
MapReduce: An Abstraction for Large-Scale Processing of Data

Jeffrey Dean and Sanjay Ghemawat

Google, Inc.∗

May 24, 2004

Abstract

TODO

1 Introduction

For the past five years, we have been involved with devel-
oping and improving Google’s core web search services.
Over this time, we and many of our colleagues have im-
plemented hundreds of special-purpose computations that
process our raw data (files of records containing crawled
documents, logs of web requests, etc.) to compute various
kinds of derived data (e.g. inverted indices, various repre-
sentations of the graph structure of web documents, sum-
maries of the number for pages crawled per host, the set of
most frequent queries in a given day, etc.). In the major-
ity of these computations the actual processing for each
input record is relatively straightforward. However, the
fact that the input data is usually large (computations that
process 20 TB of input data are not unusual) means that
we want to distribute the computation across hundreds or
thousands of machines in order to finish the computation
quickly. At this point, the issues of how to parallelize the
computation, data distribution, fault-tolerance, and load
balancing conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As we gained experience and distaste for repeatedly
writing complex code to perform conceptually straight-
forward computations, we started to search for a common
abstraction that would allow us express the simple com-
putations we were trying to perform, but would hide the
messy details of parallelization, fault-tolerance, data dis-
tribution and load balancing in a library. Our inspiration
is from the map and reduce primitives present in Lisp and
many other functional languages. We realized that most
of our computations involved applying a map operation
to each logical ”record” in our input in order to compute
a set of intermediate key/value pairs, and then applying
a reduce operation to all the values that shared the same
key, in order to combine the derived data appropriately.

∗The authors can be reached at the following addresses:
{jeff,sanjay}@google.com.

The major contributions of this work are a simple-but-
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves very
high performance in a cluster-based computing environ-
ment based on commodity PCs. Section 2 describes the
basic MapReduce programming model and gives several
examples. Section 3 describes an implementation of the
MapReduce interface tailored towards our cluster-based
computing environment. Section 4 describes several re-
finements of the basic MapReduce programming model
that we have found useful. Section 5 has performance
measurements of our MapReduce implementation for a
variety of tasks. Section 6 discusses more about the gen-
eral usage of MapReduce within Google including our ex-
periences in using it as the basis for a rewrite of our pro-
duction indexing system. Section 7 discusses related and
future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.

Map (written by the user) takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values as-
sociated with the same key and passes them to the Re-
duce function. The Reduce function (written by the user)
merges all of its arguments to produce a set of output pairs
(typically just one output pair is produced per Reduce in-
vocation).

2.1 Example

Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the following
pseudo-code:

map(String name, String contents):
for each word w in contents:

EmitIntermediate(w, "1");

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 1

reduce(String word, list<String> values):
int result = 0;
for each v in values:

result += ParseInt(v);
EmitFinal(word, AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example). The
reduce function sums together all counts emitted for a
particular word.

2.2 Usage

To use the library, the user implements the Map and Re-
duce functions as described earlier. In addition, the user
links in the MapReduce library (implemented in C++) into
their program, and invokes it as follows:

map_function(...) { ... }
reduce_function(...) { ... }

MapReduceSpecification spec;
MapReduceResult result;

add list of input files to spec
add output file name(s) to spec
specify map function to use
specify reduce function to use
set tuning parameters in spec

MapReduce(&spec, &result);

2.3 More Examples

Here are a few simple exampls of some interesting pro-
grams that can be easily expressed as MapReduce com-
putations.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of Query Frequency: The map function outputs
〈query, 1〉. The reduce function adds together all values
for the same query and emits a 〈query, totalcount〉 pair.

Reverse Web-Link Graph: The map function out-
puts 〈targetURL, sourceURL〉 pairs for each link to
targetURL found in a page named sourceURL. The
reduce function concatenates the list of all source URLs
associated with a given target URL and emits the pair:
〈targetURL, list(sourceURL)〉.

Term-Vector per Host: The map function emits a
〈hostname, termvector〉 pair for each input document.
The reduce function is passed all per-document term vec-
tors for a given host. It merges these term vectors together,
throwing away infrequent terms, and then emits a final
〈hostname, termvector〉 pair.

