/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGOSRExitCompiler.h" #if ENABLE(DFG_JIT) && USE(JSVALUE64) #include "DFGOperations.h" #include namespace JSC { namespace DFG { void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands& operands, SpeculationRecovery* recovery) { // 1) Pro-forma stuff. #if DFG_ENABLE(DEBUG_VERBOSE) dataLog("OSR exit for Node @%d (", (int)exit.m_nodeIndex); for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) { dataLog("bc#%u", codeOrigin.bytecodeIndex); if (!codeOrigin.inlineCallFrame) break; dataLog(" -> %p ", codeOrigin.inlineCallFrame->executable.get()); } dataLog(") "); dumpOperands(operands, WTF::dataFile()); #endif #if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE) SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo; debugInfo->codeBlock = m_jit.codeBlock(); debugInfo->nodeIndex = exit.m_nodeIndex; m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo); #endif #if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE) m_jit.breakpoint(); #endif #if DFG_ENABLE(SUCCESS_STATS) static SamplingCounter counter("SpeculationFailure"); m_jit.emitCount(counter); #endif // 2) Perform speculation recovery. This only comes into play when an operation // starts mutating state before verifying the speculation it has already made. GPRReg alreadyBoxed = InvalidGPRReg; if (recovery) { switch (recovery->type()) { case SpeculativeAdd: m_jit.sub32(recovery->src(), recovery->dest()); m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest()); alreadyBoxed = recovery->dest(); break; case BooleanSpeculationCheck: m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast(ValueFalse)), recovery->dest()); break; default: break; } } // 3) Refine some array and/or value profile, if appropriate. if (!!exit.m_jsValueSource) { if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { // If the instruction that this originated from has an array profile, then // refine it. If it doesn't, then do nothing. The latter could happen for // hoisted checks, or checks emitted for operations that didn't have array // profiling - either ops that aren't array accesses at all, or weren't // known to be array acceses in the bytecode. The latter case is a FIXME // while the former case is an outcome of a CheckStructure not knowing why // it was emitted (could be either due to an inline cache of a property // property access, or due to an array profile). CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { GPRReg usedRegister; if (exit.m_jsValueSource.isAddress()) usedRegister = exit.m_jsValueSource.base(); else usedRegister = exit.m_jsValueSource.gpr(); GPRReg scratch1; GPRReg scratch2; scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister); scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1); m_jit.push(scratch1); m_jit.push(scratch2); GPRReg value; if (exit.m_jsValueSource.isAddress()) { value = scratch1; m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value); } else value = exit.m_jsValueSource.gpr(); m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureOffset()), scratch1); m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructure()); m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1); m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2); m_jit.lshift32(scratch1, scratch2); m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes())); m_jit.pop(scratch2); m_jit.pop(scratch1); } } if (!!exit.m_valueProfile) { EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0); #if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE) dataLog(" (have exit profile, bucket %p) ", bucket); #endif if (exit.m_jsValueSource.isAddress()) { // We can't be sure that we have a spare register. So use the tagTypeNumberRegister, // since we know how to restore it. m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister); m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket); m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); } else m_jit.store64(exit.m_jsValueSource.gpr(), bucket); } } // 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR // whose destination is now occupied by a DFG virtual register, and we need // one for every displaced virtual register if there are more than // GPRInfo::numberOfRegisters of them. Also see if there are any constants, // any undefined slots, any FPR slots, and any unboxed ints. Vector poisonedVirtualRegisters(operands.numberOfLocals()); for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i) poisonedVirtualRegisters[i] = false; unsigned numberOfPoisonedVirtualRegisters = 0; unsigned numberOfDisplacedVirtualRegisters = 0; // Booleans for fast checks. We expect that most OSR exits do not have to rebox // Int32s, have no FPRs, and have no constants. If there are constants, we // expect most of them to be jsUndefined(); if that's true then we handle that // specially to minimize code size and execution time. bool