/* * Copyright 2001-2006 Adrian Thurston * 2004 Erich Ocean * 2005 Alan West */ /* This file is part of Ragel. * * Ragel is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Ragel is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Ragel; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "ragel.h" #include "mlgoto.h" #include "redfsm.h" #include "bstmap.h" #include "gendata.h" /* Emit the goto to take for a given transition. */ std::ostream &OCamlGotoCodeGen::TRANS_GOTO( RedTransAp *trans, int level ) { out << TABS(level) << "tr" << trans->id << " ()"; return out; } std::ostream &OCamlGotoCodeGen::TO_STATE_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numToStateRefs > 0 ) { /* Write the case label, the action and the case break. */ out << "\t| " << act->actionId << " ->\n"; ACTION( out, act, 0, false ); out << "\t()\n"; } } genLineDirective( out ); return out; } std::ostream &OCamlGotoCodeGen::FROM_STATE_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numFromStateRefs > 0 ) { /* Write the case label, the action and the case break. */ out << "\t| " << act->actionId << " ->\n"; ACTION( out, act, 0, false ); out << "\t()\n"; } } genLineDirective( out ); return out; } std::ostream &OCamlGotoCodeGen::EOF_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numEofRefs > 0 ) { /* Write the case label, the action and the case break. */ out << "\t| " << act->actionId << " ->\n"; ACTION( out, act, 0, true ); out << "\t()\n"; } } genLineDirective( out ); return out; } std::ostream &OCamlGotoCodeGen::ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numTransRefs > 0 ) { /* Write the case label, the action and the case break. */ out << "\t| " << act->actionId << " ->\n"; ACTION( out, act, 0, false ); out << "\t()\n"; } } genLineDirective( out ); return out; } void OCamlGotoCodeGen::GOTO_HEADER( RedStateAp *state ) { /* Label the state. */ out << "| " << state->id << " ->\n"; } void OCamlGotoCodeGen::emitSingleSwitch( RedStateAp *state ) { /* Load up the singles. */ int numSingles = state->outSingle.length(); RedTransEl *data = state->outSingle.data; if ( numSingles == 1 ) { /* If there is a single single key then write it out as an if. */ out << "\tif " << GET_WIDE_KEY(state) << " = " << KEY(data[0].lowKey) << " then\n\t\t"; /* Virtual function for writing the target of the transition. */ TRANS_GOTO(data[0].value, 0) << " else\n"; } else if ( numSingles > 1 ) { /* Write out single keys in a switch if there is more than one. */ out << "\tmatch " << GET_WIDE_KEY(state) << " with\n"; /* Write out the single indicies. */ for ( int j = 0; j < numSingles; j++ ) { out << "\t\t| " << ALPHA_KEY(data[j].lowKey) << " -> "; TRANS_GOTO(data[j].value, 0) << "\n"; } out << "\t\t| _ ->\n"; } } void OCamlGotoCodeGen::emitRangeBSearch( RedStateAp *state, int level, int low, int high, RedTransAp* def) { /* Get the mid position, staying on the lower end of the range. */ int mid = (low + high) >> 1; RedTransEl *data = state->outRange.data; /* Determine if we need to look higher or lower. */ bool anyLower = mid > low; bool anyHigher = mid < high; /* Determine if the keys at mid are the limits of the alphabet. */ bool limitLow = data[mid].lowKey == keyOps->minKey; bool limitHigh = data[mid].highKey == keyOps->maxKey; if ( anyLower && anyHigher ) { /* Can go lower and higher than mid. */ out << TABS(level) << "if " << GET_WIDE_KEY(state) << " < " << KEY(data[mid].lowKey) << " then begin\n"; emitRangeBSearch( state, level+1, low, mid-1, def ); out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " > " << KEY(data[mid].highKey) << " then begin\n"; emitRangeBSearch( state, level+1, mid+1, high, def ); out << TABS(level) << " end else\n"; TRANS_GOTO(data[mid].value, level+1) << "\n"; } else if ( anyLower && !anyHigher ) { /* Can go lower than mid but not higher. */ out << TABS(level) << "if " << GET_WIDE_KEY(state) << " < " << KEY(data[mid].lowKey) << " then begin\n"; emitRangeBSearch( state, level+1, low, mid-1, def ); /* if the higher is the highest in the alphabet then there is no * sense testing it. */ if ( limitHigh ) { out << TABS(level) << " end else\n"; TRANS_GOTO(data[mid].value, level+1) << "\n"; } else { out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " <= " << KEY(data[mid].highKey) << " then\n"; TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n"; TRANS_GOTO(def, level+1) << "\n"; } } else if ( !anyLower && anyHigher ) { /* Can go higher than mid but not lower. */ out << TABS(level) << "if " << GET_WIDE_KEY(state) << " > " << KEY(data[mid].highKey) << " then begin\n"; emitRangeBSearch( state, level+1, mid+1, high, def ); /* If the lower end is the lowest in the alphabet then there is no * sense testing it. */ if ( limitLow ) { out << TABS(level) << " end else\n"; TRANS_GOTO(data[mid].value, level+1) << "\n"; } else { out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " >= " << KEY(data[mid].lowKey) << " then\n"; TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n"; TRANS_GOTO(def, level+1) << "\n"; } } else { /* Cannot go higher or lower than mid. It's mid or bust. What * tests to do depends on limits of alphabet. */ if ( !limitLow && !limitHigh ) { out << TABS(level) << "if " << KEY(data[mid].lowKey) << " <= " << GET_WIDE_KEY(state) << " && " << GET_WIDE_KEY(state) << " <= " << KEY(data[mid].highKey) << " then\n"; TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n"; TRANS_GOTO(def, level+1) << "\n"; } else if ( limitLow && !limitHigh ) { out << TABS(level) << "if " << GET_WIDE_KEY(state) << " <= " << KEY(data[mid].highKey) << " then\n"; TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n"; TRANS_GOTO(def, level+1) << "\n"; } else if ( !limitLow && limitHigh ) { out << TABS(level) << "if " << KEY(data[mid].lowKey) << " <= " << GET_WIDE_KEY(state) << " then\n"; TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n"; TRANS_GOTO(def, level+1) << "\n"; } else { /* Both high and low are at the limit. No tests to do. */ TRANS_GOTO(data[mid].value, level+1) << "\n"; } } } void OCamlGotoCodeGen::STATE_GOTO_ERROR() { /* Label the state and bail immediately. */ outLabelUsed = true; RedStateAp *state = redFsm->errState; out << "| " << state->id << " ->\n"; out << " do_out ()\n"; } void OCamlGotoCodeGen::COND_TRANSLATE( GenStateCond *stateCond, int level ) { GenCondSpace *condSpace = stateCond->condSpace; out << TABS(level) << "_widec = " << CAST(WIDE_ALPH_TYPE()) << "(" << KEY(condSpace->baseKey) << " + (" << GET_KEY() << " - " << KEY(keyOps->minKey) << "));\n"; for ( GenCondSet::Iter csi = condSpace->condSet; csi.lte(); csi++ ) { out << TABS(level) << "if ( "; CONDITION( out, *csi ); Size condValOffset = ((1 << csi.pos()) * keyOps->alphSize()); out << " ) _widec += " << condValOffset << ";\n"; } } void OCamlGotoCodeGen::emitCondBSearch( RedStateAp *state, int level, int low, int high ) { /* Get the mid position, staying on the lower end of the range. */ int mid = (low + high) >> 1; GenStateCond **data = state->stateCondVect.data; /* Determine if we need to look higher or lower. */ bool anyLower = mid > low; bool anyHigher = mid < high; /* Determine if the keys at mid are the limits of the alphabet. */ bool limitLow = data[mid]->lowKey == keyOps->minKey; bool limitHigh = data[mid]->highKey == keyOps->maxKey; if ( anyLower && anyHigher ) { /* Can go lower and higher than mid. */ out << TABS(level) << "if ( " << GET_KEY() << " < " << KEY(data[mid]->lowKey) << " ) {\n"; emitCondBSearch( state, level+1, low, mid-1 ); out << TABS(level) << "} else if ( " << GET_KEY() << " > " << KEY(data[mid]->highKey) << " ) {\n"; emitCondBSearch( state, level+1, mid+1, high ); out << TABS(level) << "} else {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else if ( anyLower && !anyHigher ) { /* Can go lower than mid but not higher. */ out << TABS(level) << "if ( " << GET_KEY() << " < " << KEY(data[mid]->lowKey) << " ) {\n"; emitCondBSearch( state, level+1, low, mid-1 ); /* if the higher is the highest in the alphabet then there is no * sense testing it. */ if ( limitHigh ) { out << TABS(level) << "} else {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else { out << TABS(level) << "} else if ( " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << " ) {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } } else if ( !anyLower && anyHigher ) { /* Can go higher than mid but not lower. */ out << TABS(level) << "if ( " << GET_KEY() << " > " << KEY(data[mid]->highKey) << " ) {\n"; emitCondBSearch( state, level+1, mid+1, high ); /* If the lower end is the lowest in the alphabet then there is no * sense testing it. */ if ( limitLow ) { out << TABS(level) << "} else {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else { out << TABS(level) << "} else if ( " << GET_KEY() << " >= " << KEY(data[mid]->lowKey) << " ) {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } } else { /* Cannot go higher or lower than mid. It's mid or bust. What * tests to do depends on limits of alphabet. */ if ( !limitLow && !limitHigh ) { out << TABS(level) << "if ( " << KEY(data[mid]->lowKey) << " <= " << GET_KEY() << " && " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << " ) {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else if ( limitLow && !limitHigh ) { out << TABS(level) << "if ( " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << " ) {\n"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else if ( !limitLow && limitHigh ) { out << TABS(level) << "if ( " << KEY(data[mid]->lowKey) << " <= " << GET_KEY() << " )\n {"; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}\n"; } else { /* Both high and low are at the limit. No tests to do. */ COND_TRANSLATE(data[mid], level); } } } std::ostream &OCamlGotoCodeGen::STATE_GOTOS() { for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st == redFsm->errState ) STATE_GOTO_ERROR(); else { /* Writing code above state gotos. */ GOTO_HEADER( st ); out << "\tbegin\n"; if ( st->stateCondVect.length() > 0 ) { out << " _widec = " << GET_KEY() << ";\n"; emitCondBSearch( st, 1, 0, st->stateCondVect.length() - 1 ); } /* Try singles. */ if ( st->outSingle.length() > 0 ) emitSingleSwitch( st ); /* Default case is to binary search for the ranges, if that fails then */ if ( st->outRange.length() > 0 ) emitRangeBSearch( st, 1, 0, st->outRange.length() - 1, st->defTrans ); else /* Write the default transition. */ TRANS_GOTO( st->defTrans, 1 ) << "\n"; out << "\tend\n"; } } return out; } std::ostream &OCamlGotoCodeGen::TRANSITIONS() { /* Emit any transitions that have functions and that go to * this state. */ for ( TransApSet::Iter trans = redFsm->transSet; trans.lte(); trans++ ) { /* Write the label for the transition so it can be jumped to. */ out << " and tr" << trans->id << " () = "; /* Destination state. */ if ( trans->action != 0 && trans->action->anyCurStateRef() ) out << "_ps = " << vCS() << ";"; out << vCS() << " <- " << trans->targ->id << "; "; if ( trans->action != 0 ) { /* Write out the transition func. */ out << "f" << trans->action->actListId << " ()\n"; } else { /* No code to execute, just loop around. */ out << "do_again ()\n"; } } return out; } std::ostream &OCamlGotoCodeGen::EXEC_FUNCS() { /* Make labels that set acts and jump to execFuncs. Loop func indicies. */ for ( GenActionTableMap::Iter redAct = redFsm->actionMap; redAct.lte(); redAct++ ) { if ( redAct->numTransRefs > 0 ) { out << " and f" << redAct->actListId << " () = " << "state.acts <- " << itoa( redAct->location+1 ) << "; " "execFuncs ()\n"; } } out << "\n" "and execFuncs () =\n" " state.nacts <- " << AT( A(), POST_INCR( "state.acts") ) << ";\n" " begin try while " << POST_DECR("state.nacts") << " > 0 do\n" " match " << AT( A(), POST_INCR("state.acts") ) << " with\n"; ACTION_SWITCH(); SWITCH_DEFAULT() << " done with Goto_again -> () end;\n" " do_again ()\n"; return out; } unsigned int