summaryrefslogtreecommitdiff
path: root/Source/WebCore/webaudio/AudioBufferSourceNode.cpp
blob: 4881131a4df132e70d567ce109c6e961984a7763 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "AudioBufferSourceNode.h"

#include "AudioContext.h"
#include "AudioNodeOutput.h"
#include "AudioUtilities.h"
#include "Document.h"
#include "FloatConversion.h"
#include "ScriptCallStack.h"
#include <algorithm>
#include <wtf/MainThread.h>
#include <wtf/MathExtras.h>

using namespace std;

namespace WebCore {

const double DefaultGrainDuration = 0.020; // 20ms
const double UnknownTime = -1;

// Arbitrary upper limit on playback rate.
// Higher than expected rates can be useful when playing back oversampled buffers
// to minimize linear interpolation aliasing.
const double MaxRate = 1024;

PassRefPtr<AudioBufferSourceNode> AudioBufferSourceNode::create(AudioContext* context, float sampleRate)
{
    return adoptRef(new AudioBufferSourceNode(context, sampleRate));
}

AudioBufferSourceNode::AudioBufferSourceNode(AudioContext* context, float sampleRate)
    : AudioSourceNode(context, sampleRate)
    , m_buffer(0)
    , m_isPlaying(false)
    , m_isLooping(false)
    , m_hasFinished(false)
    , m_startTime(0.0)
    , m_endTime(UnknownTime)
    , m_virtualReadIndex(0)
    , m_isGrain(false)
    , m_grainOffset(0.0)
    , m_grainDuration(DefaultGrainDuration)
    , m_lastGain(1.0)
    , m_pannerNode(0)
{
    setNodeType(NodeTypeAudioBufferSource);

    m_gain = AudioGain::create("gain", 1.0, 0.0, 1.0);
    m_playbackRate = AudioParam::create("playbackRate", 1.0, 0.0, MaxRate);
    
    m_gain->setContext(context);
    m_playbackRate->setContext(context);

    // Default to mono.  A call to setBuffer() will set the number of output channels to that of the buffer.
    addOutput(adoptPtr(new AudioNodeOutput(this, 1)));

    initialize();
}

AudioBufferSourceNode::~AudioBufferSourceNode()
{
    uninitialize();
}

void AudioBufferSourceNode::process(size_t framesToProcess)
{
    AudioBus* outputBus = output(0)->bus();

    if (!isInitialized()) {
        outputBus->zero();
        return;
    }

    // The audio thread can't block on this lock, so we call tryLock() instead.
    // Careful - this is a tryLock() and not an autolocker, so we must unlock() before every return.
    if (m_processLock.tryLock()) {
        // Check if it's time to start playing.
        double sampleRate = this->sampleRate();
        size_t quantumStartFrame = context()->currentSampleFrame();
        size_t quantumEndFrame = quantumStartFrame + framesToProcess;
        size_t startFrame = AudioUtilities::timeToSampleFrame(m_startTime, sampleRate);
        size_t endFrame = m_endTime == UnknownTime ? 0 : AudioUtilities::timeToSampleFrame(m_endTime, sampleRate);

        // If we know the end time and it's already passed, then don't bother doing any more rendering this cycle.
        if (m_endTime != UnknownTime && endFrame <= quantumStartFrame) {
            m_isPlaying = false;
            m_virtualReadIndex = 0;
            finish();
        }
        
        if (!m_isPlaying || m_hasFinished || !buffer() || startFrame >= quantumEndFrame) {
            // FIXME: can optimize here by propagating silent hint instead of forcing the whole chain to process silence.
            outputBus->zero();
            m_processLock.unlock();
            return;
        }

        size_t quantumFrameOffset = startFrame > quantumStartFrame ? startFrame - quantumStartFrame : 0;
        quantumFrameOffset = min(quantumFrameOffset, framesToProcess); // clamp to valid range
        size_t bufferFramesToProcess = framesToProcess - quantumFrameOffset;

        for (unsigned i = 0; i < outputBus->numberOfChannels(); ++i) 
            m_destinationChannels[i] = outputBus->channel(i)->mutableData();

        // Render by reading directly from the buffer.
        renderFromBuffer(outputBus, quantumFrameOffset, bufferFramesToProcess);

