/* * Copyright (C) 2010 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "HRTFKernel.h" #include "AudioChannel.h" #include "Biquad.h" #include "FFTFrame.h" #include "FloatConversion.h" #include namespace WebCore { // Takes the input AudioChannel as an input impulse response and calculates the average group delay. // This represents the initial delay before the most energetic part of the impulse response. // The sample-frame delay is removed from the impulseP impulse response, and this value is returned. // the length of the passed in AudioChannel must be a power of 2. static float extractAverageGroupDelay(AudioChannel* channel, size_t analysisFFTSize) { ASSERT(channel); float* impulseP = channel->mutableData(); bool isSizeGood = channel->length() >= analysisFFTSize; ASSERT(isSizeGood); if (!isSizeGood) return 0; // Check for power-of-2. ASSERT(1UL << static_cast(log2(analysisFFTSize)) == analysisFFTSize); FFTFrame estimationFrame(analysisFFTSize); estimationFrame.doFFT(impulseP); float frameDelay = narrowPrecisionToFloat(estimationFrame.extractAverageGroupDelay()); estimationFrame.doInverseFFT(impulseP); return frameDelay; } HRTFKernel::HRTFKernel(AudioChannel* channel, size_t fftSize, float sampleRate) : m_frameDelay(0) , m_sampleRate(sampleRate) { ASSERT(channel); // Determine the leading delay (average group delay) for the response. m_frameDelay = extractAverageGroupDelay(channel, fftSize / 2); float* impulseResponse = channel->mutableData(); size_t responseLength = channel->length(); // We need to truncate to fit into 1/2 the FFT size (with zero padding) in order to do proper convolution. size_t truncatedResponseLength = std::min(responseLength, fftSize / 2); // truncate if necessary to max impulse response length allowed by FFT // Quick fade-out (apply window) at truncation point unsigned numberOfFadeOutFrames = static_cast(sampleRate / 4410); // 10 sample-frames @44.1KHz sample-rate ASSERT(numberOfFadeOutFrames < truncatedResponseLength); if (numberOfFadeOutFrames < truncatedResponseLength) { for (unsigned i = truncatedResponseLength - numberOfFadeOutFrames; i < truncatedResponseLength; ++i) { float x = 1.0f - static_cast(i - (truncatedResponseLength - numberOfFadeOutFrames)) / numberOfFadeOutFrames; impulseResponse[i] *= x; } } m_fftFrame = std::make_unique(fftSize); m_fftFrame->doPaddedFFT(impulseResponse, truncatedResponseLength); } size_t HRTFKernel::fftSize() const { return m_fftFrame->fftSize(); } std::unique_ptr HRTFKernel::createImpulseResponse() { auto channel = std::make_unique(fftSize()); FFTFrame fftFrame(*m_fftFrame); // Add leading delay back in. fftFrame.addConstantGroupDelay(m_frameDelay); fftFrame.doInverseFFT(channel->mutableData()); return channel; } // Interpolates two kernels with x: 0 -> 1 and returns the result. PassRefPtr HRTFKernel::createInterpolatedKernel(HRTFKernel* kernel1, HRTFKernel* kernel2, float x) { ASSERT(kernel1 && kernel2); if (!kernel1 || !kernel2) return 0; ASSERT(x >= 0.0 && x < 1.0); x = std::min(1.0f, std::max(0.0f, x)); float sampleRate1 = kernel1->sampleRate(); float sampleRate2 = kernel2->sampleRate(); ASSERT(sampleRate1 == sampleRate2); if (sampleRate1 != sampleRate2) return 0; float frameDelay = (1 - x) * kernel1->frameDelay() + x * kernel2->frameDelay(); std::unique_ptr interpolatedFrame = FFTFrame::createInterpolatedFrame(*kernel1->fftFrame(), *kernel2->fftFrame(), x); return HRTFKernel::create(WTFMove(interpolatedFrame), frameDelay, sampleRate1); } } // namespace WebCore #endif // ENABLE(WEB_AUDIO)