic route!

Salt Lake City --> Denver :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 130
 Salt Lake City
 Twin Falls
 Boise
 Portland
 Eugene
 San Francisco
 Los Angeles
 Las Vegas
 Flagstaff
 Albuquerque
 Santa Fe
 Durango
 Moab
 Denver

Implementing methods in Perl
Obviously, our depth search algorithm isn’t so useful in this specific application. Perhaps we
would like to try a breadth-first search algorithm instead. We could choose to write it in C, but
the breadth first search algorithm depends on the use of a queue to hold the list of nodes to visit.
Thus, we’d have to write a queue data structure first. However, a Perl array smells alot like a
queue if we manipulate it in the right way. So we can use Perl to come up with a quick and dirty
breadth first search without dropping down into C :

%visit = ();
sub breadth_search {
 my $node1 = shift;
 my $node2 = shift;
 my @queue;
 %visit = ();
 # Put starting node into queue
 push @queue, $node1;
 $visit{Node_v_get($node1)} = Node_v_get($node1);
 while (@queue) { # Loop until queue is empty

my $n = shift @queue; # Pop off an node
my $nv = Node_v_get($n);
return 1 if ($$n == $$node2); # Exit if we found the destination
Put children onto the queue
my $e = Node_adj_get($n);
while (defined($e)) {
 my $m = Edge_node_get($e);
 my $v = Node_v_get($m);
 if (!exists $visit{$v}) {

push @queue, $m;
$visit{$v} = $nv;

 }
 $e = Edge_next_get($e);
}

 }
 return 0;
}

sub find_route {
 my $start = shift;
 my $dest = shift;
 # Lookup nodes from names
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 131
 return if ((!exists $Cities{$start}) || (!exists $Cities{$dest}));
 print "$start --> $dest :\n";
 my $node1 = $Cities{$start};
 my $node2 = $Cities{$dest};
 my $found = breadth_search($node1,$node2);
 my @path;
 if ($found) {

my $v = Node_v_get($node2);
delete $visit{Node_v_get($node1)};
while (exists($visit{$v})) {
 unshift @path,$Nodes{$v};
 $v = $visit{$v};
}
unshift @path,$start;
foreach $c (@path) { print " $c\n";}

 } else {
print " You can't get there from here\n";

 }
}

Our Perl implementation creates a queue using an array and manipulating it with shift and push
operations. The global hash %visit is used to detect cycles and to determine how we got to
each node. When we find a route, we can march backwards through the route to determine the
entire path. When we run our new code, we get the following :

find_route(“Salt Lake City”, “Denver”);
Salt Lake City --> Denver :
 Salt Lake City
 Cheyenne
 Denver

Clearly this is a more efficient route--although admittedly not very scenic. If we wanted to get
even more serious, we could add a priority search based on mileages. Later on we might imple-
ment these features in C for better performance. Either way, it is reasonably easy to manipulate
complex structures in Perl and to mix them with C code (well, with a little practice perhaps).

Shadow classes
By now, you’ve probably noticed that examples have been using alot of accessor functions to get
at the members of our Node and Edge structures. This tends to make the Perl code look rather
cluttered (well, more than normal Perl code in any case) and it isn’t very object oriented.

With a little magic, SWIG can turn C structs and C++ classes into fully functional Perl classes that
work in a more-or-less normal fashion. This transformation is done by writing an additional
Perl layer that builds Perl classes on top of the low-level SWIG interface. These Perl classes are
said to “shadow” an underlying C/C++ class.

To have SWIG create shadow classes, use the -shadow option :

% swig -perl5 -shadow graph.i

This will produce the same files as before except that the .pm file will now contain significantly
more supporting Perl code. While there are some rather subtle aspects of this transformation,
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 132
for now we’ll omit the details and illustrate the changes in an example first (the use of shadow
classes has been underlined)

Read a file with cities into a graph
Uses shadow classes

use graph;
package graph;

%Cities = (); # Hash table mapping cities to nodes
%Nodes = (); # Mapping of Node indicies to cities

sub read_cities {
 my $filename = shift;
 open(CITIES,$filename);
 while (<CITIES>) {

chop;
my @a = split(/, +/);
my $node1;
my $node2;
Check to see if a given city is already a node
if (!exists $Cities{$a[0]}) {
 $node1 = new_Node();
 $Cities{$a[0]} = $node1;
 $Nodes{$node1->{v}} = $a[0]; # Note access of ‘v’
} else {
 $node1 = $Cities{$a[0]};
}
if (!exists $Cities{$a[1]}) {
 $node2 = new_Node;
 $Cities{$a[1]} = $node2;
 $Nodes{$node2->{v}} = $a[1];
} else {
 $node2 = $Cities{$a[1]};
}
Add edges
Node_addedge($node1,$node2,$a[2]);
Node_addedge($node2,$node1,$a[2]);

 }
}

%visit;
sub breadth_search {
 my $node1 = shift;
 my $node2 = shift;
 my @queue;
 %visit = ();
 my $dest = $node2->{v};
 # Put starting node into queue
 push @queue, $node1;
 $visit{$node1->{v}} = $node1->{v};
 while (@queue) {

my $n = shift @queue;
return 1 if ($n->{v} == $node2->{v});
Put children onto the queue
my $e = $n->{adj};
while (defined($e)) {
 if (!exists $visit{$e->{node}->{v}}) {
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 133
push @queue, $e->{node};
$visit{$e->{node}->{v}} = $n->{v};

 }
 $e = $e->{next};
}

 }
 return 0;
}

sub find_route {
 my $start = shift;
 my $dest = shift;
 # Lookup nodes from names
 return if ((!exists $Cities{$start}) || (!exists $Cities{$dest}));
 print "$start --> $dest :\n";
 my $node1 = $Cities{$start};
 my $node2 = $Cities{$dest};
 my $found = breadth_search($node1,$node2);
 my @path;
 if ($found) {

my $v = $node2->{v};
delete $visit{$node1->{v}};
while (exists($visit{$v})) {
 unshift @path,$Nodes{$v};
 $v = $visit{$v};
}
unshift @path,$start;
foreach $c (@path) {
 print " $c\n";
}

 } else {
print " You can't get there from here\n";

 }
}
read_cities("cities");

find_route("Salt Lake City","Denver");

For the most part, the code is the same except that we can now access members of complex data
structures using -> instead of the low level accessor functions. like before. However, this exam-
ple is only scratching the surface of what can be done with shadow classes...keep reading.