        // Apply the gain (in-place) to the output bus.
        float totalGain = gain()->value() * m_buffer->gain();
        outputBus->copyWithGainFrom(*outputBus, &m_lastGain, totalGain);

        // If the end time is somewhere in the middle of this time quantum, then simply zero out the
        // frames starting at the end time.
        if (m_endTime != UnknownTime && endFrame >= quantumStartFrame && endFrame < quantumEndFrame) {
            size_t zeroStartFrame = endFrame - quantumStartFrame;
            size_t framesToZero = framesToProcess - zeroStartFrame;

            bool isSafe = zeroStartFrame < framesToProcess && framesToZero <= framesToProcess && zeroStartFrame + framesToZero <= framesToProcess;
            ASSERT(isSafe);
            
            if (isSafe) {
                for (unsigned i = 0; i < outputBus->numberOfChannels(); ++i)
                    memset(m_destinationChannels[i] + zeroStartFrame, 0, sizeof(float) * framesToZero);
            }

            m_isPlaying = false;
            m_virtualReadIndex = 0;
            finish();
        }

        m_processLock.unlock();
    } else {
        // Too bad - the tryLock() failed.  We must be in the middle of changing buffers and were already outputting silence anyway.
        outputBus->zero();
    }
}

// Returns true if we're finished.
bool AudioBufferSourceNode::renderSilenceAndFinishIfNotLooping(AudioBus*, unsigned index, size_t framesToProcess)
{
    if (!loop()) {
        // If we're not looping, then stop playing when we get to the end.
        m_isPlaying = false;

        if (framesToProcess > 0) {
            // We're not looping and we've reached the end of the sample data, but we still need to provide more output,
            // so generate silence for the remaining.
            for (unsigned i = 0; i < numberOfChannels(); ++i) 
                memset(m_destinationChannels[i] + index, 0, sizeof(float) * framesToProcess);
        }

        finish();
        return true;
    }
    return false;
}

void AudioBufferSourceNode::renderFromBuffer(AudioBus* bus, unsigned destinationFrameOffset, size_t numberOfFrames)
{
    ASSERT(context()->isAudioThread());
    
    // Basic sanity checking
    ASSERT(bus);
    ASSERT(buffer());
    if (!bus || !buffer())
        return;

    unsigned numberOfChannels = this->numberOfChannels();
    unsigned busNumberOfChannels = bus->numberOfChannels();

    bool channelCountGood = numberOfChannels && numberOfChannels == busNumberOfChannels;
    ASSERT(channelCountGood);
    if (!channelCountGood)
        return;

    // Sanity check destinationFrameOffset, numberOfFrames.
    size_t destinationLength = bus->length();

    bool isLengthGood = destinationLength <= 4096 && numberOfFrames <= 4096;
    ASSERT(isLengthGood);
    if (!isLengthGood)
        return;

    bool isOffsetGood = destinationFrameOffset <= destinationLength && destinationFrameOffset + numberOfFrames <= destinationLength;
    ASSERT(isOffsetGood);
    if (!isOffsetGood)
        return;

    // Potentially zero out initial frames leading up to the offset.
    if (destinationFrameOffset) {
        for (unsigned i = 0; i < numberOfChannels; ++i) 
            memset(m_destinationChannels[i], 0, sizeof(float) * destinationFrameOffset);
    }

    // Offset the pointers to the correct offset frame.
    unsigned writeIndex = destinationFrameOffset;

    size_t bufferLength = buffer()->length();
    double bufferSampleRate = buffer()->sampleRate();

    // Calculate the start and end frames in our buffer that we want to play.
    // If m_isGrain is true, then we will be playing a portion of the total buffer.
    unsigned startFrame = m_isGrain ? AudioUtilities::timeToSampleFrame(m_grainOffset, bufferSampleRate) : 0;

    // Avoid converting from time to sample-frames twice by computing
    // the grain end time first before computing the sample frame.
    unsigned endFrame = m_isGrain ? AudioUtilities::timeToSampleFrame(m_grainOffset + m_grainDuration, bufferSampleRate) : bufferLength;
    
    ASSERT(endFrame >= startFrame);
    if (endFrame < startFrame)
        return;
    
    unsigned deltaFrames = endFrame - startFrame;
    
