/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderView.h" #include "ColumnInfo.h" #include "Document.h" #include "Element.h" #include "FloatQuad.h" #include "FlowThreadController.h" #include "Frame.h" #include "FrameSelection.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLFrameOwnerElement.h" #include "HTMLIFrameElement.h" #include "HitTestResult.h" #include "Page.h" #include "RenderGeometryMap.h" #include "RenderLayer.h" #include "RenderLayerBacking.h" #include "RenderNamedFlowThread.h" #include "RenderSelectionInfo.h" #include "RenderWidget.h" #include "RenderWidgetProtector.h" #include "StyleInheritedData.h" #include "TransformState.h" #include #if USE(ACCELERATED_COMPOSITING) #include "RenderLayerCompositor.h" #endif #if ENABLE(CSS_SHADERS) && USE(3D_GRAPHICS) #include "CustomFilterGlobalContext.h" #endif namespace WebCore { RenderView::RenderView(Document* document) : RenderBlock(document) , m_frameView(document->view()) , m_selectionStart(0) , m_selectionEnd(0) , m_selectionStartPos(-1) , m_selectionEndPos(-1) , m_maximalOutlineSize(0) , m_pageLogicalHeight(0) , m_pageLogicalHeightChanged(false) , m_layoutState(0) , m_layoutStateDisableCount(0) , m_renderQuoteHead(0) , m_renderCounterCount(0) , m_selectionWasCaret(false) { // init RenderObject attributes setInline(false); m_minPreferredLogicalWidth = 0; m_maxPreferredLogicalWidth = 0; setPreferredLogicalWidthsDirty(true, MarkOnlyThis); setPositionState(AbsolutePosition); // to 0,0 :) } RenderView::~RenderView() { } bool RenderView::hitTest(const HitTestRequest& request, HitTestResult& result) { return hitTest(request, result.hitTestLocation(), result); } bool RenderView::hitTest(const HitTestRequest& request, const HitTestLocation& location, HitTestResult& result) { if (layer()->hitTest(request, location, result)) return true; // FIXME: Consider if this test should be done unconditionally. if (request.allowsFrameScrollbars() && m_frameView) { // ScrollView scrollbars are not the same as RenderLayer scrollbars tested by RenderLayer::hitTestOverflowControls, // so we need to test ScrollView scrollbars separately here. Scrollbar* frameScrollbar = m_frameView->scrollbarAtPoint(location.roundedPoint()); if (frameScrollbar) { result.setScrollbar(frameScrollbar); return true; } } return false; } void RenderView::computeLogicalHeight(LayoutUnit logicalHeight, LayoutUnit, LogicalExtentComputedValues& computedValues) const { computedValues.m_extent = (!shouldUsePrintingLayout() && m_frameView) ? LayoutUnit(viewLogicalHeight()) : logicalHeight; } void RenderView::updateLogicalWidth() { if (!shouldUsePrintingLayout() && m_frameView) setLogicalWidth(viewLogicalWidth()); } LayoutUnit RenderView::availableLogicalHeight(AvailableLogicalHeightType heightType) const { // If we have columns, then the available logical height is reduced to the column height. if (hasColumns()) return columnInfo()->columnHeight(); return RenderBlock::availableLogicalHeight(heightType); } bool RenderView::isChildAllowed(RenderObject* child, RenderStyle*) const { return child->isBox(); } void RenderView::layoutContent(const LayoutState& state) { UNUSED_PARAM(state); ASSERT(needsLayout()); RenderBlock::layout(); if (hasRenderNamedFlowThreads()) flowThreadController()->layoutRenderNamedFlowThreads(); #ifndef NDEBUG checkLayoutState(state); #endif } #ifndef NDEBUG void RenderView::checkLayoutState(const LayoutState& state) { ASSERT(layoutDeltaMatches(LayoutSize())); ASSERT(!m_layoutStateDisableCount); ASSERT(m_layoutState == &state); } #endif static RenderBox* enclosingSeamlessRenderer(Document* doc) { if (!doc) return 0; Element* ownerElement = doc->seamlessParentIFrame(); if (!ownerElement) return 0; return ownerElement->renderBox(); } void RenderView::addChild(RenderObject* newChild, RenderObject* beforeChild) { // Seamless iframes are considered part of an enclosing render flow thread from the parent document. This is necessary for them to look // up regions in the parent document during layout. if (newChild && !newChild->isRenderFlowThread()) { RenderBox* seamlessBox = enclosingSeamlessRenderer(document()); if (seamlessBox && seamlessBox->flowThreadContainingBlock()) newChild->setFlowThreadState(seamlessBox->flowThreadState()); } RenderBlock::addChild(newChild, beforeChild); } bool RenderView::initializeLayoutState(LayoutState& state) { bool isSeamlessAncestorInFlowThread = false; // FIXME: May be better to push a clip and avoid issuing offscreen repaints. state.m_clipped = false; // Check the writing mode of the seamless ancestor. It has to match our document's writing mode, or we won't inherit any // pagination information. RenderBox* seamlessAncestor = enclosingSeamlessRenderer(document()); LayoutState* seamlessLayoutState = seamlessAncestor ? seamlessAncestor->view()->layoutState() : 