Getting serious
Now that we’ve got a very simple example working, it’s time to get really serious. Suppose that
in addition to working with the mileage data of various cities, we want to make a graphical rep-
resentation from geographical data (lattitude/longitude). To do this, we’ll use SWIG to glue
together a bunch of stuff. First, for the purposes of illustration, let’s create a new C data struc-
ture for holding a geographical location with the assumption that we might want to use it in
some C functions later :

/* File : location.h */
/* Data structure for holding longitude and lattitude information */

typedef struct Location {
 char *name;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 134
 double lat_degrees;
 double lat_minutes;
 double lat_seconds;
 char lat_direction;
 double long_degrees;
 double long_minutes;
 double long_seconds;
 char long_direction;
} Location;

extern Location *new_Location(char *name);

We also probably want a C function for creating one of these objects:

/* File : location.c */
#include <string.h>

/* Make a new location */
Location *new_Location(char *name) {
 Location *l;
 l = (Location *) malloc(sizeof(Location));
 l->name = (char *) malloc(strlen(name)+1);
 strcpy(l->name,name);
 return l;
}

Now let’s make an interface file for this module :

// File : location.i
%module location
%{
#include “location.h”
%}

%include location.h

We could use this interface file to make an entirely new Perl5 module or we can combine it with
the graph module. In this latter case, we simply need to put “%include location.i” in the
file graph.i.

Now, finally, we could write a Perl function to read data in the following format :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 135
Geographic data
sub read_locations {
 my $filename = shift;
 open(LOCATIONS,$filename);
 while (<LOCATIONS>) {

chop;
my @a = split(/, +/);
my $loc;
Check to see if this is a city I know about
if (exists $Cities{$a[0]}) {
 # Create a new location
 $loc = new_Location($a[0]);
 my @coords = split(' ',$a[1]);
 # A nice way to assign attributes to an object
 %$loc = (lat_degrees => $coords[0],

 lat_minutes => $coords[1],
 lat_seconds => $coords[2],
 lat_direction => $coords[3],
 long_degrees => $coords[4],
 long_minutes => $coords[5],
 long_seconds => $coords[6],
 long_direction => $coords[7]);

 my $v = $Cities{$a[0]}->{v};
 $Locations{$v} = $loc;
}

 }
 close LOCATIONS;
}

Again, we are using shadow classes which are allowing us to assign all of the attributes of a C
structure in the same way as one would create a Perl hash table. We have also created the
%Locations hash to associate node numbers with a given location object.

Of course, having locations isn’t too useful without a way to look at them so we’ll grab the public
domain gd library by Thomas Boutell. First, we’ll write a simple C function to draw two loca-
tions and draw a line between them (some code has been omitted for clarity) :.

/* File : plot.c */

Santa Fe, 35 41 13 N 105 56 14 W
Denver, 39 44 21 N 104 59 03 W
Albuquerque, 35 05 00 N 106 39 00 W
Cheyenne, 41 08 00 N 104 49 00 W
Kansas City, 39 05 51 N 94 37 38 W
Durango, 37 16 31 N 107 52 46 W
Moab, 38 34 24 N 109 32 57 W
Salt Lake City, 40 45 39 N 111 53 25 W
Reno, 39 31 47 N 119 48 46 W
San Francisco, 37 46 30 N 122 25 06 W
Las Vegas, 36 10 30 N 115 08 11 W
Flagstaff, 35 11 53 N 111 39 02 W
Los Angeles, 34 03 08 N 118 14 34 W
Eugene, 44 03 08 N 123 05 08 W
Portland, 45 31 24 N 122 40 30 W
Seattle, 47 36 23 N 122 19 51 W
Boise, 43 36 49 N 116 12 09 W
Twin Falls, 42 33 47 N 114 27 36 W
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 136
#include <gd.h>
#include <gdfonts.h>
#include "location.h"
double xmin,ymin,xmax,ymax; /* Plotting range */

/* Make a plot of two locations with a line between them */
void plot_cities(gdImagePtr im, Location *city1, Location *city2,

 int color) {
...
 /* Convert the two locations into screen coordinates (bunch ‘o math) */
...
 /* Draw the cities */
 gdImageString(im,gdFontSmall,...)
 gdImageString(im,gdFontSmall,...)
 gdImageLine(im,ix1,height-iy1,ix2,height-iy2,color);
}

Next, we’ll wrap a few critical gd functions into Perl. We don’t need the entire library so there’s
not much sense in wrapping the whole thing (it’s easy enough to do if you really want to of
course). We’ll just wrap a couple of functions to illustrate how it can be used (one might also con-
sider using the already existing gd module for Perl as well).

%module gd
%{
#include "gd.h"
%}
typedef struct gdImageStruct gdImage;
typedef gdImage * gdImagePtr;

/* Functions to manipulate images. */
gdImagePtr gdImageCreate(int sx, int sy);
int gdImageColorAllocate(gdImagePtr im, int r, int g, int b);
%inline %{
 /* Shortcut for dumping a file */
 void dump_gif(gdImagePtr im, char *filename) {
 FILE *f;
 f = fopen(filename, "w");
 gdImageGif(im,f);
 fclose(f);
 }
%}

We can now slap everything together using a new interface file like this. we’ll keep the old graph
module name so our existing scripts still work :

// File : package.i
%module graph
%include graph.i // The original graph program
%include location.i // The location data structure and functions
%include gd.i // gd module
%include plot.c // Function to plot cities

Whew! After all of that work, we can do the following :

read_cities("cities");
read_locations("locations");
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 137
Create a new image with gd
$im = gdImageCreate(500,500);
$white = gdImageColorAllocate($im,255,255,255);
$black = gdImageColorAllocate($im,0,0,0);

Set plotting range (variables in the C code)
$xmin = -130;
$xmax = -90;
$ymin = 30;
$ymax = 50;