Simple Inverted Index: The map function
parses each document, and emits a sequence of
〈word, documentID〉 pairs. The reduce function
accepts all pairs for a given word, sorts the corresponding
document IDs and emits a 〈word, list(documentID)〉
pair. The set of all output pairs forms a simple inverted
index. It is easy to augment this computation to keep
track of word positions.

3 Implementation

Many different implementations of the MapReduce inter-
face are possible. The right choice will depend on the
environment. For example, one implementation may be
suitable for a small shared memory machine, another for a
large NUMA multi-processor, and yet another for an even
larger collection of networked machines.

Below we describe an implementation targeted to the
computing environment in wide use at Google: large clus-
ters of commodity PCs connected together with switched
ethernet [?]. Some of the salient characteristics of this
environment are:

(1) Machines are typically dual processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the ma-
chine level, but averaging considerably less in overall bi-
section bandwidth.

(3) A cluster consists of hundreds or thousands of
machines, and therefore machine failures are common
events.

(4) Storage is provided by inexpensive IDE disks attached
directly to individual machines. A distributed file sys-
tem [?] developed in-house is used to manage the data
stored on these disks. The file system uses replication
to provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple ma-
chines by automatically partitioning the input data into

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 2

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) read

Reduce
phase

Output
files

Figure 1: Execution overview

a set of M splits. Multple input splits can be pro-
cessed in parallel by different machines. Reduce invoca-
tions are distributed by partitioning the intermediate key
space into R pieces using a partitioning function (e.g.,
hash(key)%R).

Figure 1 shows the overall flow of a MapReduce opera-
tion in our implementation. When the user program calls
the MapReduce function, the following sequence of ac-
tions occurs (the numbered labels in Figure 1 correspond
to the numbers in the list below):

1. The MapReduce library in the user program first
splits the input files into M pieces of typically 16-
64MB in size per piece (controllable by the user via
an optional parameter). It then starts up many copies
of the program on a cluster of machines.

2. One of the copies of the program is special – the mas-
ter. The rest are workers who are assigned work by
the master. There are M map tasks and R reduce
tasks to assign. The master picks idle workers and
assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the
contents of the corresponding input split. It parses
key/value pairs out of the input data and passes each

pair to the user-defined Map function. The interme-
diate key/value pairs produced by the Map function
are buffered in memory.

4. Periodically, the buffered pairs are written to local
disk, partitioned into R regions by the partitioning
function. The locations of these buffered pairs on
the local disk are passed back to the master, who is
responsible for forwarding these locations to the re-
duce workers.

5. When a reduce worker is notified by the master about
these locations, it uses remote procedure calls to read
the buffered data from the local disks of the map
workers. When a reduce worker has read all inter-
mediate data, it sorts it by the intermediate keys so
that all occurrences of the same key are grouped to-
gether. If the amount of intermediate data is too large
to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted interme-
diate data and for each unique intermediate key en-
countered, it passes the key and the corresponding
set of intermediate values to the user’s Reduce func-
tion. The output of the Reduce function is written to
a final output file for this reduce partition.

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 3

7. When all map tasks and reduce tasks have been com-
pleted, the master wakes up the user program. At this
point, the MapReduce() call in the user program re-
turns back to the user code.

3.2 Master Data Structures
The master keeps several data structures. For each map
task, it stores the state (idle, in-progress, or completed),
and the identity of the worker machine (for non-idle map
tasks).

For each reduce task, it stores the state (idle, in-
progress, or completed), and the identity of the worker
machine (for non-idle reduce tasks).

The master is the conduit through which the location of
intermediate file regions is propagated from map tasks to
reduce tasks. Therefore, for each completed map task, the
master stores the locations and sizes of the R intermediate
file regions produced by the map task. Updates to this
location and size information are received as map tasks
are completed and are pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process
very large amounts of data using hundreds or thousands
of machines, the library must gracefully tolerate machine
failures.

