/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "defs.h" #include #include #include #ifdef HAVE_SYS_XATTR_H # include #endif #include #include #include "scno.h" #include "regs.h" #include "ptrace.h" int string_to_uint_ex(const char *const str, char **const endptr, const unsigned int max_val, const char *const accepted_ending) { char *end; long val; if (!*str) return -1; errno = 0; val = strtol(str, &end, 10); if (str == end || val < 0 || (unsigned long) val > max_val || (val == LONG_MAX && errno == ERANGE)) return -1; if (*end && (!accepted_ending || !strchr(accepted_ending, *end))) return -1; if (endptr) *endptr = end; return (int) val; } int string_to_uint(const char *const str) { return string_to_uint_upto(str, INT_MAX); } int tv_nz(const struct timeval *a) { return a->tv_sec || a->tv_usec; } int tv_cmp(const struct timeval *a, const struct timeval *b) { if (a->tv_sec < b->tv_sec || (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) return -1; if (a->tv_sec > b->tv_sec || (a->tv_sec == b->tv_sec && a->tv_usec > b->tv_usec)) return 1; return 0; } double tv_float(const struct timeval *tv) { return tv->tv_sec + tv->tv_usec/1000000.0; } void tv_add(struct timeval *tv, const struct timeval *a, const struct timeval *b) { tv->tv_sec = a->tv_sec + b->tv_sec; tv->tv_usec = a->tv_usec + b->tv_usec; if (tv->tv_usec >= 1000000) { tv->tv_sec++; tv->tv_usec -= 1000000; } } void tv_sub(struct timeval *tv, const struct timeval *a, const struct timeval *b) { tv->tv_sec = a->tv_sec - b->tv_sec; tv->tv_usec = a->tv_usec - b->tv_usec; if (((long) tv->tv_usec) < 0) { tv->tv_sec--; tv->tv_usec += 1000000; } } void tv_div(struct timeval *tv, const struct timeval *a, int n) { tv->tv_usec = (a->tv_sec % n * 1000000 + a->tv_usec + n / 2) / n; tv->tv_sec = a->tv_sec / n + tv->tv_usec / 1000000; tv->tv_usec %= 1000000; } void tv_mul(struct timeval *tv, const struct timeval *a, int n) { tv->tv_usec = a->tv_usec * n; tv->tv_sec = a->tv_sec * n + tv->tv_usec / 1000000; tv->tv_usec %= 1000000; } const char * xlookup(const struct xlat *xlat, const uint64_t val) { for (; xlat->str != NULL; xlat++) if (xlat->val == val) return xlat->str; return NULL; } static int xlat_bsearch_compare(const void *a, const void *b) { const uint64_t val1 = *(const uint64_t *) a; const uint64_t val2 = ((const struct xlat *) b)->val; return (val1 > val2) ? 1 : (val1 < val2) ? -1 : 0; } const char * xlat_search(const struct xlat *xlat, const size_t nmemb, const uint64_t val) { const struct xlat *e = bsearch((const void*) &val, xlat, nmemb, sizeof(*xlat), xlat_bsearch_compare); return e ? e->str : NULL; } #if !defined HAVE_STPCPY char * stpcpy(char *dst, const char *src) { while ((*dst = *src++) != '\0') dst++; return dst; } #endif /* Find a next bit which is set. * Starts testing at cur_bit. * Returns -1 if no more bits are set. * * We never touch bytes we don't need to. * On big-endian, array is assumed to consist of * current_wordsize wide words: for example, is current_wordsize is 4, * the bytes are walked in 3,2,1,0, 7,6,5,4, 11,10,9,8 ... sequence. * On little-endian machines, word size is immaterial. */ int next_set_bit(const void *bit_array, unsigned cur_bit, unsigned size_bits) { const unsigned endian = 1; int little_endian = * (char *) (void *) &endian; const uint8_t *array = bit_array; unsigned pos = cur_bit / 8; unsigned pos_xor_mask = little_endian ? 0 : current_wordsize-1; for (;;) { uint8_t bitmask; uint8_t cur_byte; if (cur_bit >= size_bits) return -1; cur_byte = array[pos ^ pos_xor_mask]; if (cur_byte == 0) { cur_bit = (cur_bit + 8) & (-8); pos++; continue; } bitmask = 1 << (cur_bit & 7); for (;;) { if (cur_byte & bitmask) return cur_bit; cur_bit++; if (cur_bit >= size_bits) return -1; bitmask <<= 1; /* This check *can't be* optimized out: */ if (bitmask == 0) break; } pos++; } } /** * Print entry in struct xlat table, if there. * * @param val Value to search a literal representation for. * @param dflt String (abbreviated in comment syntax) which should be emitted * if no appropriate xlat value has been found. * @param xlat (And the following arguments) Pointers to arrays of xlat values. * The last argument should be NULL. * @return 1 if appropriate xlat value has been found, 0 otherwise. */ int printxvals(const uint64_t val, const char *dflt, const struct xlat *xlat, ...) { va_list args; va_start(args, xlat); for (; xlat; xlat = va_arg(args, const struct xlat *)) { const char *str = xlookup(xlat, val); if (str) { tprints(str); va_end(args); return 1; } } /* No hits -- print raw # instead. */ tprintf("%#" PRIx64, val); if (dflt) tprintf(" /* %s */", dflt); va_end(args); return 0; } /** * Print entry in sorted struct xlat table, if it is there. * * @param xlat Pointer to an array of xlat values (not terminated with * XLAT_END). * @param xlat_size Number of xlat elements present in array (usually ARRAY_SIZE * if array is declared in the unit's scope and not * terminated with XLAT_END). * @param val Value to search literal representation for. * @param dflt String (abbreviated in comment syntax) which should be * emitted if no appropriate xlat value has been found. * @return 1 if appropriate xlat value has been found, 0 * otherwise. */ int printxval_searchn(const struct xlat *xlat, size_t xlat_size, uint64_t val, const char *dflt) { const char *s = xlat_search(xlat, xlat_size, val); if (s) { tprints(s); return 1; } tprintf("%#" PRIx64, val); if (dflt) tprintf(" /* %s */", dflt); return 0; } /* * Fetch 64bit argument at position arg_no and * return the index of the next argument. */ int getllval(struct tcb *tcp, unsigned long long *val, int arg_no) { #if SIZEOF_KERNEL_LONG_T > 4 # ifndef current_klongsize if (current_klongsize < SIZEOF_KERNEL_LONG_T) { # if defined(AARCH64) || defined(POWERPC64) /* Align arg_no to the next even number. */ arg_no = (arg_no + 1) & 0xe; # endif /* AARCH64 || POWERPC64 */ *val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]); arg_no += 2; } else # endif /* !current_klongsize */ { *val = tcp->u_arg[arg_no]; arg_no++; } #else /* SIZEOF_KERNEL_LONG_T == 4 */ # if defined __ARM_EABI__ || \ defined LINUX_MIPSO32 || \ defined POWERPC || \ defined XTENSA /* Align arg_no to the next even number. */ arg_no = (arg_no + 1) & 0xe; # elif defined SH /* * The SH4 ABI does allow long longs in odd-numbered registers, but * does not allow them to be split between registers and memory - and * there are only four argument registers for normal functions. As a * result, pread, for example, takes an extra padding argument before * the offset. This was changed late in the 2.4 series (around 2.4.20). */ if (arg_no == 3) arg_no++; # endif /* __ARM_EABI__ || LINUX_MIPSO32 || POWERPC || XTENSA || SH */ *val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]); arg_no += 2; #endif return arg_no; } /* * Print 64bit argument at position arg_no and * return the index of the next argument. */ int printllval(struct tcb *tcp, const char *format, int arg_no) { unsigned long long val = 0; arg_no = getllval(tcp, &val, arg_no); tprintf(format, val); return arg_no; } /* * Interpret `xlat' as an array of flags * print the entries whose bits are on in `flags' * return # of flags printed. */ void addflags(const struct xlat *xlat, uint64_t flags) { for (; xlat->str; xlat++) { if (xlat->val && (flags & xlat->val) == xlat->val) { tprintf("|%s", xlat->str); flags &= ~xlat->val; } } if (flags) { tprintf("|%#" PRIx64, flags); } } /* * Interpret `xlat' as an array of flags. * Print to static string the entries whose bits are on in `flags' * Return static string. */ const char * sprintflags(const char *prefix, const struct xlat *xlat, uint64_t flags) { static char outstr[1024]; char *outptr; int found = 0; outptr = stpcpy(outstr, prefix); if (flags == 0 && xlat->val == 0 && xlat->str) { strcpy(outptr, xlat->str); return outstr; } for (; xlat->str; xlat++) { if (xlat->val && (flags & xlat->val) == xlat->val) { if (found) *outptr++ = '|'; outptr = stpcpy(outptr, xlat->str); found = 1; flags &= ~xlat->val; if (!flags) break; } } if (flags) { if (found) *outptr++ = '|'; outptr += sprintf(outptr, "%#" PRIx64, flags); } return outstr; } int