Make a plot of the entire graph
@loc = each %Cities;
while (@loc) {
 my $city = $loc[0];
 my $node = $Cities{$city};
 if (exists $Locations{$node->{v}}) {

my $loc1 = $Locations{$node->{v}};
my $e = $node->{adj};
while (defined($e)) {

 if (exists $Locations{$e->{node}->{v}}) {
 my $loc2 = $Locations{$e->{node}->{v}};
 plot_cities($im,$loc1,$loc2,$black);

 }
 $e = $e->{next};
 }

 }
 @loc = each %Cities;
}
Dump out a GIF file
dump_gif($im,"test.gif");

When run, we now get the following :

Not too bad for just a little work....
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 138
Wrapping C libraries and other packages
SWIG can be used to build Perl interfaces to existing C libraries and packages. The general strat-
egy for doing this is as follows :

• Locate important header files for the package.
• Copy them into a SWIG interface file.
• Edit the interface file by removing problematic declarations, unneeded functions, and

other clutter (this can often be found by just running SWIG).
• Add support functions to improve the interface.

While SWIG can sometimes be used to simply process a raw header file, the results aren’t always
what you would expect. By working with a separate interface file, you get an opportunity to
clean things up. If you’re using a stable package, chances are that it’s not going to change sud-
denly so there is really little problem in doing this. To illustrate the process, we will build a
Perl5 interface to MATLAB in the next example.

Building a Perl5 interface to MATLAB
To illustrate the process, we can build a Perl5 interface to MATLAB by wrapping its C API. The
MATLAB system consists of the MATLAB engine, and library of functions for creating and
manipulating matrices, and a collection of utility function. A full description can be found in the
“External Interface Guide” provided with MATLAB. Even if you don’t have MATLAB, this sec-
tion can provide some ideas on how to handle other libraries.

The MATLAB engine interface
The first step in building an interface will be to provide access to the MATLAB engine. This is a
separate process that runs in the background, but we need to have some mechanism for starting
it and issuing commands. The following functions are defined in the MATLAB interface.,

int engClose(Engine *ep);
int engEvalString(Engine *ep, char *string);
Matrix *engGetMatrix(Engine *ep, char *name);
int engPutMatrix(Engine *ep, Matrix *mp);
Engine *engOpen(char *startcommand);
void engOutputBuffer(Engine *ep, char *p, int size);

While we could wrap these directly, each function requires an object “Engine”. They could be a
little annoying to use in Perl since we would have to pass a pointer to the engine with every com-
mand. This probably isn’t necessary or desired. Thus, we could write some wrappers around
these to produce a better interface as follows :

// engine.i : SWIG file for MATLAB engine
%{
#define BUFFER_SIZE 32768
static Engine *eng = 0;
static char ml_output[BUFFER_SIZE]; /* Result Buffer */
%}

%inline %{
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 139
/* Initialize the MATLAB engine */
int init(void) {

if (eng) return -1; /* Already open */
if (!(eng = engOpen(“matlab42”))) {
 fprintf(stderr,"Unable to open matlab.\n");
 return -1;

 }
engOutputBuffer(eng,ml_output,BUFFER_SIZE);
return 0;

}
/* Execute a MATLAB command */
char *matlab(char *c) {

if (!eng) return “not initialized!”;
engEvalString(eng, c);
return &ml_output[0];

}

/* Get a matrix from MATLAB */
Matrix *GetMatrix(char *name) {

if (!eng) return (Matrix *) 0;
return(engGetMatrix(eng,name));

}

/* Send a matrix to MATLAB */
int PutMatrix(Matrix *m) {

if (!eng) return -1;
return(engPutMatrix(eng,m));

}
%}

Wrapping the MATLAB matrix functions
Next, we need to build an interface to the MATLAB matrix manipulation library. This library
contains about 30 functions to manipulate both real and complex valued matrices. Here we will
only consider real-valued matrices. To provide access to the matrices, we’ll write a different
interface file with a list of the functions along with a few helper functions.

//
// mx.i : SWIG file for MATLAB matrix manipulation
%inline %{
/* Get an element from a matrix */
double getr(Matrix *mat, int i, int j) {
 double *pr;
 int m;
 pr = mxGetPr(mat);
 m = mxGetM(mat);
 return pr[m*j + i];
}
/* Set an element of a matrix */
void setr(Matrix *mat, int i, int j, double val) {
 double *pr;
 int m;
 pr = mxGetPr(mat);
 m = mxGetM(mat);
 pr[m*j + i] = val;
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 140
%}

/* Now some MATLAB command */
Matrix *mxCreateFull(int m, int n, int ComplexFlag);
int mxGetM(Matrix *mat);
int mxGetN(Matrix *mat);
char *mxGetName(Matrix *mat);
void mxSetName(Matrix *mat, char *name);
double *mxGetPr(Matrix *mat);
void mxSetPr(Matrix *mat, double *pr);
double mxGetScalar(Matrix *mat);
void mxFreeMatrix(Matrix *pm);

Putting it all together
Finally we are ready to put our interface together. There is no need to build a big monolithic
interface file--we can simply build it up in pieces :

// matlab.i
// Simple SWIG interface to MATLAB
%module matlab
%{
#include “engine.h”
%}
%include engine.i
%include mx.i

Our module can be compiled as follows :

unix > swig -perl5 matlab.i
unix > gcc -c matlab_wrap.c -I/usr/local/lib/perl5/arch-osname/5.003/CORE -Dbool=char

-I$(MATLAB)/extern/include
unix > ld -shared matlab_wrap.o -L$(MATLAB)/extern/lib -lmat -o matlab.so

Where $(MATLAB) is the location of the MATLAB installation (you may have to dig for this).

With our new MATLAB module, we can now write Perl scripts that issue MATLAB commands.
For example :

use matlab;
matlab::init();
matlab::matlab(“x = -8:.25:8; \
 y = x; \
 [X,Y] = meshgrid(x,y); \
 R = sqrt(X.^2 + Y.^2)+eps; \
 Z = sin(R)./R; \
 mesh(Z); “);

Creates a simple 3D surface plot.