Worker Failure

The master periodically pings every worker. If no re-
sponse is received from a worker in a certain amount of
time, the master marks the worker as failed. Any map
tasks completed by the worker are reset back to their ini-
tial idle state, and therefore become eligible for schedul-
ing on other workers. Similarly, any map task or reduce
task in progress on a failed worker is also reset to idle and
becomes eligible for rescheduling.

MapReduce is resilient to large-scale worker failures.
For example, during one MapReduce operation, network
maintenance on a running cluster was causing groups of
80 machines at a time to become unreachable for several
minutes. The MapReduce master simply re-executed the
work done by the unreachable worker machines, and con-
tinued to make forward progress, eventually completing
the MapReduce operation.

Master Failure

It is easy to periodically checkpoint the master data struc-
tures described above to persistent storage. If the master
task dies, a new copy can be started from the last check-
pointed state. However, given that there is only a single
master, its failure is very unlikely, and therefore our cur-
rent implementation aborts the MapReduce computation
if the master fails. Clients can check for this condition
and retry the MapReduce operation, if they desire.

3.4 Locality
Network bandwidth is a relatively scarce resource in our
computing environment. We conserve network bandwidth
by taking advantage of the fact that the input data (man-
aged by GFS [?]) is actually stored on the local disks
of the machines that make up our cluster. GFS divides
each file into 64 MB blocks, and stores multiple repli-
cas of each block on different machines (typically 3 repli-
cas). The MapReduce master takes the location informa-
tion of the input files into account and attempts to sched-
ule a map task on a machine that contains a replica of
the corresponding input data. Failing that, it attempts to
schedule a map task near a replica of that task’s input data
(e.g. on a worker machine that is on the same network
switch as the machine containing the data). When run-
ning large MapReduce operations on a significant fraction
of the workers in a cluster, most input data is read locally
and consumes no network bandwidth.

3.5 Task Granularity
We subdivide the map phase into M pieces and the reduce
phase into R pieces, as described above. Ideally, M and
R should be much larger than the number of worker ma-
chines. Having each worker perform many different tasks
improves dynamic load balancing, and also speeds up re-
covery when a worker fails – the many map tasks it has
completed can be spread out across all the other worker
machines.

There are practical bounds on how large M and R can
be in our implementation, since the master must make a
total of O(M +R) scheduling decisions and keeps O(M ∗
R) state in memory as described above. (The constant
factors for memory usage are very small however – the
O(M ∗R) piece of the state keeps approximately one byte
of data per map task/reduce task pair.)

Furthermore, R is often constrained by users because
the output of each reduce task ends up in a separate output
file. In practice, we tend to choose M so that each individ-
ual task is roughly 16 to 64 MB of input data (so that the
locality optimization described above is most effective),
and we make R a small multiple of the number of worker
machines we expect to use. We often perform MapRe-
duce computations with M = 200, 000 and R = 5, 000,
using 2,000 worker machines.

3.6 Backup tasks
One of the common causes that lengthens the total time
taken for a MapReduce operation is a“straggler”: a ma-
chine that takes an unusually long time to complete one
of the last few map or reduce tasks in the computation.
Stragglers can arise for a whole host of reasons. For ex-
ample, a machine with a bad disk may experience fre-
quent, but correctable errors, that slow its read perfor-
mance from 30 MB/s to 1 MB/s. The cluster scheduling

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 4

system may have scheduled other tasks on the machine,
causing it to execute the MapReduce code more slowly
due to competition for CPU, memory, local disk, or net-
work bandwidth. A recent problem we experienced was
a bug in machine initialization code that caused processor
caches to be disabled: the MapReduce computation (and
all other computation) on affected machines slowed down
by over a factor of ten.

We have a general mechanism to alleviate the problem
of stragglers. When a MapReduce operation is close to
completion, the master schedules backup executions of
the remaining in-progress tasks. The task is marked as
completed whenever either the primary or the backup ex-
ecution completes. We have tuned this mechanism so that
it typically increases the computational resources used by
the operation by no more than a few percent. We have
found that this significantly reduces the time to complete
large MapReduce operations (the final paper will include
specific details, but our anecdotal evidence is that it im-
proves completion time for our production indexing tasks
by roughly XXX (20%?) XXX IS this right?).