    // This is a HACK to allow for HRTF tail-time - avoids glitch at end.
    // FIXME: implement tailTime for each AudioNode for a more general solution to this problem.
    if (m_isGrain)
        endFrame += 512;

    // Do some sanity checking.
    if (startFrame >= bufferLength)
        startFrame = !bufferLength ? 0 : bufferLength - 1;
    if (endFrame > bufferLength)
        endFrame = bufferLength;
    if (m_virtualReadIndex >= endFrame)
        m_virtualReadIndex = startFrame; // reset to start

    double pitchRate = totalPitchRate();

    // Get local copy.
    double virtualReadIndex = m_virtualReadIndex;

    // Render loop - reading from the source buffer to the destination using linear interpolation.
    int framesToProcess = numberOfFrames;

    const float** sourceChannels = m_sourceChannels.get();
    float** destinationChannels = m_destinationChannels.get();

    // Optimize for the very common case of playing back with pitchRate == 1.
    // We can avoid the linear interpolation.
    if (pitchRate == 1 && virtualReadIndex == floor(virtualReadIndex)) {
        unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
        while (framesToProcess > 0) {
            int framesToEnd = endFrame - readIndex;
            int framesThisTime = min(framesToProcess, framesToEnd);
            framesThisTime = max(0, framesThisTime);

            for (unsigned i = 0; i < numberOfChannels; ++i) 
                memcpy(destinationChannels[i] + writeIndex, sourceChannels[i] + readIndex, sizeof(float) * framesThisTime);

            writeIndex += framesThisTime;
            readIndex += framesThisTime;
            framesToProcess -= framesThisTime;

            // Wrap-around.
            if (readIndex >= endFrame) {
                readIndex -= deltaFrames;
                if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
                    break;
            }
        }
        virtualReadIndex = readIndex;
    } else {
        while (framesToProcess--) {
            unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
            double interpolationFactor = virtualReadIndex - readIndex;

            // For linear interpolation we need the next sample-frame too.
            unsigned readIndex2 = readIndex + 1;
            if (readIndex2 >= endFrame) {
                if (loop()) {
                    // Make sure to wrap around at the end of the buffer.
                    readIndex2 -= deltaFrames;
                } else
                    readIndex2 = readIndex;
            }

            // Final sanity check on buffer access.
            // FIXME: as an optimization, try to get rid of this inner-loop check and put assertions and guards before the loop.
            if (readIndex >= bufferLength || readIndex2 >= bufferLength)
                break;

            // Linear interpolation.
            for (unsigned i = 0; i < numberOfChannels; ++i) {
                float* destination = destinationChannels[i];
                const float* source = sourceChannels[i];

                double sample1 = source[readIndex];
                double sample2 = source[readIndex2];
                double sample = (1.0 - interpolationFactor) * sample1 + interpolationFactor * sample2;

                destination[writeIndex] = narrowPrecisionToFloat(sample);
            }
            writeIndex++;

            virtualReadIndex += pitchRate;

            // Wrap-around, retaining sub-sample position since virtualReadIndex is floating-point.
            if (virtualReadIndex >= endFrame) {
                virtualReadIndex -= deltaFrames;

                if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
                    break;
            }
        }
    } 
    m_virtualReadIndex = virtualReadIndex;
}


void AudioBufferSourceNode::reset()
{
    m_virtualReadIndex = 0;
    m_lastGain = gain()->value();
}

void AudioBufferSourceNode::finish()
{
    if (!m_hasFinished) {
        // Let the context dereference this AudioNode.
        context()->notifyNodeFinishedProcessing(this);
        m_hasFinished = true;
    }
}

bool AudioBufferSourceNode::setBuffer(AudioBuffer* buffer)
{
    ASSERT(isMainThread());
    
    // The context must be locked since changing the buffer can re-configure the number of channels that are output.
    AudioContext::AutoLocker contextLocker(context());
    