Graphical Web-Statistics in Perl5
Now, lets use our MATLAB module to generate plots of web-server hits for a given month. To
do this, we’ll use our MATLAB module, and create a special purpose function for processing
days and hours.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 141
// Simple C function for recording a hit
%module webgraph
%inline %

void hit(double *m, int day, int hour) {
if ((day >= 0) && (day <= 31)) {

(m+24(day-1)+hour) += 1.0;
}

}
%}

While we could write this function in Perl, it will be much faster in C. If we’re processing a huge
file, then the extra bit of performance will help us out. Once compiled, we can now write a Perl5
script like the following :

use matlab;
use webgraph;

Initialize matlab engine
matlab::init();
Make a matrix for all hits
$m_all = matlab::mxCreateFull(24,31,0);
matlab::mxSetName($m_all,"all");
$all = matlab::mxGetPr($m_all); # Get double * of Matrix

foreach $file (@ARGV) {
 open(FILE,$file);
 print "Processing ",$file,"\n";
 while (<FILE>) {
 @fields = split(/\s+/, $_);
 next if ($fields[8] != 200);
 @datetime = split(/\[|\/|:/, $fields[3]);
 if ($datetime[2] =~ /Apr/) {
 webgraph::hit($all, $datetime[1],$datetime[4]);
 }
 }
 # Dump temporary results
} #foreach
matlab::PutMatrix($m_all);
matlab::matlab("figure(1); \
 surf(all); \
 view(40,40); \
 shading interp; \
 title('All hits'); \
 set(gca,'xlabel',text(0,0,'Day')); \
 set(gca,'ylabel',text(0,0,'Hour')); \
 print -dgif8 stats_all.gif");

When run on the web-server logs for the University of Utah, this script produces the following
GIF file (showing hits per hour) :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 142
Handling output values (the easy way)
Some C libraries rely on functions that return values in their arguments. For example :

void fadd(double a, double b, double *result) {
*result = a+b;

}

By default, SWIG does not handle this case (leaving it up to you to figure out what to do about
the result parameter). However, this problem is easily fixed using the typemaps.i library
file (see the Typemaps chapter for more information). For example :

// SWIG interface file with output arguments
%module example

%include typemaps.i // Load the typemaps librayr
%apply double *OUTPUT {double *result}; // Make “result” an output parameter

void fadd(double a, double b, double *result);

When used in a Perl script, the fadd function now takes 2 parameters and returns the result.

$a = fadd(3,4); # $a gets the value of double *result

When multiple output arguments are involved, a Perl array of values will be returned instead.
It is also possible to use Perl references as function values. This is done as shown :

// SWIG interface file with output arguments
%module
%include typemaps.i
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 143
%apply double *REFERENCE {double *result}; // Make “result” a Perl reference

void fadd(double a, double b, double *result);

Now in a Perl script, the function works like this :

$c = 0.0; # Variable for holding the result
fadd(3,4,\$c); # fadd() places the result in $c

In addition to handling pointers as output values or references, two other methods are available.
The INPUT method indicates that a pointer is an input value and the BOTH method indicates that
a pointer is both an input and output value. These would be specified as follows :

%apply double *INPUT {double *in}; // double *in is an input value
%apply double *BOTH {double *r}; // double *r is both an input/output value

This processing of datatypes is built using SWIG’s typemap mechanism. The details of
typemaps is described shortly although the typemaps.i library already includes a variety of
useful typemaps ready for use.

Exception handling
The SWIG %except directive can be used to create a user-definable exception handler for con-
verting exceptions in your C/C++ program into Perl exceptions. The chapter on exception han-
dling contains more details, but suppose you have a C++ class like the following :

class RangeError {}; // Used for an exception

class DoubleArray {
 private:
 int n;
 double *ptr;
 public:
 // Create a new array of fixed size
 DoubleArray(int size) {
 ptr = new double[size];
 n = size;
 }
 // Destroy an array
 ~DoubleArray() {
 delete ptr;
 }
 // Return the length of the array
 int length() {
 return n;
 }

 // Get an item from the array and perform bounds checking.
 double getitem(int i) {
 if ((i >= 0) && (i < n))
 return ptr[i];
 else
 throw RangeError();
 }
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 144
 // Set an item in the array and perform bounds checking.
 void setitem(int i, double val) {
 if ((i >= 0) && (i < n))
 ptr[i] = val;
 else {
 throw RangeError();
 }
 }
 };

The functions associated with this class can throw a range exception for an out-of-bounds array
access. We can catch this in our Perl extension by specifying the following in an interface file :

%except(perl5) {
 try {
 $function // Gets substituted by actual function call
 }
 catch (RangeError) {
 croak("Array index out-of-bounds");
 }
}

Now, when the C++ class throws a RangeError exception, our wrapper functions will catch it,
turn it into a Perl exception, and allow a graceful death as opposed to just having some sort of
mysterious program crash. Since SWIG’s exception handling is user-definable, we are not lim-
ited to C++ exception handling. It is also possible to write a language-independent exception
handler that works with other scripting languages. Please see the chapter on exception handling
for more details.

Remapping datatypes with typemaps
While SWIG does a reasonable job with most C/C++ datatypes, it doesn’t always do what you
want. However, you can remap SWIG’s treatment of just about any datatype using a typemap.
A typemap simply specifies a conversion between Perl and C datatypes and can be used to pro-
cess function arguments, function return values, and more. A similiar mechanism is used by the
xsubpp compiler provided with Perl although the SWIG version provides many more options.

A simple typemap example
The following example shows how a simple typemap can be written :

%module example

%typemap(perl5,in) int {
$target = (int) SvIV($source);
printf(“Received an integer : %d\n”, $target);

}
...
extern int fact(int n);

Typemap specifications require a language name, method name, datatype, and conversion code.
For Perl5, “perl5” should be used as the language name. The “in” method refers to the input
arguments of a function. The ‘int’ datatype tells SWIG that we are remapping integers. The con-
version code is used to convert from a Perl scalar value to the corresponding datatype. Within
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 145
the support code, the variable $source contains the source data (a Perl object) and $target
contains the destination of the conversion (a C local variable).