4 Refinements

Although the basic functionality provided by simply writ-
ing Map and Reduce functions is sufficient for most needs,
we have found a few extensions useful. These are de-
scribed in this section.

4.1 Partition Function

The user of MapReduce specifies the number of reduce
tasks/output files that they desired (R). Data gets parti-
tioned across these tasks using a partitioning function on
the intermediate key. A default partitioning function is
provided that uses hashing (e.g. hash(key)%R). This
tends to result in fairly well-balanced partitions. In some
cases, however, it is useful to partition data by some other
function of the key. For example, we have sometimes
computed data whose keys were URLs of documents, but
where we wanted all entries for a single host to end up in
the same output file. To support situations like this, the
user of the MapReduce library can provide their own par-
titioning function (e.g. hash(Hostname(urlkey))%R

for partitioning so that URLs from the same host end up
in the same output file).

4.2 Ordering Guarantees

We guarantee that within a given partition, the interme-
diate key/value pairs are processed in increasing key or-
der. This ordering guarantee allows us to easily generate
a sorted output file per partition, which is useful when the
output file format needs to support efficient random access
lookups by key.

4.3 Combiner Function

In some cases, there is significant repetition in the inter-
mediate keys produced by each map task, and the user-
specified Reduce function is commutative and associative.
A good example of this is the word counting example in
Section 2.1. Since word frequencies tend to follow a Zip-
fian distribution, each map task will produce hundreds or
thousands of records of the form <‘‘the’’,’’1’’>.
The Reduce function simply adds up the count values. To
help conserve network bandwidth for MapReduce oper-
ations that satisfy these properties, we allow the user to
specify a Combiner function that will get invoked with
each unique intermediate key and a partial set of the in-
termediate values with this key. This is similar to a Reduce
function, except that it gets executed on each machine that
performs a map task, as a way of partially summarizing
the intermediate key/value pairs (indeed, when using a
Combiner function, the typical approach is to specify the
same function for the Combiner and Reduce operations).
We have found that this partial combining significantly
speeds up certain classes of MapReduce operations.

4.4 Input and Output Types

The MapReduce library provides support for reading in-
put data in several different formats. For example, “text”
mode input treats each line as a key/value pair – the key
is the offset in the file and the value is the contents of
the line. Another common supported format stores a se-
quence of key/value pairs sorted by key. Each input type
implementation knows how to split itself into meaning-
ful ranges for processing as separate map tasks (e.g. text
mode’s range splitting ensures that range splits occur only
at line boundaries). User code can add support for a
new input type by providing an implementation of sim-
ple reader interface.

A reader does not necessarily need to provide data read
from a file. For example, it is easy to define a reader
that reads records from a database, or from data structures
mapped in memory.

In a similar fashion, we support a set of output types for
producing data in different formats and it is easy for user
code to add support for new output types.

4.5 Skipping Bad Records

Sometimes there are bugs in user code that cause the Map
or Reduce functions to deterministically crash on certain
records. Such bugs prevent a MapReduce operation from
completing. The usual course of action is to fix the bug,
but sometimes this is not feasible (e.g. perhaps the bug is
in a third-party library for which source code is unavail-
able, etc.). Also, sometimes it is acceptable to ignore a
few records in a very large input set (e.g. when doing

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 5

statistical analysis on a large data set). We provide an op-
tional mode of execution where the MapReduce library
detects which records cause deterministic crashes and can
skip such records in order to make forward progress.

Each worker process installs a signal handler that
catches segmentation violations and bus errors. Before in-
voking a user Map or Reduce operation, the MapReduce
library stores the sequence number of the argument in a
global variable. If the user code generates a signal, the sig-
nal handler sends a “last gasp” UDP packet that contains
the sequence number to the MapReduce master. When
the master has seen more than one failure on a particular
record, it indicates that the record should be skipped when
it issues the next re-execution of the corresponding Map
or Reduce task.

4.6 Local Execution
Debugging problems in Map or Reduce functions can be
tricky, since the actual computation happens in a dis-
tributed system, often on several thousand machines, with
work assignment decisions made dynamically by the mas-
ter. To help facilitate debugging, profiling, and small-
scale testing, we have developed an alternative implemen-
tation of the MapReduce library that sequentially executes
all the work for a MapReduce operation on the local ma-
chine (it can also be told to execute just particular map
tasks). Users invoke their program with a special flag and
can then easily use any debugging or testing tools they
find useful (e.g. gdb).