0; bool shouldInheritPagination = seamlessLayoutState && !m_pageLogicalHeight && seamlessAncestor->style()->writingMode() == style()->writingMode(); state.m_pageLogicalHeight = shouldInheritPagination ? seamlessLayoutState->m_pageLogicalHeight : m_pageLogicalHeight; state.m_pageLogicalHeightChanged = shouldInheritPagination ? seamlessLayoutState->m_pageLogicalHeightChanged : m_pageLogicalHeightChanged; state.m_isPaginated = state.m_pageLogicalHeight; if (state.m_isPaginated && shouldInheritPagination) { // Set up the correct pagination offset. We can use a negative offset in order to push the top of the RenderView into its correct place // on a page. We can take the iframe's offset from the logical top of the first page and make the negative into the pagination offset within the child // view. bool isFlipped = seamlessAncestor->style()->isFlippedBlocksWritingMode(); LayoutSize layoutOffset = seamlessLayoutState->layoutOffset(); LayoutSize iFrameOffset(layoutOffset.width() + seamlessAncestor->x() + (!isFlipped ? seamlessAncestor->borderLeft() + seamlessAncestor->paddingLeft() : seamlessAncestor->borderRight() + seamlessAncestor->paddingRight()), layoutOffset.height() + seamlessAncestor->y() + (!isFlipped ? seamlessAncestor->borderTop() + seamlessAncestor->paddingTop() : seamlessAncestor->borderBottom() + seamlessAncestor->paddingBottom())); LayoutSize offsetDelta = seamlessLayoutState->m_pageOffset - iFrameOffset; state.m_pageOffset = offsetDelta; // Set the current render flow thread to point to our ancestor. This will allow the seamless document to locate the correct // regions when doing a layout. if (seamlessAncestor->flowThreadContainingBlock()) { flowThreadController()->setCurrentRenderFlowThread(seamlessAncestor->view()->flowThreadController()->currentRenderFlowThread()); isSeamlessAncestorInFlowThread = true; } } // FIXME: We need to make line grids and exclusions work with seamless iframes as well here. Basically all layout state information needs // to propagate here and not just pagination information. return isSeamlessAncestorInFlowThread; } // The algorithm below assumes this is a full layout. In case there are previously computed values for regions, supplemental steps are taken // to ensure the results are the same as those obtained from a full layout (i.e. the auto-height regions from all the flows are marked as needing // layout). // 1. The flows are laid out from the outer flow to the inner flow. This successfully computes the outer non-auto-height regions size so the // inner flows have the necessary information to correctly fragment the content. // 2. The flows are laid out from the inner flow to the outer flow. After an inner flow is laid out it goes into the constrained layout phase // and marks the auto-height regions they need layout. This means the outer flows will relayout if they depend on regions with auto-height regions // belonging to inner flows. This step will correctly set the computedAutoHeight for the auto-height regions. It's possible for non-auto-height // regions to relayout if they depend on auto-height regions. This will invalidate the inner flow threads and mark them as needing layout. // 3. The last step is to do one last layout if there are pathological dependencies between non-auto-height regions and auto-height regions // as detected in the previous step. void RenderView::layoutContentInAutoLogicalHeightRegions(const LayoutState& state) { // We need to invalidate all the flows with auto-height regions if one such flow needs layout. // If none is found we do a layout a check back again afterwards. if (!flowThreadController()->updateFlowThreadsNeedingLayout()) { // Do a first layout of the content. In some cases more layouts are not needed (e.g. only flows with non-auto-height regions have changed). layoutContent(state); // If we find no named flow needing a two step layout after the first layout, exit early. // Otherwise, initiate the two step layout algorithm and recompute all the flows. if (!flowThreadController()->updateFlowThreadsNeedingTwoStepLayout()) return; } // Layout to recompute all the named flows with auto-height regions. layoutContent(state); // Propagate the computed auto-height values upwards. // Non-auto-height regions may invalidate the flow thread because they depended on auto-height regions, but that's ok. flowThreadController()->updateFlowThreadsIntoConstrainedPhase(); // Do one last layout that should update the auto-height regions found in the main flow // and solve pathological dependencies between regions (e.g. a non-auto-height region depending // on an auto-height one). if (needsLayout()) layoutContent(state); } void RenderView::layout() { StackStats::LayoutCheckPoint layoutCheckPoint; if (!document()->paginated()) setPageLogicalHeight(0); if (shouldUsePrintingLayout()) m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = logicalWidth(); // Use calcWidth/Height to get the new width/height, since this will take the full page zoom factor into account. bool relayoutChildren = !shouldUsePrintingLayout() && (!m_frameView || width() != viewWidth() || height() != viewHeight()); if (relayoutChildren) { setChildNeedsLayout(true, MarkOnlyThis); for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if ((child->isBox() && (toRenderBox(child)->hasRelativeLogicalHeight() || toRenderBox(child)->hasViewportPercentageLogicalHeight())) || child->style()->logicalHeight().isPercent() || child->style()->logicalMinHeight().isPercent() || child->style()->logicalMaxHeight().isPercent() || child->style()->logicalHeight().isViewportPercentage() || child->style()->logicalMinHeight().isViewportPercentage() || child->style()->logicalMaxHeight().isViewportPercentage() #if ENABLE(SVG) || child->isSVGRoot() #endif ) child->setChildNeedsLayout(true, MarkOnlyThis); } } ASSERT(!m_layoutState); if (!needsLayout()) return; LayoutState state; bool isSeamlessAncestorInFlowThread = initializeLayoutState(state); m_pageLogicalHeightChanged = false; m_layoutState = &state; if (checkTwoPassLayoutForAutoHeightRegions()) layoutContentInAutoLogicalHeightRegions(state); else layoutContent(state); #ifndef NDEBUG checkLayoutState(state); #endif m_layoutState = 0; setNeedsLayout(false); if (isSeamlessAncestorInFlowThread) flowThreadController()->setCurrentRenderFlowThread(0); } LayoutUnit RenderView::pageOrViewLogicalHeight() const { if (document()->printing()) return pageLogicalHeight(); if (hasColumns() && !style()->hasInlineColumnAxis()) { if (int pageLength = frameView()->pagination().pageLength) return pageLength; } return viewLogicalHeight(); } void RenderView::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const { // If a container was specified, and was not 0 or the RenderView, // then we should have found it by now. ASSERT_ARG(repaintContainer, !repaintContainer || repaintContainer == this); ASSERT_UNUSED(wasFixed, !wasFixed || *wasFixed == (mode & IsFixed)); if (!repaintContainer && mode & UseTransforms && shouldUseTransformFromContainer(0)) { TransformationMatrix t; getTransformFromContainer(0, LayoutSize(), t); transformState.applyTransform(t); } if (mode & IsFixed && m_frameView) transformState.move(m_frameView->scrollOffsetForFixedPosition()); } const RenderObject* RenderView::pushMappingToContainer(const RenderLayerModelObject* ancestorToStopAt, RenderGeometryMap& geometryMap) const { // If a container was specified, and was not 0 or the RenderView, // then we should have found it by now. ASSERT_ARG(ancestorToStopAt, !ancestorToStopAt || ancestorToStopAt == this); LayoutSize scrollOffset; if (m_frameView) scrollOffset = m_frameView->scrollOffsetForFixedPosition(); if (!ancestorToStopAt && shouldUseTransformFromContainer(0)) { TransformationMatrix t; getTransformFromContainer(0, LayoutSize(), t); geometryMap.pushView(this, scrollOffset, &t); } else geometryMap.pushView(this, scrollOffset); return 0; } void RenderView::mapAbsoluteToLocalPoint(MapCoordinatesFlags mode, TransformState& transformState) const { if (mode & IsFixed && m_frameView) transformState.move(m_frameView->scrollOffsetForFixedPosition()); if (mode & UseTransforms && shouldUseTransformFromContainer(0)) { TransformationMatrix t; getTransformFromContainer(0, LayoutSize(), t); transformState.applyTransform(t); } } bool RenderView::requiresColumns(int desiredColumnCount) const { if (m_frameView) return m_frameView->pagination().mode != Pagination::Unpaginated; return RenderBlock::requiresColumns(desiredColumnCount); } void RenderView::calcColumnWidth() { int columnWidth = contentLogicalWidth(); if (m_frameView && style()->hasInlineColumnAxis()) { if (int pageLength = m_frameView->pagination().pageLength) columnWidth = pageLength; } setDesiredColumnCountAndWidth(1, columnWidth); } ColumnInfo::PaginationUnit RenderView::paginationUnit() const { if (m_frameView) return m_frameView->pagination().behavesLikeColumns ? ColumnInfo::Column : ColumnInfo::Page; return ColumnInfo::Page; } void RenderView::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { // If we ever require layout but receive a paint anyway, something has gone horribly wrong. ASSERT(!needsLayout()); // RenderViews should never be called to paint with an offset not on device pixels. ASSERT(LayoutPoint(IntPoint(paintOffset.x(), paintOffset.y())) == paintOffset); // This avoids painting garbage between columns if there is a column gap. if (m_frameView && m_frameView->pagination().mode != Pagination::Unpaginated && paintInfo.shouldPaintWithinRoot(this)) paintInfo.context->fillRect(paintInfo.rect, m_frameView->baseBackgroundColor(), ColorSpaceDeviceRGB); paintObject(paintInfo, paintOffset); } static