printflags64(const struct xlat *xlat, uint64_t flags, const char *dflt) { int n; const char *sep; if (flags == 0 && xlat->val == 0 && xlat->str) { tprints(xlat->str); return 1; } sep = ""; for (n = 0; xlat->str; xlat++) { if (xlat->val && (flags & xlat->val) == xlat->val) { tprintf("%s%s", sep, xlat->str); flags &= ~xlat->val; sep = "|"; n++; } } if (n) { if (flags) { tprintf("%s%#" PRIx64, sep, flags); n++; } } else { if (flags) { tprintf("%#" PRIx64, flags); if (dflt) tprintf(" /* %s */", dflt); } else { if (dflt) tprints("0"); } } return n; } void printaddr(const kernel_ulong_t addr) { if (!addr) tprints("NULL"); else tprintf("%#" PRI_klx, addr); } #define DEF_PRINTNUM(name, type) \ bool \ printnum_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \ const char *const fmt) \ { \ type num; \ if (umove_or_printaddr(tcp, addr, &num)) \ return false; \ tprints("["); \ tprintf(fmt, num); \ tprints("]"); \ return true; \ } #define DEF_PRINTNUM_ADDR(name, type) \ bool \ printnum_addr_ ## name(struct tcb *tcp, const kernel_ulong_t addr) \ { \ type num; \ if (umove_or_printaddr(tcp, addr, &num)) \ return false; \ tprints("["); \ printaddr(num); \ tprints("]"); \ return true; \ } #define DEF_PRINTPAIR(name, type) \ bool \ printpair_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \ const char *const fmt) \ { \ type pair[2]; \ if (umove_or_printaddr(tcp, addr, &pair)) \ return false; \ tprints("["); \ tprintf(fmt, pair[0]); \ tprints(", "); \ tprintf(fmt, pair[1]); \ tprints("]"); \ return true; \ } DEF_PRINTNUM(int, int) DEF_PRINTNUM_ADDR(int, unsigned int) DEF_PRINTPAIR(int, int) DEF_PRINTNUM(short, short) DEF_PRINTNUM(int64, uint64_t) DEF_PRINTNUM_ADDR(int64, uint64_t) DEF_PRINTPAIR(int64, uint64_t) #ifndef current_wordsize bool printnum_long_int(struct tcb *const tcp, const kernel_ulong_t addr, const char *const fmt_long, const char *const fmt_int) { if (current_wordsize > sizeof(int)) { return printnum_int64(tcp, addr, fmt_long); } else { return printnum_int(tcp, addr, fmt_int); } } bool printnum_addr_long_int(struct tcb *tcp, const kernel_ulong_t addr) { if (current_wordsize > sizeof(int)) { return printnum_addr_int64(tcp, addr); } else { return printnum_addr_int(tcp, addr); } } #endif /* !current_wordsize */ #ifndef current_klongsize bool printnum_addr_klong_int(struct tcb *tcp, const kernel_ulong_t addr) { if (current_klongsize > sizeof(int)) { return printnum_addr_int64(tcp, addr); } else { return printnum_addr_int(tcp, addr); } } #endif /* !current_klongsize */ const char * sprinttime(time_t t) { struct tm *tmp; static char buf[sizeof(int) * 3 * 6 + sizeof("+0000")]; if (t == 0) { strcpy(buf, "0"); return buf; } tmp = localtime(&t); if (tmp) strftime(buf, sizeof(buf), "%FT%T%z", tmp); else snprintf(buf, sizeof(buf), "%lu", (unsigned long) t); return buf; } enum sock_proto getfdproto(struct tcb *tcp, int fd) { #ifdef HAVE_SYS_XATTR_H size_t bufsize = 256; char buf[bufsize]; ssize_t r; char path[sizeof("/proc/%u/fd/%u") + 2 * sizeof(int)*3]; if (fd < 0) return SOCK_PROTO_UNKNOWN; sprintf(path, "/proc/%u/fd/%u", tcp->pid, fd); r = getxattr(path, "system.sockprotoname", buf, bufsize - 1); if (r <= 0) return SOCK_PROTO_UNKNOWN; else { /* * This is a protection for the case when the kernel * side does not append a null byte to the buffer. */ buf[r] = '\0'; return get_proto_by_name(buf); } #else return SOCK_PROTO_UNKNOWN; #endif } void printfd(struct tcb *tcp, int fd) { char path[PATH_MAX + 1]; if (show_fd_path && getfdpath(tcp, fd, path, sizeof(path)) >= 0) { static const char socket_prefix[] = "socket:["; const size_t socket_prefix_len = sizeof(socket_prefix) - 1; const size_t path_len = strlen(path); tprintf("%d<", fd); if (show_fd_path > 1 && strncmp(path, socket_prefix, socket_prefix_len) == 0 && path[path_len - 1] == ']') { unsigned long inode = strtoul(path + socket_prefix_len, NULL, 10); if (!print_sockaddr_by_inode_cached(inode)) { const enum sock_proto proto = getfdproto(tcp, fd); if (!print_sockaddr_by_inode(inode, proto)) tprints(path); } } else { print_quoted_string(path, path_len, QUOTE_OMIT_LEADING_TRAILING_QUOTES); } tprints(">"); } else tprintf("%d", fd); } /* * Quote string `instr' of length `size' * Write up to (3 + `size' * 4) bytes to `outstr' buffer. * * If QUOTE_0_TERMINATED `style' flag is set, * treat `instr' as a NUL-terminated string, * checking up to (`size' + 1) bytes of `instr'. * * If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set, * do not add leading and trailing quoting symbols. * * Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise. * Note that if QUOTE_0_TERMINATED is not set, always returns 1. */ int string_quote(const char *instr, char *outstr, const unsigned int size, const unsigned int style) { const unsigned char *ustr = (const unsigned char *) instr; char *s = outstr; unsigned int i; int usehex, c, eol; if (style & QUOTE_0_TERMINATED) eol = '\0'; else eol = 0x100; /* this can never match a char */ usehex = 0; if ((xflag > 1) || (style & QUOTE_FORCE_HEX)) { usehex = 1; } else if (xflag) { /* Check for presence of symbol which require to hex-quote the whole string. */ for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) break; /* Force hex unless c is printable or whitespace */ if (c > 0x7e) { usehex = 1; break; } /* In ASCII isspace is only these chars: "\t\n\v\f\r". * They happen to have ASCII codes 9,10,11,12,13. */ if (c < ' ' && (unsigned)(c - 9) >= 5) { usehex = 1; break; } } } if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; if (usehex) { /* Hex-quote the whole string. */ for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) goto asciz_ended; *s++ = '\\'; *s++ = 'x'; *s++ = "0123456789abcdef"[c >> 4]; *s++ = "0123456789abcdef"[c & 0xf]; } } else { for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) goto asciz_ended; if ((i == (size - 1)) && (style & QUOTE_OMIT_TRAILING_0) && (c == '\0')) goto asciz_ended; switch (c) { case '\"': case '\\': *s++ = '\\'; *s++ = c; break; case '\f': *s++ = '\\'; *s++ = 'f'; break; case '\n': *s++ = '\\'; *s++ = 'n'; break; case '\r': *s++ = '\\'; *s++ = 'r'; break; case '\t': *s++ = '\\'; *s++ = 't'; break; case '\v': *s++ = '\\'; *s++ = 'v'; break; default: if (c >= ' ' && c <= 0x7e) *s++ = c; else { /* Print \octal */ *s++ = '\\'; if (i + 1 < size && ustr[i + 1] >= '0' && ustr[i + 1] <= '9' ) { /* Print \ooo */ *s++ = '0' + (c >> 6); *s++ = '0' + ((c >> 3) & 0x7); } else { /* Print \[[o]o]o */ if ((c >> 3) != 0) { if ((c >> 6) != 0) *s++ = '0' + (c >> 6); *s++ = '0' + ((c >> 3) & 0x7); } } *s++ = '0' + (c & 0x7); } break; } } } if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; *s = '\0'; /* Return zero if we printed entire ASCIZ string (didn't truncate it) */ if (style & QUOTE_0_TERMINATED && ustr[i] == '\0') { /* We didn't see NUL yet (otherwise we'd jump to 'asciz_ended') * but next char is NUL. */ return 0; } return 1; asciz_ended: if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; *s = '\0'; /* Return zero: we printed entire ASCIZ string (didn't truncate it) */ return 0; } #ifndef ALLOCA_CUTOFF # define ALLOCA_CUTOFF 4032 #endif #define use_alloca(n) ((n) <= ALLOCA_CUTOFF) /* * Quote string `str' of length `size' and print the result. * * If QUOTE_0_TERMINATED `style' flag is set, * treat `str' as a NUL-terminated string and * quote at most (`size' - 1) bytes. * * If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set, * do not add leading and trailing quoting symbols. * * Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise. * Note that if QUOTE_0_TERMINATED is not set, always returns 1. */ int print_quoted_string(const char *str, unsigned int size, const unsigned int style) { char *buf; char *outstr; unsigned int alloc_size; int rc; if (size && style & QUOTE_0_TERMINATED) --size; alloc_size = 4 * size; if (alloc_size / 4 != size) { error_msg("Out of memory"); tprints("???"); return -1; } alloc_size += 1 + (style & QUOTE_OMIT_LEADING_TRAILING_QUOTES ? 