4.7 Status Page
The master runs an internal HTTP server and exports a set
of status pages for human consumption. The status pages
show the progress of the computation (how many tasks
have been completed, how many are in progress, bytes
of input, bytes of intermediate data, bytes of output, pro-
cessing rates, etc.). The user can use this data to predict
how long the computation will take, and whether or not
more resources should be added to the computation. In
addition, it can be useful to figure out when something is
going much slower than expected.

In addition, the top-level status page shows which
workers have failed, and which map and reduce tasks they
were processing when they failed. This information is
useful when attempting to diagnose bugs in the user code.

4.8 Counters
The MapReduce library provides a counter facility to
count occurrences of various events. For example, user
code may want to count total number of words processed
or the number of German documents indexed, etc.

To use this facility, user code creates a counter object
and then increments the counter appropriately in the Map
and/or Reduce function. For example:

Counter* uppercase;
uppercase = GetCounter(‘‘uppercase’’);

map(String name, String contents):
for each word w in contents:

if (w is capitalized):
uppercase->Increment();

EmitIntermediate(w, "1");

The counter values from individual worker machines
are periodically propagated to the master (piggybacked
on the ping response). The master aggregates the counter
values from successful map and reduce tasks and returns
them to the user code when the MapReduce operation is
completed. The current counter values are also displayed
on the master status page so that a human can watch
the progress of the live computation. When aggregating
counter values, the master eliminates the effects of dupli-
cate executions of the same map or reduce task to avoid
double counting. Duplicate executions can arise from our
use of backup tasks and from re-execution of tasks due to
failures.

Some counter values are automatically maintained by
the MapReduce library, such as the number of input
key/value pairs processed and the number of output
key/value pairs produced.

Users have found the counter facility useful for sanity
checking the behavior of MapReduce operations. For ex-
ample, in some MapReduce operations, the user code may
want to ensure that the number of output pairs produced
exactly equals the number of input pairs processed, or
that the fraction of German documents processed is within
some tolerable bound of the total number of documents
processed.

5 Performance

In this section we show the performance of MapReduce
by providing measurements of two large computations
running on a large cluster of machines. One computation
searches through approximately a TB of data looking for
a particular pattern. The other computation sorts approxi-
mately a TB of data.

These two programs represent a large subset of the real
programs written by users of MapReduce – one class of
programs shuffles data from one representation to another,
and another class extracts a small amount of interesting
data from a large data set.

5.1 Cluster Configuration
All of the programs were executed on a cluster that con-
sisted of approximately 1800 available machines. Each
machine had two 2GHz Intel Xeon processors with
Hyper-Threading enabled; 4GB of memory; two 160GB

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 6

20 40 60 80 100

Seconds

0

10000

20000

30000

In
pu

t
(M

B
/s

)

Figure 2: Data transfer rate over time

IDE disks; and a gigabit ethernet link. The machines were
arranged in a two-level tree-shaped switched network with
approximately XXX Gbps of aggregate bandwidth avail-
able at the root. All of the machines were in the same
hosting facility and therefore round-trip times between
any pair of machines was less than a millisecond.

Out of the 4GB of memory, approximately 1 - 1.5GB
was reserved by other tasks running on the cluster. The
programs were executed on a weekend afternoon, when
the CPUs, disks, and network were mostly idle.

5.2 Grep

The grep program scans through 1010 100-bytes records,
searching for a relatively rare pattern (the pattern occurs
in 92,337 records). The input is split into approximately
64MB pieces (M = 15000), and the entire output is
placed in one file (R = 1).

Figure 2 shows the progress of the computation over
time. The Y-axis shows the rate at which the input data
is scanned. The rate gradually picks up as more machines
are assigned to this MapReduce computation, and peaks at
over 30 GB/s when 1764 workers have been assigned. As
the map tasks finish, the rate starts dropping and hits zero
about 80 seconds into the computation. The entire com-
putation takes approximately 150 seconds from start to
finish (this includes about a minute of startup overhead).