inline bool isComposited(RenderObject* object) { return object->hasLayer() && toRenderLayerModelObject(object)->layer()->isComposited(); } static inline bool rendererObscuresBackground(RenderObject* rootObject) { if (!rootObject) return false; RenderStyle* style = rootObject->style(); if (style->visibility() != VISIBLE || style->opacity() != 1 || style->hasTransform()) return false; if (isComposited(rootObject)) return false; const RenderObject* rootRenderer = rootObject->rendererForRootBackground(); if (rootRenderer->style()->backgroundClip() == TextFillBox) return false; return true; } void RenderView::paintBoxDecorations(PaintInfo& paintInfo, const LayoutPoint&) { if (!paintInfo.shouldPaintWithinRoot(this)) return; // Check to see if we are enclosed by a layer that requires complex painting rules. If so, we cannot blit // when scrolling, and we need to use slow repaints. Examples of layers that require this are transparent layers, // layers with reflections, or transformed layers. // FIXME: This needs to be dynamic. We should be able to go back to blitting if we ever stop being inside // a transform, transparency layer, etc. Element* elt; for (elt = document()->ownerElement(); view() && elt && elt->renderer(); elt = elt->document()->ownerElement()) { RenderLayer* layer = elt->renderer()->enclosingLayer(); if (layer->cannotBlitToWindow()) { frameView()->setCannotBlitToWindow(); break; } #if USE(ACCELERATED_COMPOSITING) if (RenderLayer* compositingLayer = layer->enclosingCompositingLayerForRepaint()) { if (!compositingLayer->backing()->paintsIntoWindow()) { frameView()->setCannotBlitToWindow(); break; } } #endif } if (document()->ownerElement() || !view()) return; if (paintInfo.skipRootBackground()) return; bool rootFillsViewport = false; bool rootObscuresBackground = false; Node* documentElement = document()->documentElement(); if (RenderObject* rootRenderer = documentElement ? documentElement->renderer() : 0) { // The document element's renderer is currently forced to be a block, but may not always be. RenderBox* rootBox = rootRenderer->isBox() ? toRenderBox(rootRenderer) : 0; rootFillsViewport = rootBox && !rootBox->x() && !rootBox->y() && rootBox->width() >= width() && rootBox->height() >= height(); rootObscuresBackground = rendererObscuresBackground(rootRenderer); } Page* page = document()->page(); float pageScaleFactor = page ? page->pageScaleFactor() : 1; // If painting will entirely fill the view, no need to fill the background. if (rootFillsViewport && rootObscuresBackground && pageScaleFactor >= 1) return; // This code typically only executes if the root element's visibility has been set to hidden, // if there is a transform on the , or if there is a page scale factor less than 1. // Only fill with the base background color (typically white) if we're the root document, // since iframes/frames with no background in the child document should show the parent's background. if (frameView()->isTransparent()) // FIXME: This needs to be dynamic. We should be able to go back to blitting if we ever stop being transparent. frameView()->setCannotBlitToWindow(); // The parent must show behind the child. else { Color baseColor = frameView()->baseBackgroundColor(); if (baseColor.alpha()) { CompositeOperator previousOperator = paintInfo.context->compositeOperation(); paintInfo.context->setCompositeOperation(CompositeCopy); paintInfo.context->fillRect(paintInfo.rect, baseColor, style()->colorSpace()); paintInfo.context->setCompositeOperation(previousOperator); } else paintInfo.context->clearRect(paintInfo.rect); } } bool RenderView::shouldRepaint(const LayoutRect& r) const { if (printing() || r.width() == 0 || r.height() == 0) return false; if (!m_frameView) return false; if (m_frameView->repaintsDisabled()) return false; return true; } void RenderView::repaintViewRectangle(const LayoutRect& ur, bool immediate) const { if (!shouldRepaint(ur)) return; // We always just invalidate the root view, since we could be an iframe that is clipped out // or even invisible. Element* elt = document()->ownerElement(); if (!elt) m_frameView->repaintContentRectangle(pixelSnappedIntRect(ur), immediate); else if (RenderBox* obj = elt->renderBox()) { LayoutRect vr = viewRect(); LayoutRect r = intersection(ur, vr); // Subtract out the contentsX and contentsY offsets to get our coords within the viewing // rectangle. r.moveBy(-vr.location()); // FIXME: Hardcoded offsets here are not good. r.moveBy(obj->contentBoxRect().location()); obj->repaintRectangle(r, immediate); } } void RenderView::repaintRectangleInViewAndCompositedLayers(const LayoutRect& ur, bool immediate) { if (!shouldRepaint(ur)) return; repaintViewRectangle(ur, immediate); #if USE(ACCELERATED_COMPOSITING) if (compositor()->inCompositingMode()) { IntRect repaintRect = pixelSnappedIntRect(ur); compositor()->repaintCompositedLayers(&repaintRect); } #endif } void RenderView::repaintViewAndCompositedLayers() { repaint(); #if USE(ACCELERATED_COMPOSITING) if (compositor()->inCompositingMode()) compositor()->repaintCompositedLayers(); #endif } LayoutRect RenderView::visualOverflowRect() const { if (m_frameView->paintsEntireContents()) return layoutOverflowRect(); return RenderBlock::visualOverflowRect(); } void RenderView::computeRectForRepaint(const RenderLayerModelObject* repaintContainer, LayoutRect& rect, bool fixed) const { // If a container was specified, and was not 0 or the RenderView, // then we should have found it by now. ASSERT_ARG(repaintContainer, !repaintContainer || repaintContainer == this); if (printing()) return; if (style()->isFlippedBlocksWritingMode()) { // We have to flip by hand since the view's logical height has not been determined. We // can use the viewport width and height. if (style()->isHorizontalWritingMode()) rect.setY(viewHeight() - rect.maxY()); else rect.setX(viewWidth() - rect.maxX()); } if (fixed && m_frameView) rect.move(m_frameView->scrollOffsetForFixedPosition()); // Apply our transform if we have one (because of full page zooming). if (!repaintContainer && layer() && layer()->transform()) rect = layer()->transform()->mapRect(rect); } void RenderView::absoluteRects(Vector& rects, const LayoutPoint& accumulatedOffset) const { rects.append(pixelSnappedIntRect(accumulatedOffset, layer()->size())); } void RenderView::absoluteQuads(Vector& quads, bool* wasFixed) const { if (wasFixed) *wasFixed = false; quads.append(FloatRect(FloatPoint(), layer()->size())); } static RenderObject* rendererAfterPosition(RenderObject* object, unsigned offset) { if (!object) return 0; RenderObject* child = object->childAt(offset); return child ? child : object->nextInPreOrderAfterChildren(); } IntRect RenderView::selectionBounds(bool clipToVisibleContent) const { document()->updateStyleIfNeeded(); typedef HashMap > SelectionMap; SelectionMap selectedObjects; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. selectedObjects.set(os, adoptPtr(new RenderSelectionInfo(os, clipToVisibleContent))); RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr& blockInfo = selectedObjects.add(cb, nullptr).iterator->value; if (blockInfo) break; blockInfo = adoptPtr(new RenderSelectionInfo(cb, clipToVisibleContent)); cb = cb->containingBlock(); } } os = os->nextInPreOrder(); } // Now create a single bounding box rect that encloses the whole selection. LayoutRect selRect; SelectionMap::iterator end = selectedObjects.end(); for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) { RenderSelectionInfo* info = i->value.get(); // RenderSelectionInfo::rect() is in the coordinates of the repaintContainer, so map to page coordinates. LayoutRect currRect = info->rect(); if (RenderLayerModelObject* repaintContainer = info->repaintContainer()) { FloatQuad absQuad = repaintContainer->localToAbsoluteQuad(FloatRect(currRect)); currRect = absQuad.enclosingBoundingBox(); } selRect.unite(currRect); } return pixelSnappedIntRect(selRect); } void RenderView::repaintSelection() const { document()->updateStyleIfNeeded(); HashSet processedBlocks; RenderObject* end = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); for (RenderObject* o = m_selectionStart; o && o != end; o = o->nextInPreOrder()) { if (!o->canBeSelectionLeaf() && o != m_selectionStart && o != m_selectionEnd) continue; if (o->selectionState() == SelectionNone) continue; RenderSelectionInfo(o, true).repaint(); // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. for (RenderBlock* block = o->containingBlock(); block && !block->isRenderView(); block = block->containingBlock()) { if (!processedBlocks.add(block).isNewEntry) break; RenderSelectionInfo(block, true).repaint(); } } } #if USE(ACCELERATED_COMPOSITING) // Compositing layer dimensions take outline size into account, so we have to recompute layer // bounds when it changes. // FIXME: This is ugly; it would be nice to have a better way to do this. void RenderView::setMaximalOutlineSize(int o) { if (o != m_maximalOutlineSize) { m_maximalOutlineSize = o; // maximalOutlineSize affects compositing layer dimensions. compositor()->setCompositingLayersNeedRebuild(); // FIXME: this really just needs to be a geometry update. } } #endif void RenderView::setSelection(RenderObject* start, int startPos, RenderObject* end, int endPos, SelectionRepaintMode blockRepaintMode) { // Make sure both our start and end objects are defined. // Check www.msnbc.com and try clicking around to find the case where this happened. if ((start && !end) || (end && !start)) return; bool caretChanged = m_selectionWasCaret != view()->frame()->selection()->isCaret(); m_selectionWasCaret = view()->frame()->selection()->isCaret(); // Just return if the selection hasn't changed. if (m_selectionStart == start && m_selectionStartPos == startPos && m_selectionEnd == end && m_selectionEndPos == endPos && !caretChanged) return; if ((start && end) && (start->flowThreadContainingBlock() != end->flowThreadContainingBlock())) return; // Record the old selected objects. These will be used later // when we compare against the new selected objects. int oldStartPos = m_selectionStartPos; int oldEndPos = m_selectionEndPos; // Objects each have a single selection rect to examine. typedef HashMap > SelectedObjectMap; SelectedObjectMap oldSelectedObjects; SelectedObjectMap newSelectedObjects; // Blocks contain selected objects and fill gaps between them, either on the left, right, or in between lines and blocks. // In order to get the repaint rect right, we have to examine left, middle, and right rects individually, since otherwise // the union of those rects might remain the same even when changes have occurred. typedef HashMap > SelectedBlockMap; SelectedBlockMap oldSelectedBlocks; SelectedBlockMap newSelectedBlocks; RenderObject* os = m_selectionStart; RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos); while (os && os != stop) { if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) { // Blocks are responsible for painting line gaps and margin gaps. They must be examined as well. oldSelectedObjects.set(os, adoptPtr(new RenderSelectionInfo(os, true))); if (blockRepaintMode == RepaintNewXOROld) { RenderBlock* cb = os->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr& blockInfo = oldSelectedBlocks.add(cb, nullptr).iterator->value; if (blockInfo) break; blockInfo = adoptPtr(new RenderBlockSelectionInfo(cb)); cb = cb->containingBlock(); } } } os = os->nextInPreOrder(); } // Now clear the selection. SelectedObjectMap::iterator oldObjectsEnd = oldSelectedObjects.end(); for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) i->key->setSelectionStateIfNeeded(SelectionNone); // set selection start and end m_selectionStart = start; m_selectionStartPos = startPos; m_selectionEnd = end; m_selectionEndPos = endPos; // Update the selection status of all objects between m_selectionStart and m_selectionEnd if (start && start == end) start->setSelectionStateIfNeeded(SelectionBoth); else { if (start) start->setSelectionStateIfNeeded(SelectionStart); if (end) end->setSelectionStateIfNeeded(SelectionEnd); } RenderObject* o = start; stop = rendererAfterPosition(end, endPos); while (o && o != stop) { if (o != start && o != end && o->canBeSelectionLeaf()) o->setSelectionStateIfNeeded(SelectionInside); o = o->nextInPreOrder(); } if (blockRepaintMode != RepaintNothing) layer()->clearBlockSelectionGapsBounds(); // Now that the selection state has been updated for the new objects, walk them again and // put them in the new objects list. o = start; while (o && o != stop) { if ((o->canBeSelectionLeaf() || o == start || o == end) && o->selectionState() != SelectionNone) { newSelectedObjects.set(o, adoptPtr(new RenderSelectionInfo(o, true))); RenderBlock* cb = o->containingBlock(); while (cb && !cb->isRenderView()) { OwnPtr& blockInfo = newSelectedBlocks.add(cb, nullptr).iterator->value; if (blockInfo) break; blockInfo = adoptPtr(new RenderBlockSelectionInfo(cb)); cb = cb->containingBlock(); } } o = o->nextInPreOrder(); } if (!m_frameView || blockRepaintMode == RepaintNothing) return; m_frameView->beginDeferredRepaints(); // Have any of the old selected objects changed compared to the new selection? for (SelectedObjectMap::iterator i = oldSelectedObjects.begin(); i != oldObjectsEnd; ++i) { RenderObject* obj = i->key; RenderSelectionInfo* newInfo = newSelectedObjects.get(obj); RenderSelectionInfo* oldInfo = i->value.get(); if (!newInfo || oldInfo->rect() != newInfo->rect() || oldInfo->state() != newInfo->state() || (m_selectionStart == obj && oldStartPos != m_selectionStartPos) || (m_selectionEnd == obj && oldEndPos != m_selectionEndPos)) { oldInfo->repaint(); if (newInfo) { newInfo->repaint(); newSelectedObjects.remove(obj); } } } // Any new objects that remain were not found in the old objects dict, and so they need to be updated. SelectedObjectMap::iterator newObjectsEnd = newSelectedObjects.end(); for (SelectedObjectMap::iterator i = newSelectedObjects.begin(); i != newObjectsEnd; ++i) i->value->repaint(); // Have any of the old blocks changed? SelectedBlockMap::iterator oldBlocksEnd = oldSelectedBlocks.end(); for (SelectedBlockMap::iterator i = oldSelectedBlocks.begin(); i != oldBlocksEnd; ++i) { RenderBlock* block = i->key; RenderBlockSelectionInfo* newInfo = newSelectedBlocks.get(block); RenderBlockSelectionInfo* oldInfo = i->value.get(); if (!newInfo || oldInfo->rects() != newInfo->rects() || oldInfo->state() != newInfo->state()) { oldInfo->repaint(); if (newInfo) { newInfo->repaint(); newSelectedBlocks.remove(block); } } } // Any new blocks that remain were not found in the old blocks dict, and so they need to be updated. SelectedBlockMap::iterator newBlocksEnd = newSelectedBlocks.end(); for (SelectedBlockMap::iterator i = newSelectedBlocks.begin(); i != newBlocksEnd; ++i) i->value->repaint(); m_frameView->endDeferredRepaints(); } void RenderView::getSelection(RenderObject*& startRenderer, int& startOffset, RenderObject*& endRenderer, int& endOffset) const { startRenderer = m_selectionStart; startOffset = m_selectionStartPos; endRenderer = m_selectionEnd; endOffset = m_selectionEndPos; } void RenderView::clearSelection() { layer()->repaintBlockSelectionGaps(); setSelection(0, -1, 0, -1, RepaintNewMinusOld); } void RenderView::selectionStartEnd(int& startPos, int& endPos) const { startPos = m_selectionStartPos; endPos = m_selectionEndPos; } bool RenderView::printing() const { return document()->printing(); } bool RenderView::shouldUsePrintingLayout() const { if (!printing() || !m_frameView) return false; Frame* frame = m_frameView->frame(); return frame && frame->shouldUsePrintingLayout(); } size_t RenderView::getRetainedWidgets(Vector& renderWidgets) { size_t size = m_widgets.size(); renderWidgets.reserveCapacity(size); RenderWidgetSet::const_iterator end = m_widgets.end(); for (RenderWidgetSet::const_iterator it = m_widgets.begin(); it != end; ++it) { renderWidgets.uncheckedAppend(*it); (*it)->ref(); } return size; } void RenderView::releaseWidgets(Vector& renderWidgets) { size_t size = renderWidgets.size(); for (size_t i = 0; i < size; ++i) renderWidgets[i]->deref(renderArena()); } void RenderView::updateWidgetPositions() { // updateWidgetPosition() can possibly cause layout to be re-entered (via plug-ins running // scripts in response to NPP_SetWindow, for example), so we need to keep the Widgets // alive during enumeration. Vector renderWidgets; size_t size = getRetainedWidgets(renderWidgets); for (size_t i = 0; i < size; ++i) renderWidgets[i]->updateWidgetPosition(); for (size_t i = 0; i < size; ++i) renderWidgets[i]->widgetPositionsUpdated(); releaseWidgets(renderWidgets); } void RenderView::addWidget(RenderWidget* o) { m_widgets.add(o); } void RenderView::removeWidget(RenderWidget* o) { m_widgets.remove(o); } void RenderView::notifyWidgets(WidgetNotification notification) { Vector renderWidgets; size_t size = getRetainedWidgets(renderWidgets); for (size_t i = 0; i < size; ++i) renderWidgets[i]->notifyWidget(notification); releaseWidgets(renderWidgets); } LayoutRect RenderView::viewRect() const { if (shouldUsePrintingLayout()) return LayoutRect(LayoutPoint(), size()); if (m_frameView) return m_frameView->visibleContentRect(); return LayoutRect(); } IntRect RenderView::unscaledDocumentRect() const { LayoutRect overflowRect(layoutOverflowRect()); flipForWritingMode(overflowRect); return pixelSnappedIntRect(overflowRect); } bool RenderView::rootBackgroundIsEntirelyFixed() const { RenderObject* rootObject = document()->documentElement() ? document()->documentElement()->renderer() : 0; if (!rootObject) return false; RenderObject* rootRenderer = rootObject->rendererForRootBackground(); return rootRenderer->hasEntirelyFixedBackground(); } LayoutRect RenderView::backgroundRect(RenderBox* backgroundRenderer) const { if (!hasColumns()) return unscaledDocumentRect(); ColumnInfo* columnInfo = this->columnInfo(); LayoutRect backgroundRect(0, 0, columnInfo->desiredColumnWidth(), columnInfo->columnHeight() * columnInfo->columnCount()); if (!isHorizontalWritingMode()) backgroundRect = backgroundRect.transposedRect(); backgroundRenderer->flipForWritingMode(backgroundRect); return backgroundRect; } IntRect RenderView::documentRect() const { FloatRect overflowRect(unscaledDocumentRect()); if (hasTransform()) overflowRect = layer()->currentTransform().mapRect(overflowRect); return IntRect(overflowRect); } int RenderView::viewHeight() const { int height = 0; if (!shouldUsePrintingLayout() && m_frameView) { height = m_frameView->layoutHeight(); height = m_frameView->useFixedLayout() ? ceilf(style()->effectiveZoom() * float(height)) : height; } return height; } int RenderView::viewWidth() const { int width = 0; if (!shouldUsePrintingLayout() && m_frameView) { width = m_frameView->layoutWidth(); width = m_frameView->useFixedLayout() ? ceilf(style()->effectiveZoom() * float(width)) : width; } return width; } int RenderView::viewLogicalHeight() const { int height = style()->isHorizontalWritingMode() ? viewHeight() : viewWidth(); return height; } float RenderView::zoomFactor() const { Frame* frame = m_frameView->frame(); return frame ? frame->pageZoomFactor() : 1; } void RenderView::pushLayoutState(RenderObject* root) { ASSERT(m_layoutStateDisableCount == 0); ASSERT(m_layoutState == 0); pushLayoutStateForCurrentFlowThread(root); m_layoutState = new (renderArena()) LayoutState(root); } bool RenderView::shouldDisableLayoutStateForSubtree(RenderObject* renderer) const { RenderObject* o = renderer; while (o) { if (o->hasColumns() || o->hasTransform() || o->hasReflection()) return true; o = o->container(); } return false; } void RenderView::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) { if (result.innerNode()) return; Node* node = document()->documentElement(); if (node) { result.setInnerNode(node); if (!result.innerNonSharedNode()) result.setInnerNonSharedNode(node); LayoutPoint adjustedPoint = point; offsetForContents(adjustedPoint); result.setLocalPoint(adjustedPoint); } } // FIXME: This function is obsolete and only used by embedded WebViews inside AppKit NSViews. // Do not add callers of this function! // The idea here is to take into account what object is moving the pagination point, and // thus choose the best place to chop it. void RenderView::setBestTruncatedAt(int y, RenderBoxModelObject* forRenderer, bool forcedBreak) { // Nobody else can set a page break once we have a forced break. if (m_legacyPrinting.m_forcedPageBreak) return; // Forced breaks always win over unforced breaks. if (forcedBreak) { m_legacyPrinting.m_forcedPageBreak = true; m_legacyPrinting.m_bestTruncatedAt = y; return; } // Prefer the widest object that tries to move the pagination point IntRect boundingBox = forRenderer->borderBoundingBox(); if (boundingBox.width() > m_legacyPrinting.m_truncatorWidth) { m_legacyPrinting.m_truncatorWidth = boundingBox.width(); m_legacyPrinting.m_bestTruncatedAt = y; } } #if USE(ACCELERATED_COMPOSITING) bool RenderView::usesCompositing() const { return m_compositor && m_compositor->inCompositingMode(); } RenderLayerCompositor* RenderView::compositor() { if (!m_compositor) m_compositor = adoptPtr(new RenderLayerCompositor(this)); return m_compositor.get(); } #endif void RenderView::setIsInWindow(bool isInWindow) { #if USE(ACCELERATED_COMPOSITING) if (m_compositor) m_compositor->setIsInWindow(isInWindow); #endif } #if ENABLE(CSS_SHADERS) && USE(3D_GRAPHICS) CustomFilterGlobalContext* RenderView::customFilterGlobalContext() { if (!m_customFilterGlobalContext) m_customFilterGlobalContext = adoptPtr(new CustomFilterGlobalContext()); return m_customFilterGlobalContext.get(); } #endif void RenderView::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBlock::styleDidChange(diff, oldStyle); if (hasRenderNamedFlowThreads()) flowThreadController()->styleDidChange(); } bool RenderView::hasRenderNamedFlowThreads() const { return m_flowThreadController && m_flowThreadController->hasRenderNamedFlowThreads(); } bool RenderView::checkTwoPassLayoutForAutoHeightRegions() const { return hasRenderNamedFlowThreads() && m_flowThreadController->hasFlowThreadsWithAutoLogicalHeightRegions(); } FlowThreadController* RenderView::flowThreadController() { if (!m_flowThreadController) m_flowThreadController = FlowThreadController::create(this); return m_flowThreadController.get(); } void RenderView::pushLayoutStateForCurrentFlowThread(const RenderObject* object) { if (!m_flowThreadController) return; RenderFlowThread* currentFlowThread = m_flowThreadController->currentRenderFlowThread(); if (!currentFlowThread) return; currentFlowThread->pushFlowThreadLayoutState(object); } void RenderView::popLayoutStateForCurrentFlowThread() { if (!m_flowThreadController) return; RenderFlowThread* currentFlowThread = m_flowThreadController->currentRenderFlowThread(); if (!currentFlowThread) return; currentFlowThread->popFlowThreadLayoutState(); } RenderBlock::IntervalArena* RenderView::intervalArena() { if (!m_intervalArena) m_intervalArena = IntervalArena::create(); return m_intervalArena.get(); } FragmentationDisabler::FragmentationDisabler(RenderObject* root) { RenderView* renderView = root->view(); ASSERT(renderView); LayoutState* layoutState = renderView->layoutState(); m_root = root; m_fragmenting = layoutState && layoutState->isPaginated(); m_flowThreadState = m_root->flowThreadState(); #ifndef NDEBUG m_layoutState = layoutState; #endif if (layoutState) layoutState->m_isPaginated = false; if (m_flowThreadState != RenderObject::NotInsideFlowThread) m_root->setFlowThreadStateIncludingDescendants(RenderObject::NotInsideFlowThread); } FragmentationDisabler::~FragmentationDisabler() { RenderView* renderView = m_root->view(); ASSERT(renderView); LayoutState* layoutState = renderView->layoutState(); #ifndef NDEBUG ASSERT(m_layoutState == layoutState); #endif if (layoutState) layoutState->m_isPaginated = m_fragmenting; if (m_flowThreadState != RenderObject::NotInsideFlowThread) m_root->setFlowThreadStateIncludingDescendants(m_flowThreadState); } } // namespace WebCore