When this example is used in Perl5, it will operate as follows :

use example;
$n = example::fact(6);
print “$n\n”;
...

Output :
Received an integer : 6
720

General discussion of typemaps can be found in the main SWIG users reference.

Perl5 typemaps
The following typemap methods are available to Perl5 modules

%typemap(perl5,in) Converts Perl5 object to input function arguments.
%typemap(perl5,out) Converts function return value to a Perl5 value.
%typemap(perl5,varin) Converts a Perl5 object to a global variable.
%typemap(perl5,varout) Converts a global variable to a Perl5 object.
%typemap(perl5,freearg) Cleans up a function argument after a function call
%typemap(perl5,argout) Output argument handling
%typemap(perl5,ret) Clean up return value from a function.
%typemap(memberin) Setting of C++ member data (all languages).
%typemap(memberout) Return of C++ member data (all languages).
%typemap(perl5,check) Check value of input parameter.

Typemap variables
The following variables may be used within the C code used in a typemap :

$source Source value of a conversion
$target Target of conversion (where result should be stored)
$type C datatype being remapped
$mangle Mangled version of datatype (for blessing objects)
$arg Function argument (when applicable).

Name based type conversion
Typemaps are based both on the datatype and an optional name attached to a datatype. For
example :

%module foo

// This typemap will be applied to all char ** function arguments
%typemap(perl5,in) char ** { ... }

// This typemap is applied only to char ** arguments named ‘argv’
%typemap(perl5,in) char **argv { ... }
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 146
In this example, two typemaps are applied to the char ** datatype. However, the second
typemap will only be applied to arguments named ‘argv’. A named typemap will always over-
ride an unnamed typemap.

Due to the name matching scheme, typemaps do not follow typedef declarations. For example :

%typemap(perl5,in) double {
... get a double ...

}

double foo(double); // Uses the double typemap above
typedef double Real;
Real bar(Real); // Does not use the typemap above (double != Real)

Is is odd behavior to be sure, but you can work around the problem using the %apply directive
as follows :

%typemap(perl5,in) double {
... get a double ...

}
double foo(double); // Uses the double typemap above

typedef double Real;
%apply double { Real }; // Apply the double typemap to Reals.
Real bar(Real); // Uses the double typemap already defined.

Named typemaps are extremely useful for managing special cases. It is also possible to use
named typemaps to process output arguments (ie. function arguments that have values returned
in them).

Converting a Perl5 array to a char **
A common problem in many C programs is the processing of command line arguments, which
are usually passed in an array of NULL terminated strings. The following SWIG interface file
allows a Perl5 array reference to be used as a char ** datatype.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(perl5,in) char ** {

AV *tempav;
I32 len;
int i;
SV **tv;
if (!SvROK($source))
 croak("$source is not a reference.");

 if (SvTYPE(SvRV($source)) != SVt_PVAV)
 croak("$source is not an array.");

 tempav = (AV*)SvRV($source);
len = av_len(tempav);
$target = (char **) malloc((len+2)*sizeof(char *));
for (i = 0; i <= len; i++) {
 tv = av_fetch(tempav, i, 0);
 $target[i] = (char *) SvPV(*tv,na);

 }
$target[i] = 0;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 147
};

// This cleans up our char ** array after the function call
%typemap(perl5,freearg) char ** {

free($source);
}

// Creates a new Perl array and places a char ** into it
%typemap(perl5,out) char ** {

AV *myav;
SV **svs;
int i = 0,len = 0;
/* Figure out how many elements we have */
while ($source[len])
 len++;
svs = (SV **) malloc(len*sizeof(SV *));
for (i = 0; i < len ; i++) {
 svs[i] = sv_newmortal();
 sv_setpv((SV*)svs[i],$source[i]);
};
myav = av_make(len,svs);
free(svs);

 $target = newRV((SV*)myav);
 sv_2mortal($target);
}

// Now a few test functions
%inline %{
int print_args(char **argv) {
 int i = 0;
 while (argv[i]) {
 printf("argv[%d] = %s\n", i,argv[i]);
 i++;
 }
 return i;
}

// Returns a char ** list
char **get_args() {
 static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
 return &values[0];
}
%}

When this module is compiled, our wrapped C functions can be used in a Perl script as follows :

use argv;
@a = ("Dave", "Mike", "John", "Mary"); # Create an array of strings
argv::print_args(\@a); # Pass it to our C function
$b = argv::get_args(); # Get array of strings from C
print @$b,"\n"; # Print it out

Of course, there are many other possibilities. As an alternative to array references, we could pass
in strings separated by some delimeter and perform a splitting operation in C.

Using typemaps to return values
Sometimes it is desirable for a function to return a value in one of its arguments. A named
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 148
typemap can be used to handle this case. For example :

%module return

// This tells SWIG to treat an double * argument with name 'OutDouble' as
// an output value.

%typemap(perl5,argout) double *OutDouble {
$target = sv_newmortal();
sv_setnv($target, *$source);
argvi++; /* Increment return count -- important! */

}

// If we don't care what the input value is, we can make the typemap ignore it.

%typemap(perl5,ignore) double *OutDouble(double junk) {
$target = &junk; /* junk is a local variable that has been declared */

}

// Now a function to test it
%{
/* Returns the first two input arguments */
int multout(double a, double b, double *out1, double *out2) {

*out1 = a;
*out2 = b;
return 0;

};
%}

// If we name both parameters OutDouble both will be output

int multout(double a, double b, double *OutDouble, double *OutDouble);
...

When output arguments are encountered, they are simply appended to the stack used to return
results. This will show up as an array when used in Perl. For example :

@r = multout(7,13);
print "multout(7,13) = @r\n";

Accessing array structure members
Consider the following data structure :

#define NAMELEN 32
typedef struct {

char name[NAMELEN];
...

} Person;

By default, SWIG doesn’t know how to the handle the name structure since it’s an array, not a
pointer. In this case, SWIG will make the array member readonly. However, member typemaps
can be used to make this member writable from Perl as follows :

%typemap(memberin) char[NAMELEN] {
/* Copy at most NAMELEN characters into $target */
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 149
strncpy($target,$source,NAMELEN);
}

Whenever a char[NAMELEN] type is encountered in a structure or class, this typemap provides
a safe mechanism for setting its value. An alternative implementation might choose to print an
error message if the name was too long to fit into the field.