5.3 Sort

The sort program sorts 1010 100-bytes records (approxi-
mately 1 TB of data).

The sorting program consists of less than 60 lines of
user code. A three-line Map function extracts a 10-byte
sorting key from a text line and emits the key and the
original text line as the intermediate key/value pair. We
used a builtin Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair.

As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the initial
bytes of the key to segregate it into one of R pieces.

Note: our partitioning function for this benchmark has
built-in knowledge of the distribution of keys. In a gen-
eral sorting program, we would add a pre-pass MapRe-
duce operation that would collect a sample of the keys
and use the distribution of the sampled keys to compute
split-points for the final sorting pass.

Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.

The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first map
task completes. The first hump in the graph is for the
first batch of approximately 1700 reduce tasks (the en-
tire MapReduce was assigned about 1700 machines, and
each machine only executes one reduce task at a time). At
around 300 seconds into the computation, some of these
first batch of reduce tasks finish and we start shuffling data
for the remaining reduce tasks. All of the shuffling is done
about 600 seconds into the computation.

The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds.

5.4 Effect of Backup Tasks

In Figure 3 (b), we show an execution of the sort program
with backup tasks disabled. The execution flow is similar
to that shown in Figure 3 (a), except that there is a very
long tail where hardly any write activity occurs. After 960
seconds, all except 5 of the reduce tasks are completed.
However these last few stragglers don’t finish until 300
seconds later. The entire computation takes 1283 seconds,
an increase of 44% in elapsed time.

5.5 Machine Failures

In Figure 3 (c), we show an execution of the sort program
where we intentionally killed 200 out of 1746 worker pro-
cesses several minutes into the computation. The under-
lying cluster scheduler immediately restarted new worker
processes on these machines (since only the processes
were killed, the machines were still functioning properly).

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 7

200 400 600 800
0

5000

10000

15000

20000
In

pu
t

(M
B

/s
)

200 400 600 800
0

5000

10000

15000

20000

Sh
uf

fl
e

(M
B

/s
)

200 400 600 800

Seconds

0

5000

10000

15000

20000

O
ut

pu
t

(M
B

/s
)

(a) Normal execution

500 1000
0

5000

10000

15000

20000

In
pu

t
(M

B
/s

)

500 1000
0

5000

10000

15000

20000

Sh
uf

fl
e

(M
B

/s
)

500 1000

Seconds

0

5000

10000

15000

20000
O

ut
pu

t
(M

B
/s

)

(b) No backup tasks

200 400 600 800
0

5000

10000

15000

20000

In
pu

t
(M

B
/s

)

200 400 600 800
0

5000

10000

15000

20000

Sh
uf

fl
e

(M
B

/s
)

200 400 600 800

Seconds

0

5000

10000

15000

20000

O
ut

pu
t

(M
B

/s
)

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

The worker deaths show up as a negative input rate
since some previously completed map work disappears
(since the corresponding map workers were killed) and
needs to be redone. The re-execution of this map work
happens relatively quickly. The entire computation fin-
ishes in 933 seconds including startup overhead (just an
increase of 5% over the normal execution time).

6 Experience
We wrote the first version of the MapReduce library in
February, 2003, and made significant enhancements to it
in August, 2003 (including the locality optimization, dy-
namic load balancing of task execution across worker ma-
chines, etc.). Since that time, we have been pleasantly sur-
prised at how broadly applicable the MapReduce library
has been for the kinds of problems we work on. It has
been used across a wide range of domains within Google,
including:

• large-scale machine learning problems,

• clustering problems for the Google News and
Froogle products,

• extraction of data used to produce reports of popular
queries (e.g. Google Zeitgeist),

• extraction of properties of web pages for new exper-
iments and products (e.g. extraction of geographical
locations from a large corpus of web pages for local-
ized search), and

• large-scale graph computations

Figure 4 shows the significant growth in the number
of separate MapReduce uses checked into our primary
source code management system over time, from 0 in
early 2003 to approximately 500 separate instances as of
late May, 2004. MapReduce has been so successful be-
cause it makes it possible to write a simple program and
run it efficiently on a thousand machines in the course of
half an hour, greatly speeding up the development and
prototyping cycle. Furthermore, it allows programmers
who have no experience with distributed and/or parallel
systems to easily exploit large amounts of computational
resources.