OCamlGotoCodeGen::TO_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->toStateAction != 0 ) act = state->toStateAction->location+1; return act; } unsigned int OCamlGotoCodeGen::FROM_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->fromStateAction != 0 ) act = state->fromStateAction->location+1; return act; } unsigned int OCamlGotoCodeGen::EOF_ACTION( RedStateAp *state ) { int act = 0; if ( state->eofAction != 0 ) act = state->eofAction->location+1; return act; } std::ostream &OCamlGotoCodeGen::TO_STATE_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = TO_STATE_ACTION(st); out << "\t"; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st]; if ( st < numStates-1 ) { out << ARR_SEP(); if ( (st+1) % IALL == 0 ) out << "\n\t"; } } out << "\n"; delete[] vals; return out; } std::ostream &OCamlGotoCodeGen::FROM_STATE_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = FROM_STATE_ACTION(st); out << "\t"; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st]; if ( st < numStates-1 ) { out << ARR_SEP(); if ( (st+1) % IALL == 0 ) out << "\n\t"; } } out << "\n"; delete[] vals; return out; } std::ostream &OCamlGotoCodeGen::EOF_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = EOF_ACTION(st); out << "\t"; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st]; if ( st < numStates-1 ) { out << ARR_SEP(); if ( (st+1) % IALL == 0 ) out << "\n\t"; } } out << "\n"; delete[] vals; return out; } std::ostream &OCamlGotoCodeGen::FINISH_CASES() { for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* States that are final and have an out action need a case. */ if ( st->eofAction != 0 ) { /* Write the case label. */ out << "\t\t| " << st->id << " -> "; /* Write the goto func. */ out << "f" << st->eofAction->actListId << " ()\n"; } } return out; } void OCamlGotoCodeGen::GOTO( ostream &ret, int gotoDest, bool inFinish ) { ret << "begin " << vCS() << " <- " << gotoDest << "; " << CTRL_FLOW() << "raise Goto_again end"; } void OCamlGotoCodeGen::GOTO_EXPR( ostream &ret, GenInlineItem *ilItem, bool inFinish ) { ret << "begin " << vCS() << " <- ("; INLINE_LIST( ret, ilItem->children, 0, inFinish ); ret << "); " << CTRL_FLOW() << "raise Goto_again end"; } void OCamlGotoCodeGen::CURS( ostream &ret, bool inFinish ) { ret << "(_ps)"; } void OCamlGotoCodeGen::TARGS( ostream &ret, bool inFinish, int targState ) { ret << "(" << vCS() << ")"; } void OCamlGotoCodeGen::NEXT( ostream &ret, int nextDest, bool inFinish ) { ret << vCS() << " <- " << nextDest << ";"; } void OCamlGotoCodeGen::NEXT_EXPR( ostream &ret, GenInlineItem *ilItem, bool inFinish ) { ret << vCS() << " <- ("; INLINE_LIST( ret, ilItem->children, 0, inFinish ); ret << ");"; } void OCamlGotoCodeGen::CALL( ostream &ret, int callDest, int targState, bool inFinish ) { if ( prePushExpr != 0 ) { ret << "begin "; INLINE_LIST( ret, prePushExpr, 0, false ); } ret << "begin " << AT( STACK(), POST_INCR(TOP()) ) << " <- " << vCS() << "; "; ret << vCS() << " <- " << callDest << "; " << CTRL_FLOW() << "raise Goto_again end "; if ( prePushExpr != 0 ) ret << "end"; } void OCamlGotoCodeGen::CALL_EXPR( ostream &ret, GenInlineItem *ilItem, int targState, bool inFinish ) { if ( prePushExpr != 0 ) { ret << "begin "; INLINE_LIST( ret, prePushExpr, 0, false ); } ret << "begin " << AT(STACK(), POST_INCR(TOP()) ) << " <- " << vCS() << "; " << vCS() << " <- ("; INLINE_LIST( ret, ilItem->children, targState, inFinish ); ret << "); " << CTRL_FLOW() << "raise Goto_again end "; if ( prePushExpr != 0 ) ret << "end"; } void OCamlGotoCodeGen::RET( ostream &ret, bool inFinish ) { ret << "begin " << vCS() << " <- " << AT(STACK(), PRE_DECR(TOP()) ) << "; "; if ( postPopExpr != 0 ) { ret << "begin "; INLINE_LIST( ret, postPopExpr, 0, false ); ret << "end "; } ret << CTRL_FLOW() << "raise Goto_again end"; } void OCamlGotoCodeGen::BREAK( ostream &ret, int targState ) { outLabelUsed = true; ret << "begin " << P() << " <- " << P() << " + 1; " << CTRL_FLOW() << "raise Goto_out end"; } void