0 : 2); if (use_alloca(alloc_size)) { outstr = alloca(alloc_size); buf = NULL; } else { outstr = buf = malloc(alloc_size); if (!buf) { error_msg("Out of memory"); tprints("???"); return -1; } } rc = string_quote(str, outstr, size, style); tprints(outstr); free(buf); return rc; } /* * Print path string specified by address `addr' and length `n'. * If path length exceeds `n', append `...' to the output. */ void printpathn(struct tcb *const tcp, const kernel_ulong_t addr, unsigned int n) { char path[PATH_MAX + 1]; int nul_seen; if (!addr) { tprints("NULL"); return; } /* Cap path length to the path buffer size */ if (n > sizeof path - 1) n = sizeof path - 1; /* Fetch one byte more to find out whether path length > n. */ nul_seen = umovestr(tcp, addr, n + 1, path); if (nul_seen < 0) printaddr(addr); else { path[n++] = '\0'; print_quoted_string(path, n, QUOTE_0_TERMINATED); if (!nul_seen) tprints("..."); } } void printpath(struct tcb *const tcp, const kernel_ulong_t addr) { /* Size must correspond to char path[] size in printpathn */ printpathn(tcp, addr, PATH_MAX); } /* * Print string specified by address `addr' and length `len'. * If `user_style' has QUOTE_0_TERMINATED bit set, treat the string * as a NUL-terminated string. * Pass `user_style' on to `string_quote'. * Append `...' to the output if either the string length exceeds `max_strlen', * or QUOTE_0_TERMINATED bit is set and the string length exceeds `len'. */ void printstr_ex(struct tcb *const tcp, const kernel_ulong_t addr, const kernel_ulong_t len, const unsigned int user_style) { static char *str = NULL; static char *outstr; unsigned int size; unsigned int style = user_style; int rc; int ellipsis; if (!addr) { tprints("NULL"); return; } /* Allocate static buffers if they are not allocated yet. */ if (!str) { unsigned int outstr_size = 4 * max_strlen + /*for quotes and NUL:*/ 3; if (outstr_size / 4 != max_strlen) die_out_of_memory(); str = xmalloc(max_strlen + 1); outstr = xmalloc(outstr_size); } /* Fetch one byte more because string_quote may look one byte ahead. */ size = max_strlen + 1; if (size > len) size = len; if (style & QUOTE_0_TERMINATED) rc = umovestr(tcp, addr, size, str); else rc = umoven(tcp, addr, size, str); if (rc < 0) { printaddr(addr); return; } if (size > max_strlen) size = max_strlen; else str[size] = '\xff'; /* If string_quote didn't see NUL and (it was supposed to be ASCIZ str * or we were requested to print more than -s NUM chars)... */ ellipsis = string_quote(str, outstr, size, style) && len && ((style & QUOTE_0_TERMINATED) || len > max_strlen); tprints(outstr); if (ellipsis) tprints("..."); } void dumpiov_upto(struct tcb *const tcp, const int len, const kernel_ulong_t addr, kernel_ulong_t data_size) { #if ANY_WORDSIZE_LESS_THAN_KERNEL_LONG union { struct { uint32_t base; uint32_t len; } *iov32; struct { uint64_t base; uint64_t len; } *iov64; } iovu; #define iov iovu.iov64 #define sizeof_iov \ (current_wordsize == 4 ? sizeof(*iovu.iov32) : sizeof(*iovu.iov64)) #define iov_iov_base(i) \ (current_wordsize == 4 ? (uint64_t) iovu.iov32[i].base : iovu.iov64[i].base) #define iov_iov_len(i) \ (current_wordsize == 4 ? (uint64_t) iovu.iov32[i].len : iovu.iov64[i].len) #else struct iovec *iov; #define sizeof_iov sizeof(*iov) #define iov_iov_base(i) ptr_to_kulong(iov[i].iov_base) #define iov_iov_len(i) iov[i].iov_len #endif int i; unsigned size; size = sizeof_iov * len; /* Assuming no sane program has millions of iovs */ if ((unsigned)len > 1024*1024 /* insane or negative size? */ || (iov = malloc(size)) == NULL) { error_msg("Out of memory"); return; } if (umoven(tcp, addr, size, iov) >= 0) { for (i = 0; i < len; i++) { kernel_ulong_t iov_len = iov_iov_len(i); if (iov_len > data_size) iov_len = data_size; if (!iov_len) break; data_size -= iov_len; /* include the buffer number to make it easy to * match up the trace with the source */ tprintf(" * %" PRI_klu " bytes in buffer %d\n", iov_len, i); dumpstr(tcp, iov_iov_base(i), iov_len); } } free(iov); #undef sizeof_iov #undef iov_iov_base #undef iov_iov_len #undef iov } void dumpstr(struct tcb *const tcp, const kernel_ulong_t addr, const int len) { static int strsize = -1; static unsigned char *str; char outbuf[ ( (sizeof( "xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx " "1234567890123456") + /*in case I'm off by few:*/ 4) /*align to 8 to make memset easier:*/ + 7) & -8 ]; const unsigned char *src; int i; memset(outbuf, ' ', sizeof(outbuf)); if (strsize < len + 16) { free(str); str = malloc(len + 16); if (!str) { strsize = -1; error_msg("Out of memory"); return; } strsize = len + 16; } if (umoven(tcp, addr, len, str) < 0) return; /* Space-pad to 16 bytes */ i = len; while (i & 0xf) str[i++] = ' '; i = 0; src = str; while (i < len) { char *dst = outbuf; /* Hex dump */ do { if (i < len) { *dst++ = "0123456789abcdef"[*src >> 4]; *dst++ = "0123456789abcdef"[*src & 0xf]; } else { *dst++ = ' '; *dst++ = ' '; } dst++; /* space is there by memset */ i++; if ((i & 7) == 0) dst++; /* space is there by memset */ src++; } while (i & 0xf); /* ASCII dump */ i -= 16; src -= 16; do { if (*src >= ' ' && *src < 0x7f) *dst++ = *src; else *dst++ = '.'; src++; } while (++i & 0xf); *dst = '\0'; tprintf(" | %05x %s |\n", i - 16, outbuf); } } static bool process_vm_readv_not_supported = 0; #ifndef HAVE_PROCESS_VM_READV /* * Need to do this since process_vm_readv() is not yet available in libc. * When libc is be updated, only "static bool process_vm_readv_not_supported" * line should remain. */ /* Have to avoid duplicating with the C library headers. */ static ssize_t strace_process_vm_readv(pid_t pid, const struct iovec *lvec, unsigned long liovcnt, const struct iovec *rvec, unsigned long riovcnt, unsigned long flags) { return syscall(__NR_process_vm_readv, (long)pid, lvec, liovcnt, rvec, riovcnt, flags); } # define process_vm_readv strace_process_vm_readv #endif /* !HAVE_PROCESS_VM_READV */ static ssize_t vm_read_mem(const pid_t pid, void *const laddr, const kernel_ulong_t raddr, const size_t len) { const unsigned long truncated_raddr = raddr; if (raddr != (kernel_ulong_t) truncated_raddr) { errno = EIO; return -1; } const struct iovec local = { .iov_base = laddr, .iov_len = len }; const struct iovec remote = { .iov_base = (void *) truncated_raddr, .iov_len = len }; return process_vm_readv(pid, &local, 1, &remote, 1, 0); } /* * move `len' bytes of data from process `pid' * at address `addr' to our space at `our_addr' */ int umoven(struct tcb *const tcp, kernel_ulong_t addr, unsigned int len, void *const our_addr) { char *laddr = our_addr; int pid = tcp->pid; unsigned int n, m, nread; union { long val; char x[sizeof(long)]; } u; #if ANY_WORDSIZE_LESS_THAN_KERNEL_LONG if (current_wordsize < sizeof(addr) && (addr & (~ (kernel_ulong_t) -1U))) { return -1; } #endif if (!process_vm_readv_not_supported) { int r = vm_read_mem(pid, laddr, addr, len); if ((unsigned int) r == len) return 0; if (r >= 0) { error_msg("umoven: short read (%u < %u) @0x%" PRI_klx, (unsigned int) r, len, addr); return -1; } switch (errno) { case ENOSYS: process_vm_readv_not_supported = 1; break; case EPERM: /* operation not permitted, try PTRACE_PEEKDATA */ break; case ESRCH: /* the process is gone */ return -1; case EFAULT: case EIO: /* address space is inaccessible */ return -1; default: /* all the rest is strange and should be reported */ perror_msg("process_vm_readv"); return -1; } } nread = 0; if (addr & (sizeof(long) - 1)) { /* addr not a multiple of sizeof(long) */ n = addr & (sizeof(long) - 1); /* residue */ addr &= -sizeof(long); /* aligned address */ errno = 0; u.val = ptrace(PTRACE_PEEKDATA, pid, addr, 0); switch (errno) { case 0: break; case ESRCH: case EINVAL: /* these could be seen if the process is gone */ return -1; case EFAULT: case EIO: case EPERM: /* address space is inaccessible */ return -1; default: /* all the rest is strange and should be reported */ perror_msg("umoven: PTRACE_PEEKDATA pid:%d @0x%" PRI_klx, pid, addr); return -1; } m = MIN(sizeof(long) - n, len); memcpy(laddr, &u.x[n], m); addr += sizeof(long); laddr += m; nread += m; len -= m; } while (len) { errno = 0; u.val = ptrace(PTRACE_PEEKDATA, pid, addr, 0); switch (errno) { case 0: break; case ESRCH: case EINVAL: /* these could be seen if the process is gone */ return -1; case EFAULT: case EIO: case EPERM: /* address space is