We have recently instrumented the MapReduce library
to gather statistics about the computing resources and I/O
utilization across all MapReduce computations, and will
report on this data in the final paper.

6.1 Large-Scale Indexing
One of our most significant uses of MapReduce to date
has been a complete rewrite of the production index-
ing system that produces the data structures used for the
www.google.com web search service. The indexing sys-
tem takes as input a large set of documents that have been
retrieved by our crawling system, stored as a set of GFS
files. The raw contents for these documents are more than
27 TB of uncompressed data (more than 8 TB afer com-
pression). The indexing process runs as a sequence of five
to ten MapReduce operations. Using MapReduce (instead

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 8

2003/03

2003/06

2003/09

2003/12

2004/03

2004/06

0

100

200

300

400

500
N

um
be

r
of

 in
st

an
ce

s
in

 s
ou

rc
e

tr
ee

Figure 4: MapReduce instances over time

of the ad-hoc distributed passes in the prior version of the
indexing system) has provided several benefits:

• The indexing code is simpler, smaller, and easier to
understand, because the code that deals with fault
tolerance, distribution and parallelization is hidden
within the MapReduce library. For example, the
size of one phase of the computation dropped from
approximately 3800 lines of C++ code to approxi-
mately 700 lines when expressed using MapReduce.

• The performance of the MapReduce library is good
enough that we can keep conceptually unrelated
computations separate, instead of mixing them to-
gether to avoid extra passes over the data. This
makes it easy to change the indexing process. For
example, one change that took a few months to make
in our old indexing system took only a few days to
implement in the new system.

• The indexing process has become much easier to op-
erate, because most of the problems caused by ma-
chine failures, slow machines, and networking hic-
cups are automatically dealt with by the MapReduce
library without operator intervention. Furthermore,
it is easy to improve the performance of the index-
ing process by adding new machines to the indexing
cluster.

7 Related and Future Work
. Direct-attached storage
http://www.pdl.cmu.edu/Active/#Talks-Berkeley98

. TODO

8 Conclusions
MapReduce is an abstraction that successfully hides the
details of parallelization, fault-tolerance, locality opti-
mization and load balancing from programmers. MapRe-
duce is broadly applicable to a wide range of computa-
tions we perform as part of running Google’s production
services and in developing new services. We have applied
it to the problem of generating the data for Google’s pro-
duction web search service, data mining, machine learn-
ing, and many prototypes. We believe it to be applicable
and useful across a broad range of data processing prob-
lems beyond those found in the information retrieval do-
main.

We have described an implementation of MapReduce
suitable for execution on a large cluster of machines. The
implementation is scalable, provides good performance,
and handles machine and other failures gracefully.

9 Acknowledgements
Josh Levenberg has been instrumental in revising and ex-
tending the user-level MapReduce API with a number of
new features based on his experience with using MapRe-
duce and other people’s suggestions for enhancements.
MapReduce relies fairly heavily on both the Google File
System and Global Work Queue systems to help with the
parallelization, locality optimization, fault-tolerance and
distribution of data. We would like to thank Howard Gob-
ioff, Shun-tak Leung, Mohit Aron, David Kramer, Markus
Gutschke, and Josh Redstone for their work in developing
GFS, the large-scale distributed file system that serves as
the backing store for MapReduce input and output data.
Percy Liang (currently at MIT) developed an initial ver-
sion of the Global Work Queue working with the first au-
thor during a summer internship at Google in 2002. Ol-
can Sercinoglu has implemented many enhancements to
the Global Work Queue since 2002, and has also provided
many helpful suggestions in the development of MapRe-
duce. Finally, we thank all the users of MapReduce within
Google’s engineering organization for providing helpful
feedback and suggestions (and bug reports :).

TODO: References

[?]

References

15 : 38 May 24, 2004 DRAFT: DO NOT DISTRIBUTE 9