It should be noted that the [NAMELEN] array size is attached to the typemap. A datatype involv-
ing some other kind of array would be affected. However, we can write a typemap that will
work for any array dimension as follows :

%typemap(memberin) char [ANY] {
strncpy($target,$source,$dim0);

}

When code is generated, $dim0 gets filled in with the real array dimension.

Turning Perl references into C pointers
A frequent confusion on the SWIG mailing list is errors caused by the mixing of Perl references
and C pointers. For example, suppose you have a C function that modifies its arguments like
this :

void add(double a, double b, double *c) {
*c = a + b;

}

A common misinterpretation of this function is the following Perl script :

Perl script
$a = 3.5;
$b = 7.5;
$c = 0.0; # Output value
add($a,$b,\$c); # Place result in c (Except that it doesn’t work)

Unfortunately, this does NOT work. There are many reasons for this, but the main one is that
SWIG has no idea what a double * really is. It could be an input value, an output value, or an
array of 2 million elements. As a result, SWIG leaves it alone and looks exclusively for a C
pointer value (which is not the same as a Perl reference--well, at least note of the type used in the
above script).

However, you can use a typemap to get the desired effect. For example :

%typemap(perl5,in) double * (double dvalue) {
 SV* tempsv;
 if (!SvROK($source)) {
 croak("expected a reference\n");
 }
 tempsv = SvRV($source);
 if ((!SvNOK(tempsv)) && (!SvIOK(tempsv))) {
 croak("expected a double reference\n");
 }
 dvalue = SvNV(tempsv);
 $target = &dvalue;
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 150
%typemap(perl5,argout) double * {
 SV *tempsv;
 tempsv = SvRV($arg);
 sv_setnv(tempsv, *$source);
}

Now, if you place this before our add function, we can do this :

$a = 3.5;
$b = 7.5;
$c = 0.0;
add($a,$b,\$c); # Now it works!
print “$c\n”;

You’ll get the output value of “11.0” which is exactly what we wanted. While this is pretty cool,
it should be stressed that you can easily shoot yourself in the foot with typemaps--of course
SWIG is has never been too concerned about legislating morality....

Useful functions
When writing typemaps, it is necessary to work directly with Perl5 objects. This, unfortunately,
can be a daunting task. Consult the “perlguts” man-page for all of the really ugly details. A
short summary of commonly used functions is provided here for reference. It should be stressed
that SWIG can be usef quite effectively without knowing any of these details--especially now
that there are typemap libraries that can already been written.

 Perl Integer Conversion Functions

int SvIV(SV *) Convert a Perl scalar value to an
integer.

void sv_setiv(SV *sv, (IV) value) Set a Perl scalar to the value of a C
integer (in value).

SV *newSViv((IV) value) Create a new Perl scalar from a C
value.

int SvIOK(SV *) Checks to see if a Perl scalar is an
integer.

 Perl Floating Point Conversion Functions

double SvNV(SV *) Convert a Perl scalar value to a dou-
ble precision float.

void sv_setnv(SV *, (NV) value) Set a Perl5 scalar to the value of a C
double.

SV *newSVnv((NV) value) Create a new Perl scalar from a C
double.

int SvNOK(SV *) Check to see if a Perl scalar is a float-
ing point value.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 151
Standard typemaps
The following typemaps show how to convert a few common types of objects between Perl and
C (and to give a better idea of how everything works).

 Perl String Conversion Functions

char *SvPV(SV *, int len) Convert a scalar value to a char *.
Returns the length in len unless you
set it to the special value ‘na’.

void sv_setpv(SV *, char *val) Copy a NULL terminated ASCII
string into a Perl scalar.

void sv_setpvn(SV *, char *val, int len) Copy a string of len bytes into a Perl
scalar.

SV *newSVpv(char *value, int len) Create a new Perl scalar value from a
char * and length.

int SvPOK(SV *) Checks to see if a Perl scalar is a
string.

void sv_catpv(SV *, char *) Appends a string to a scalar value.

void sv_catpvn(SV *, char *, int) Appends a string of specified length
to a scalar value.

 Perl References

void sv_setref_pv(SV *, char *, void *ptr) Create a blessed reference.

int sv_isobject(SV *) Checks to see if a scalar corresponds
to an object (is a reference).

SV *SvRV(SV *) Returns a scalar value from a refer-
ence.

int sv_isa(SV *, char *) Checks the type of a reference given
a name.

 Function argument typemaps

int,
short,
long,

%typemap(perl5,in) int,short,long {
 $target = ($type) SvIV($source);
}

float,
double

%typemap(perl5,in) float, double {
 $target = ($type) SvNV($source);
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 152
Pointer handling
SWIG pointers are represented as blessed references. The following functions can be used to cre-
ate and read pointer values.

Return values
Return values are placed on the argument stack of each wrapper function. The current value of
the argument stack pointer is contained in a variable argvi. Whenever a new output value is
added, it is critical that this value be incremented. For multiple output values, the final value of
argvi should be the total number of output values.

char * %typemap(perl5,in) char * {
 $target = SvPV($source,na);
}

 Function return typemaps

int,
short,
long

%typemap(perl5,out) int,short,long {
 $target = sv_newmortal();
 sv_setiv($target,(IV) $source);
 argvi++;
}

float,
double

%typemap(perl5,out) float, double {
 $target = sv_newmortal();
 sv_setiv($target,(double) $source);
 argvi++;
}

char * %typemap(perl5,out) char * {
 $target = sv_newmortal();
 sv_setpv($target,$source);
 argvi++;
}

 SWIG Pointer Conversion Functions

void sv_setref_pv(SV *sv, char *type,
 void *ptr)

Turn the scalar value sv into a
pointer. type is the type string and
ptr is the actual pointer value.

char *SWIG_GetPtr(SV *sv, void **ptr,
 char *type)

Extract a pointer value from scalar
value sv. Performs type-checking
and pointer casting if necessary. If
type is NULL, any pointer value will
be accepted. The result will be
stored in ptr and NULL returned. On
failure, a pointer to the invalid por-
tion of the type string will be
returned.