OCamlGotoCodeGen::writeData() { if ( redFsm->anyActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActArrItem), A() ); ACTIONS_ARRAY(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyToStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), TSA() ); TO_STATE_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyFromStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), FSA() ); FROM_STATE_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyEofActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), EA() ); EOF_ACTIONS(); CLOSE_ARRAY() << "\n"; } STATE_IDS(); out << "type " << TYPE_STATE() << " = { mutable acts : " << ARRAY_TYPE(redFsm->maxActionLoc) << " ; mutable nacts : " << ARRAY_TYPE(redFsm->maxActArrItem) << "; }" << TOP_SEP(); out << "exception Goto_again" << TOP_SEP(); } void OCamlGotoCodeGen::writeExec() { testEofUsed = false; outLabelUsed = false; out << " begin\n"; // if ( redFsm->anyRegCurStateRef() ) // out << " int _ps = 0;\n"; if ( redFsm->anyToStateActions() || redFsm->anyRegActions() || redFsm->anyFromStateActions() ) { out << " let state = { acts = 0; nacts = 0; } in\n"; } // if ( redFsm->anyConditions() ) // out << " " << WIDE_ALPH_TYPE() << " _widec;\n"; out << "\n"; out << " let rec do_start () =\n"; if ( !noEnd ) { testEofUsed = true; out << " if " << P() << " = " << PE() << " then\n" " do_test_eof ()\n" "\telse\n"; } if ( redFsm->errState != 0 ) { outLabelUsed = true; out << " if " << vCS() << " = " << redFsm->errState->id << " then\n" " do_out ()\n" "\telse\n"; } out << "\tdo_resume ()\n"; out << "and do_resume () =\n"; if ( redFsm->anyFromStateActions() ) { out << " state.acts <- " << AT( FSA(), vCS() ) << ";\n" " state.nacts <- " << AT( A(), POST_INCR("state.acts") ) << ";\n" " while " << POST_DECR("state.nacts") << " > 0 do\n" " begin match " << AT( A(), POST_INCR("state.acts") ) << " with\n"; FROM_STATE_ACTION_SWITCH(); SWITCH_DEFAULT() << " end\n" " done;\n" "\n"; } out << " begin match " << vCS() << " with\n"; STATE_GOTOS(); SWITCH_DEFAULT() << " end\n" "\n"; TRANSITIONS() << "\n"; if ( redFsm->anyRegActions() ) EXEC_FUNCS() << "\n"; // if ( redFsm->anyRegActions() || redFsm->anyActionGotos() || // redFsm->anyActionCalls() || redFsm->anyActionRets() ) out << "\tand do_again () =\n"; if ( redFsm->anyToStateActions() ) { out << " state.acts <- " << AT( TSA(), vCS() ) << ";\n" " state.nacts <- " << AT( A(), POST_INCR("state.acts") ) << ";\n" " while " << POST_DECR("state.nacts") << " > 0 do\n" " begin match " << AT( A(), POST_INCR("state.acts") ) << " with\n"; TO_STATE_ACTION_SWITCH(); SWITCH_DEFAULT() << " end\n" " done;\n" "\n"; } if ( redFsm->errState != 0 ) { outLabelUsed = true; out << " match " << vCS() << " with\n" "\t| " << redFsm->errState->id << " -> do_out ()\n" "\t| _ ->\n"; } out << "\t" << P() << " <- " << P() << " + 1;\n"; if ( !noEnd ) { out << " if " << P() << " <> " << PE() << " then\n" " do_resume ()\n" "\telse do_test_eof ()\n"; } else { out << " do_resume ()\n"; } // if ( testEofUsed ) out << "and do_test_eof () =\n"; if ( redFsm->anyEofTrans() || redFsm->anyEofActions() ) { out << " if " << P() << " = " << vEOF() << " then\n" " begin\n"; if ( redFsm->anyEofTrans() ) { out << " match " << vCS() << " with\n"; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st->eofTrans != 0 ) out << " | " << st->id << " -> tr" << st->eofTrans->id << " ()\n"; } out << "\t| _ -> ();\n"; } if ( redFsm->anyEofActions() ) { out << " let __acts = ref " << AT( EA(), vCS() ) << " in\n" " let __nacts = ref " << AT( A(), "!__acts" ) << " in\n" " incr __acts;\n" " begin try while !__nacts > 0 do\n" " decr __nacts;\n" " begin match " << AT( A(), POST_INCR("__acts.contents") ) << " with\n"; EOF_ACTION_SWITCH(); SWITCH_DEFAULT() << " end;\n" " done with Goto_again -> do_again () end;\n"; } out << " end\n" "\n"; } else { out << "\t()\n"; } if ( outLabelUsed ) out << " and do_out () = ()\n"; out << "\tin do_start ()\n"; out << " end;\n"; }