/* AES-CCM-128 (rfc 3610) Copyright (C) Stefan Metzmacher 2012 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "replace.h" #include "../lib/crypto/crypto.h" #include "lib/util/byteorder.h" #define M_ ((AES_CCM_128_M - 2) / 2) #define L_ (AES_CCM_128_L - 1) void aes_ccm_128_init(struct aes_ccm_128_context *ctx, const uint8_t K[AES_BLOCK_SIZE], const uint8_t N[AES_CCM_128_NONCE_SIZE], size_t a_total, size_t m_total) { ZERO_STRUCTP(ctx); AES_set_encrypt_key(K, 128, &ctx->aes_key); memcpy(ctx->nonce, N, AES_CCM_128_NONCE_SIZE); ctx->a_remain = a_total; ctx->m_remain = m_total; /* * prepare B_0 */ ctx->B_i[0] = L_; ctx->B_i[0] += 8 * M_; if (a_total > 0) { ctx->B_i[0] += 64; } memcpy(&ctx->B_i[1], ctx->nonce, AES_CCM_128_NONCE_SIZE); RSIVAL(ctx->B_i, (AES_BLOCK_SIZE - AES_CCM_128_L), m_total); /* * prepare X_1 */ AES_encrypt(ctx->B_i, ctx->X_i, &ctx->aes_key); /* * prepare B_1 */ ZERO_STRUCT(ctx->B_i); if (a_total >= UINT32_MAX) { RSSVAL(ctx->B_i, 0, 0xFFFF); RSBVAL(ctx->B_i, 2, (uint64_t)a_total); ctx->B_i_ofs = 10; } else if (a_total >= 0xFF00) { RSSVAL(ctx->B_i, 0, 0xFFFE); RSIVAL(ctx->B_i, 2, a_total); ctx->B_i_ofs = 6; } else if (a_total > 0) { RSSVAL(ctx->B_i, 0, a_total); ctx->B_i_ofs = 2; } /* * prepare A_i */ ctx->A_i[0] = L_; memcpy(&ctx->A_i[1], ctx->nonce, AES_CCM_128_NONCE_SIZE); ctx->S_i_ofs = AES_BLOCK_SIZE; } void aes_ccm_128_update(struct aes_ccm_128_context *ctx, const uint8_t *v, size_t v_len) { size_t *remain; if (v_len == 0) { return; } if (ctx->a_remain > 0) { remain = &ctx->a_remain; } else { remain = &ctx->m_remain; } if (unlikely(v_len > *remain)) { abort(); } if (ctx->B_i_ofs > 0) { size_t n = MIN(AES_BLOCK_SIZE - ctx->B_i_ofs, v_len); memcpy(&ctx->B_i[ctx->B_i_ofs], v, n); v += n; v_len -= n; ctx->B_i_ofs += n; *remain -= n; } if ((ctx->B_i_ofs == AES_BLOCK_SIZE) || (*remain == 0)) { aes_block_xor(ctx->X_i, ctx->B_i, ctx->B_i); AES_encrypt(ctx->B_i, ctx->X_i, &ctx->aes_key); ctx->B_i_ofs = 0; } while (v_len >= AES_BLOCK_SIZE) { aes_block_xor(ctx->X_i, v, ctx->B_i); AES_encrypt(ctx->B_i, ctx->X_i, &ctx->aes_key); v += AES_BLOCK_SIZE; v_len -= AES_BLOCK_SIZE; *remain -= AES_BLOCK_SIZE; } if (v_len > 0) { ZERO_STRUCT(ctx->B_i); memcpy(ctx->B_i, v, v_len); ctx->B_i_ofs += v_len; *remain -= v_len; v = NULL; v_len = 0; } if (*remain > 0) { return; } if (ctx->B_i_ofs > 0) { aes_block_xor(ctx->X_i, ctx->B_i, ctx->B_i); AES_encrypt(ctx->B_i, ctx->X_i, &ctx->aes_key); ctx->B_i_ofs = 0; } } static inline void aes_ccm_128_S_i(struct aes_ccm_128_context *ctx, uint8_t S_i[AES_BLOCK_SIZE], size_t i) { RSIVAL(ctx->A_i, (AES_BLOCK_SIZE - AES_CCM_128_L), i); AES_encrypt(ctx->A_i, S_i, &ctx->aes_key); } void aes_ccm_128_crypt(struct aes_ccm_128_context *ctx, uint8_t *m, size_t m_len) { while (m_len > 0) { if (ctx->S_i_ofs == AES_BLOCK_SIZE) { ctx->S_i_ctr += 1; aes_ccm_128_S_i(ctx, ctx->S_i, ctx->S_i_ctr); ctx->S_i_ofs = 0; } if (likely(ctx->S_i_ofs == 0 && m_len >= AES_BLOCK_SIZE)) { aes_block_xor(m, ctx->S_i, m); m += AES_BLOCK_SIZE; m_len -= AES_BLOCK_SIZE; ctx->S_i_ctr += 1; aes_ccm_128_S_i(ctx, ctx->S_i, ctx->S_i_ctr); continue; } m[0] ^= ctx->S_i[ctx->S_i_ofs]; m += 1; m_len -= 1; ctx->S_i_ofs += 1; } } void aes_ccm_128_digest(struct aes_ccm_128_context *ctx, uint8_t digest[AES_BLOCK_SIZE]) { if (unlikely(ctx->a_remain != 0)) { abort(); } if (unlikely(ctx->m_remain != 0)) { abort(); } /* prepare S_0 */ aes_ccm_128_S_i(ctx, ctx->S_i, 0); /* * note X_i is T here */ aes_block_xor(ctx->X_i, ctx->S_i, digest); ZERO_STRUCTP(ctx); }