 Function argument typemaps
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 153
The total number of return values should not exceed the number of input values unless you
explicitly extend the argument stack. This can be done using the EXTEND() macro as in :

%typemap(perl5,argout) int *OUTPUT {
if (argvi >= items) {

EXTEND(sp,1); /* Extend the stack by 1 object */
}
$target = sv_newmortal();
sv_setiv($target,(IV) *($source));
argvi++;

}

The gory details on shadow classes
Perl5 shadow classes are constructed on top of the low-level C interface provided by SWIG. By
implementing the classes in Perl instead of C, we get a number of advantages :

• The classes are easier to implement (after all Perl makes lots of things easier).
• By writing in Perl, the classes tend to interact better with other Perl objects and programs.
• You can modify the resulting Perl code without recompiling the C module.

Shadow classes are new in SWIG 1.1 and still somewhat experimental. The current implementa-
tion is a combination of contributions provided by Gary Holt and David Fletcher--many thanks!

 Module and package names
When shadow classing is enabled, SWIG generates a low-level package named ‘modulec’ where
‘module’ is the name of the module you provided with the %module directive (SWIG appends a
‘c’ to the name to indicate that it is the low-level C bindings). This low-level package is exactly
the same module that SWIG would have created without the ‘-shadow’ option, only renamed.

Using the low-level interface, SWIG creates Perl wrappers around classes, structs, and functions.
This collection of wrappers becomes the Perl module that you will use in your Perl code, not the
low-level package (the original package is hidden, but working behind the scenes).

What gets created?
Suppose you have the following SWIG interface file :

%module vector
struct Vector {

Vector(double x, double y, double z);
~Vector();
double x,y,z;

};

When wrapped, SWIG creates the following set of low-level accessor functions.

Vector *new_Vector(double x, double y, double z);
void delete_Vector(Vector *v);
double Vector_x_get(Vector *v);
double Vector_x_set(Vector *v, double value);
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 154
double Vector_y_get(Vector *v);
double Vector_y_set(Vector *v, double value);
double Vector_z_get(Vector *v);
double Vector_z_set(Vector *v, double value);

These functions can now be used to create a Perl shadow class that looks like this :

package Vector;
@ISA = qw(vector);
%OWNER = ();
%BLESSEDMEMBERS = ();

sub new () {
 my $self = shift;
 my @args = @_;
 $self = vectorc::new_Vector(@args);
 return undef if (!defined($self));
 bless $self, "Vector";
 $OWNER{$self} = 1;
 my %retval;
 tie %retval, "Vector", $self;
 return bless \%retval,"Vector";
}

sub DESTROY {
 my $self = shift;
 if (exists $OWNER{$self}) {

 delete_Vector($self));
 delete $OWNER{$self};

}

sub FETCH {
 my ($self,$field) = @_;
 my $member_func = "vectorc::Vector_${field}_get";
 my $val = &$member_func($self);
 if (exists $BLESSEDMEMBERS{$field}) {
 return undef if (!defined($val));
 my %retval;
 tie %retval,$BLESSEDMEMBERS{$field},$val;
 return bless \%retval, $BLESSEDMEMBERS{$field};
 }
 return $val;
}

sub STORE {
 my ($self,$field,$newval) = @_;
 my $member_func = "vectorc::Vector_${field}_set";
 if (exists $BLESSEDMEMBERS{$field}) {
 &$member_func($self,tied(%{$newval}));
 } else {
 &$member_func($self,$newval);
 }
}

Each structure or class is mapped into a Perl package of the same name. The C++ constructors
and destructors are mapped into constructors and destructors for the package and are always
named “new” and “DESTROY”. The constructor always returns a tied hash table. This hash
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 155
table is used to access the member variables of a structure in addition to being able to invoke
member functions. The %OWNER and %BLESSEDMEMBERS hash tables are used internally and
described shortly.

To use our new shadow class we can simply do the following:

Perl code using Vector class
$v = new Vector(2,3,4);
$w = Vector->new(-1,-2,-3);

Assignment of a single member
$v->{x} = 7.5;

Assignment of all members
%$v = (x=>3,

 y=>9,
 z=>-2);

Reading members
$x = $v->{x};

Destruction
$v->DESTROY();

Object Ownership
In order for shadow classes to work properly, it is necessary for Perl to manage some mechanism
of object ownership. Here’s the crux of the problem---suppose you had a function like this :

Vector *Vector_get(Vector *v, int index) {
return &v[i];

}

This function takes a Vector pointer and returns a pointer to another Vector. Such a function
might be used to manage arrays or lists of vectors (in C). Now contrast this function with the
constructor for a Vector object :

Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = new Vector(x,y,z); // Call C++ constructor
return v;

}

Both functions return a Vector, but the constructor is returning a brand-new Vector while the
other function is returning a Vector that was already created (hopefully). In Perl, both vectors
will be indistinguishable---clearly a problem considering that we would probably like the newly
created Vector to be destroyed when we are done with it.

To manage these problems, each class contains two methods that access an internal hash table
called %OWNER. This hash keeps a list of all of the objects that Perl knows that it has created.
This happens in two cases: (1) when the constructor has been called, and (2) when a function
implicitly creates a new object (as is done when SWIG needs to return a complex datatype by
value). When the destructor is invoked, the Perl shadow class module checks the %OWNER hash
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 156
to see if Perl created the object. If so, the C/C++ destructor is invoked. If not, we simply destroy
the Perl object and leave the underlying C object alone (under the assumption that someone else
must have created it).

This scheme works remarkably well in practice but it isn’t foolproof. In fact, it will fail if you cre-
ate a new C object in Perl, pass it on to a C function that remembers the object, and then destroy
the corresponding Perl object (this situation turns out to come up frequently when constructing
objects like linked lists and trees). When C takes possession of an object, you can change Perl’s
owership by simply deleting the object from the %OWNER hash. This is done using the DISOWN
method.

Perl code to change ownership of an object
$v = new Vector(x,y,z);
$v->DISOWN();

To acquire ownership of an object, the ACQUIRE method can be used.