    // This synchronizes with process().
    MutexLocker processLocker(m_processLock);
    
    if (buffer) {
        // Do any necesssary re-configuration to the buffer's number of channels.
        unsigned numberOfChannels = buffer->numberOfChannels();

        if (numberOfChannels > AudioContext::maxNumberOfChannels())
            return false;

        output(0)->setNumberOfChannels(numberOfChannels);

        m_sourceChannels = adoptArrayPtr(new const float* [numberOfChannels]);
        m_destinationChannels = adoptArrayPtr(new float* [numberOfChannels]);

        for (unsigned i = 0; i < numberOfChannels; ++i) 
            m_sourceChannels[i] = buffer->getChannelData(i)->data();
    }

    m_virtualReadIndex = 0;
    m_buffer = buffer;
    
    return true;
}

unsigned AudioBufferSourceNode::numberOfChannels()
{
    return output(0)->numberOfChannels();
}

void AudioBufferSourceNode::noteOn(double when)
{
    ASSERT(isMainThread());
    if (m_isPlaying)
        return;

    m_isGrain = false;
    m_startTime = when;
    m_virtualReadIndex = 0;
    m_isPlaying = true;
}

void AudioBufferSourceNode::noteGrainOn(double when, double grainOffset, double grainDuration)
{
    ASSERT(isMainThread());
    if (m_isPlaying)
        return;

    if (!buffer())
        return;
        
    // Do sanity checking of grain parameters versus buffer size.
    double bufferDuration = buffer()->duration();

    if (grainDuration > bufferDuration)
        return; // FIXME: maybe should throw exception - consider in specification.
    
    double maxGrainOffset = bufferDuration - grainDuration;
    maxGrainOffset = max(0.0, maxGrainOffset);

    grainOffset = max(0.0, grainOffset);
    grainOffset = min(maxGrainOffset, grainOffset);
    m_grainOffset = grainOffset;

    m_grainDuration = grainDuration;
    
    m_isGrain = true;
    m_startTime = when;

    // We call timeToSampleFrame here since at playbackRate == 1 we don't want to go through linear interpolation
    // at a sub-sample position since it will degrade the quality.
    // When aligned to the sample-frame the playback will be identical to the PCM data stored in the buffer.
    // Since playbackRate == 1 is very common, it's worth considering quality.
    m_virtualReadIndex = AudioUtilities::timeToSampleFrame(m_grainOffset, buffer()->sampleRate());
    
    m_isPlaying = true;
}

void AudioBufferSourceNode::noteOff(double when)
{
    ASSERT(isMainThread());
    if (!m_isPlaying)
        return;
    
    when = max(0.0, when);
    m_endTime = when;
}

double AudioBufferSourceNode::totalPitchRate()
{
    double dopplerRate = 1.0;
    if (m_pannerNode.get())
        dopplerRate = m_pannerNode->dopplerRate();
    
    // Incorporate buffer's sample-rate versus AudioContext's sample-rate.
    // Normally it's not an issue because buffers are loaded at the AudioContext's sample-rate, but we can handle it in any case.
    double sampleRateFactor = 1.0;
    if (buffer())
        sampleRateFactor = buffer()->sampleRate() / sampleRate();
    
    double basePitchRate = playbackRate()->value();

    double totalRate = dopplerRate * sampleRateFactor * basePitchRate;

    // Sanity check the total rate.  It's very important that the resampler not get any bad rate values.
    totalRate = max(0.0, totalRate);
    if (!totalRate)
        totalRate = 1; // zero rate is considered illegal
    totalRate = min(MaxRate, totalRate);
    
    bool isTotalRateValid = !isnan(totalRate) && !isinf(totalRate);
    ASSERT(isTotalRateValid);
    if (!isTotalRateValid)
        totalRate = 1.0;

    return totalRate;
}

bool AudioBufferSourceNode::looping()
{
    static bool firstTime = true;
    if (firstTime && context() && context()->document()) {
        context()->document()->addConsoleMessage(JSMessageSource, LogMessageType, WarningMessageLevel, "AudioBufferSourceNode 'looping' attribute is deprecated.  Use 'loop' instead.");
        firstTime = false;
    }

    return m_isLooping;
}

void AudioBufferSourceNode::setLooping(bool looping)
{
    static bool firstTime = true;
    if (firstTime && context() && context()->document()) {
        context()->document()->addConsoleMessage(JSMessageSource, LogMessageType, WarningMessageLevel, "AudioBufferSourceNode 'looping' attribute is deprecated.  Use 'loop' instead.");
        firstTime = false;
    }

    m_isLooping = looping;
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)