inaccessible */ if (nread) { perror_msg("umoven: short read (%u < %u) @0x%" PRI_klx, nread, nread + len, addr - nread); } return -1; default: /* all the rest is strange and should be reported */ perror_msg("umoven: PTRACE_PEEKDATA pid:%d @0x%" PRI_klx, pid, addr); return -1; } m = MIN(sizeof(long), len); memcpy(laddr, u.x, m); addr += sizeof(long); laddr += m; nread += m; len -= m; } return 0; } int umoven_or_printaddr(struct tcb *const tcp, const kernel_ulong_t addr, const unsigned int len, void *const our_addr) { if (!addr || !verbose(tcp) || (exiting(tcp) && syserror(tcp)) || umoven(tcp, addr, len, our_addr) < 0) { printaddr(addr); return -1; } return 0; } int umoven_or_printaddr_ignore_syserror(struct tcb *const tcp, const kernel_ulong_t addr, const unsigned int len, void *const our_addr) { if (!addr || !verbose(tcp) || umoven(tcp, addr, len, our_addr) < 0) { printaddr(addr); return -1; } return 0; } /* * Like `umove' but make the additional effort of looking * for a terminating zero byte. * * Returns < 0 on error, > 0 if NUL was seen, * (TODO if useful: return count of bytes including NUL), * else 0 if len bytes were read but no NUL byte seen. * * Note: there is no guarantee we won't overwrite some bytes * in laddr[] _after_ terminating NUL (but, of course, * we never write past laddr[len-1]). */ int umovestr(struct tcb *const tcp, kernel_ulong_t addr, unsigned int len, char *laddr) { const unsigned long x01010101 = (unsigned long) 0x0101010101010101ULL; const unsigned long x80808080 = (unsigned long) 0x8080808080808080ULL; int pid = tcp->pid; unsigned int n, m, nread; union { unsigned long val; char x[sizeof(long)]; } u; #if ANY_WORDSIZE_LESS_THAN_KERNEL_LONG if (current_wordsize < sizeof(addr) && (addr & (~ (kernel_ulong_t) -1U))) { return -1; } #endif nread = 0; if (!process_vm_readv_not_supported) { const size_t page_size = get_pagesize(); const size_t page_mask = page_size - 1; while (len > 0) { unsigned int chunk_len; unsigned int end_in_page; /* * Don't cross pages, otherwise we can get EFAULT * and fail to notice that terminating NUL lies * in the existing (first) page. */ chunk_len = len > page_size ? page_size : len; end_in_page = (addr + chunk_len) & page_mask; if (chunk_len > end_in_page) /* crosses to the next page */ chunk_len -= end_in_page; int r = vm_read_mem(pid, laddr, addr, chunk_len); if (r > 0) { if (memchr(laddr, '\0', r)) return 1; addr += r; laddr += r; nread += r; len -= r; continue; } switch (errno) { case ENOSYS: process_vm_readv_not_supported = 1; goto vm_readv_didnt_work; case ESRCH: /* the process is gone */ return -1; case EPERM: /* operation not permitted, try PTRACE_PEEKDATA */ if (!nread) goto vm_readv_didnt_work; /* fall through */ case EFAULT: case EIO: /* address space is inaccessible */ if (nread) { perror_msg("umovestr: short read (%d < %d) @0x%" PRI_klx, nread, nread + len, addr - nread); } return -1; default: /* all the rest is strange and should be reported */ perror_msg("process_vm_readv"); return -1; } } return 0; } vm_readv_didnt_work: if (addr & (sizeof(long) - 1)) { /* addr not a multiple of sizeof(long) */ n = addr & (sizeof(long) - 1); /* residue */ addr &= -sizeof(long); /* aligned address */ errno = 0; u.val = ptrace(PTRACE_PEEKDATA, pid, addr, 0); switch (errno) { case 0: break; case ESRCH: case EINVAL: /* these could be seen if the process is gone */ return -1; case EFAULT: case EIO: case EPERM: /* address space is inaccessible */ return -1; default: /* all the rest is strange and should be reported */ perror_msg("umovestr: PTRACE_PEEKDATA pid:%d @0x%" PRI_klx, pid, addr); return -1; } m = MIN(sizeof(long) - n, len); memcpy(laddr, &u.x[n], m); while (n & (sizeof(long) - 1)) if (u.x[n++] == '\0') return 1; addr += sizeof(long); laddr += m; nread += m; len -= m; } while (len) { errno = 0; u.val = ptrace(PTRACE_PEEKDATA, pid, addr, 0); switch (errno) { case 0: break; case ESRCH: case EINVAL: /* these could be seen if the process is gone */ return -1; case EFAULT: case EIO: case EPERM: /* address space is inaccessible */ if (nread) { perror_msg("umovestr: short read (%d < %d) @0x%" PRI_klx, nread, nread + len, addr - nread); } return -1; default: /* all the rest is strange and should be reported */ perror_msg("umovestr: PTRACE_PEEKDATA pid:%d @0x%" PRI_klx, pid, addr); return -1; } m = MIN(sizeof(long), len); memcpy(laddr, u.x, m); /* "If a NUL char exists in this word" */ if ((u.val - x01010101) & ~u.val & x80808080) return 1; addr += sizeof(long); laddr += m; nread += m; len -= m; } return 0; } /* * Iteratively fetch and print up to nmemb elements of elem_size size * from the array that starts at tracee's address start_addr. * * Array elements are being fetched to the address specified by elem_buf. * * The fetcher callback function specified by umoven_func should follow * the same semantics as umoven_or_printaddr function. * * The printer callback function specified by print_func is expected * to print something; if it returns false, no more iterations will be made. * * The pointer specified by opaque_data is passed to each invocation * of print_func callback function. * * This function prints: * - "NULL", if start_addr is NULL; * - "[]", if nmemb is 0; * - start_addr, if nmemb * elem_size overflows or wraps around; * - nothing, if the first element cannot be fetched * (if umoven_func returns non-zero), but it is assumed that * umoven_func has printed the address it failed to fetch data from; * - elements of the array, delimited by ", ", with the array itself * enclosed with [] brackets. * * If abbrev(tcp) is true, then * - the maximum number of elements printed equals to max_strlen; * - "..." is printed instead of max_strlen+1 element * and no more iterations will be made. * * This function returns true only if * - umoven_func has been called at least once AND * - umoven_func has not returned false. */ bool print_array(struct tcb *const tcp, const kernel_ulong_t start_addr, const size_t nmemb, void *const elem_buf, const size_t elem_size, int (*const umoven_func)(struct tcb *, kernel_ulong_t, unsigned int, void *), bool (*const print_func)(struct tcb *, void *elem_buf, size_t elem_size, void *opaque_data), void *const opaque_data) { if (!start_addr) { tprints("NULL"); return false; } if (!nmemb) { tprints("[]"); return false; } const size_t size = nmemb * elem_size; const kernel_ulong_t end_addr = start_addr + size; if (end_addr <= start_addr || size / elem_size != nmemb) { printaddr(start_addr); return false; } const kernel_ulong_t abbrev_end = (abbrev(tcp) && max_strlen < nmemb) ? start_addr + elem_size * max_strlen : end_addr; kernel_ulong_t cur; for (cur = start_addr; cur < end_addr; cur += elem_size) { if (cur != start_addr) tprints(", "); if (umoven_func(tcp, cur, elem_size, elem_buf)) break; if (cur == start_addr) tprints("["); if (cur >= abbrev_end) { tprints("..."); cur = end_addr; break; } if (!print_func(tcp, elem_buf, elem_size, opaque_data)) { cur = end_addr; break; } } if (cur != start_addr) tprints("]"); return cur >= end_addr; } int printargs(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%#" PRI_klx, i ? ", " : "", tcp->u_arg[i]); return RVAL_DECODED; } int printargs_u(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%u", i ? ", " : "", (unsigned int) tcp->u_arg[i]); return RVAL_DECODED; } int printargs_d(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%d", i ? ", " : "", (int) tcp->u_arg[i]); return RVAL_DECODED; } #if defined _LARGEFILE64_SOURCE && defined HAVE_OPEN64 # define open_file open64 #else # define open_file open #endif int read_int_from_file(const char *const fname, int *const pvalue) { const int fd = open_file(fname, O_RDONLY); if (fd < 0) return -1; long lval; char buf[sizeof(lval) * 3]; int n = read(fd, buf, sizeof(buf) - 1); int saved_errno = errno; close(fd); if (n < 0) { errno = saved_errno; return -1; } buf[n] = '\0'; char *endptr = 0; errno = 0; lval = strtol(buf, &endptr, 10); if (!endptr || (*endptr && '\n' != *endptr) #if INT_MAX < LONG_MAX || lval > INT_MAX || lval < INT_MIN #endif || ERANGE == errno) { if (!errno) errno = EINVAL; return -1; } *pvalue = (int) lval; return 0; }