Given Perl ownership of a file
$u = Vector_get($v);
$u->ACQUIRE();

As always, a little care is in order. SWIG does not provide reference counting, garbage collec-
tion, or advanced features one might find in sophisticated languages.

Nested Objects
Suppose that we have a new object that looks like this :

struct Particle {
Vector r;
Vector v;
Vector f;
int type;

}

In this case, the members of the structure are complex objects that have already been encapsu-
lated in a Perl shadow class. To handle these correctly, we use the %BLESSEDMEMBERS hash
which would look like this (along with some supporting code) :

package Particle;
...
%BLESSEDMEMBERS = (

r => ‘Vector’,
v => ‘Vector’,
f => ‘Vector’,

);

When fetching members from the structure, %BLESSEDMEMBERS is checked. If the requested
field is present, we create a tied-hash table and return it. If not, we just return the corresponding
member unmodified.

This implementation allows us to operate on nested structures as follows :

Perl access of nested structure
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 157
$p = new Particle();
$p->{f}->{x} = 0.0;
%${$p->{v}} = (x=>0, y=>0, z=>0);

Shadow Functions
When functions take arguments involving a complex object, it is sometimes necessary to write a
shadow function. For example :

double dot_product(Vector *v1, Vector *v2);

Since Vector is an object already wrapped into a shadow class, we need to modify this function to
accept arguments that are given in the form of tied hash tables. This is done by creating a Perl
function like this :

sub dot_product {
 my @args = @_;
 $args[0] = tied(%{$args[0]}); # Get the real pointer values
 $args[1] = tied(%{$args[1]});
 my $result = vectorc::dot_product(@args);
 return $result;
}

This function replaces the original function, but operates in an identical manner.

 Inheritance
Simple C++ inheritance is handled using the Perl @ISA array in each class package. For example,
if you have the following interface file :

// shapes.i
// SWIG interface file for shapes class
%module shapes
%{
#include “shapes.h”
%}

class Shape {
public:

virtual double area() = 0;
virtual double perimeter() = 0;
void set_location(double x, double y);

};
class Circle : public Shape {
public:

Circle(double radius);
~Circle();
double area();
double perimeter();

};
class Square : public Shape {
public:

Square(double size);
~Square();
double area();
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 158
double perimeter();
}

The resulting, Perl wrapper class will create the following code :
Package Shape;
@ISA = (shapes);
...
Package Circle;
@ISA = (shapes Shape);
...
Package Square;
@ISA = (shapes Shape);

The @ISA array determines where to look for methods of a particular class. In this case, both the
Circle and Square classes inherit functions from Shape so we’ll want to look in the Shape
base class for them. All classes also inherit from the top-level module shapes. This is because
certain common operations needed to implement shadow classes are implemented only once
and reused in the wrapper code for various classes and structures.

Since SWIG shadow classes are implemented in Perl, it is easy to subclass from any SWIG gener-
ated class. To do this, simply put the name of a SWIG class in the @ISA array for your new class.
However, be forewarned that this is not a trivial problem. In particular, inheritance of data mem-
bers is extremely tricky (and I’m not even sure if it really works).

Iterators
With each class or structure, SWIG also generates a pair of functions to support Perl iterators.
This makes it possible to use the keys and each functions on a C/C++ object. Iterators are
implemented using code like this :

sub FIRSTKEY {
 my $self = shift;
 @ITERATORS{$self} = [‘x’,’y’,’z’,];
 my $first = shift @{$ITERATORS{$self}};
 return $first;
}

sub NEXTKEY {
 my $self = shift;
 $nelem = scalar @{$ITERATORS{$self}};
 if ($nelem > 0) {
 my $member = shift @{$ITERATORS{$self}};
 return $member;
 } else {
 @ITERATORS{$self} = [‘x’,’y’,’z’,];
 return ();
 }
}

The %ITERATORS hash table maintains the state of each object for which the keys or each func-
tion has been applied to. The state is maintained by keeping a list of the member names.

While iterators may be of limited use when working with C/C++ code, it turns out they can be
used to perform an element by element copy of an object.

$v = new Vector(1,2,3);
Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Perl5 159
$w = new Vector(0,0,0);
%$w = %$v; # Copy contents of v into w

However, this is not a deep copy so they probably works better with C than with C++.

Where to go from here?
The SWIG Perl5 module is constantly improving to provide better integration with Perl and to be
easier to use. The introduction of shadow classes and typemaps in this release are one more step
in that direction. The SWIG Examples directory contains more simple examples of building
Perl5 modules. As always, suggestions for improving the Perl5 implementation are welcome.
Version 1.1, June 23, 1997

	SWIG and Perl5
	Preliminaries
	Running SWIG
	Getting the right header files
	Compiling a dynamic module
	Building a dynamic module with MakeMaker
	Building a static version of Perl
	Compilation problems and compiling with C++

	Building Perl Extensions under Windows 95/NT
	Running SWIG from Developer Studio
	Using NMAKE

	Modules, packages, and classes
	Basic Perl interface
	Functions
	Global variables
	Constants
	Pointers
	Structures and C++ classes

	A simple Perl example
	Graphs
	A simple SWIG interface file
	Sample Perl Script

	Accessing arrays and other strange objects
	Implementing methods in Perl
	Shadow classes
	Getting serious
	Wrapping C libraries and other packages
	Building a Perl5 interface to MATLAB
	The MATLAB engine interface
	Wrapping the MATLAB matrix functions
	Putting it all together
	Graphical Web-Statistics in Perl5

	Handling output values (the easy way)
	Exception handling
	Remapping datatypes with typemaps
	A simple typemap example
	Perl5 typemaps
	Typemap variables
	Name based type conversion
	Converting a Perl5 array to a char **
	Using typemaps to return values
	Accessing array structure members
	Turning Perl references into C pointers
	Useful functions
	Standard typemaps
	Pointer handling
	Return values

	The gory details on shadow classes
	Module and package names
	What gets created?
	Object Ownership
	Nested Objects
	Shadow Functions
	Inheritance
	Iterators

	Where to go from here?