haveUnboxedInt32s = false; bool haveUnboxedDoubles = false; bool haveFPRs = false; bool haveConstants = false; bool haveUndefined = false; bool haveUInt32s = false; bool haveArguments = false; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case Int32DisplacedInJSStack: case DoubleDisplacedInJSStack: case DisplacedInJSStack: numberOfDisplacedVirtualRegisters++; ASSERT((int)recovery.virtualRegister() >= 0); // See if we might like to store to this virtual register before doing // virtual register shuffling. If so, we say that the virtual register // is poisoned: it cannot be stored to until after displaced virtual // registers are handled. We track poisoned virtual register carefully // to ensure this happens efficiently. Note that we expect this case // to be rare, so the handling of it is optimized for the cases in // which it does not happen. if (recovery.virtualRegister() < (int)operands.numberOfLocals()) { switch (operands.local(recovery.virtualRegister()).technique()) { case InGPR: case UnboxedInt32InGPR: case UInt32InGPR: case InFPR: if (!poisonedVirtualRegisters[recovery.virtualRegister()]) { poisonedVirtualRegisters[recovery.virtualRegister()] = true; numberOfPoisonedVirtualRegisters++; } break; default: break; } } break; case UnboxedInt32InGPR: case AlreadyInJSStackAsUnboxedInt32: haveUnboxedInt32s = true; break; case AlreadyInJSStackAsUnboxedDouble: haveUnboxedDoubles = true; break; case UInt32InGPR: haveUInt32s = true; break; case InFPR: haveFPRs = true; break; case Constant: haveConstants = true; if (recovery.constant().isUndefined()) haveUndefined = true; break; case ArgumentsThatWereNotCreated: haveArguments = true; break; default: break; } } #if DFG_ENABLE(DEBUG_VERBOSE) dataLog(" "); if (numberOfPoisonedVirtualRegisters) dataLog("Poisoned=%u ", numberOfPoisonedVirtualRegisters); if (numberOfDisplacedVirtualRegisters) dataLog("Displaced=%u ", numberOfDisplacedVirtualRegisters); if (haveUnboxedInt32s) dataLog("UnboxedInt32 "); if (haveUnboxedDoubles) dataLog("UnboxedDoubles "); if (haveUInt32s) dataLog("UInt32 "); if (haveFPRs) dataLog("FPR "); if (haveConstants) dataLog("Constants "); if (haveUndefined) dataLog("Undefined "); dataLog(" "); #endif ScratchBuffer* scratchBuffer = m_jit.globalData()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters))); EncodedJSValue* scratchDataBuffer = scratchBuffer ? static_cast(scratchBuffer->dataBuffer()) : 0; // From here on, the code assumes that it is profitable to maximize the distance // between when something is computed and when it is stored. // 5) Perform all reboxing of integers. if (haveUnboxedInt32s || haveUInt32s) { for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case UnboxedInt32InGPR: if (recovery.gpr() != alreadyBoxed) m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery.gpr()); break; case AlreadyInJSStackAsUnboxedInt32: m_jit.store32(AssemblyHelpers::TrustedImm32(static_cast(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast(operands.operandForIndex(index)))); break; case UInt32InGPR: { // This occurs when the speculative JIT left an unsigned 32-bit integer // in a GPR. If it's positive, we can just box the int. Otherwise we // need to turn it into a boxed double. // We don't try to be clever with register allocation here; we assume // that the program is using FPRs and we don't try to figure out which // ones it is using. Instead just temporarily save fpRegT0 and then // restore it. This makes sense because this path is not cheap to begin // with, and should happen very rarely. GPRReg addressGPR = GPRInfo::regT0; if (addressGPR == recovery.gpr()) addressGPR = GPRInfo::regT1; m_jit.store64(addressGPR, scratchDataBuffer); m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchDataBuffer + 1), addressGPR); m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR); AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0)); m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0); m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0); m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr()); AssemblyHelpers::Jump done = m_jit.jump(); positive.link(&m_jit); m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery.gpr()); done.link(&m_jit); m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0); m_jit.load64(scratchDataBuffer, addressGPR); break; } default: break; } } } // 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage. // Note that GPRs do not have a fast change (like haveFPRs) because we expect that // most OSR failure points will have at least one GPR that needs to be dumped. initializePoisoned(operands.numberOfLocals()); unsigned currentPoisonIndex = 0; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; int operand = operands.operandForIndex(index); switch (recovery.technique()) { case InGPR: case UnboxedInt32InGPR: case UInt32InGPR: if (operands.isVariable(index) && poisonedVirtualRegisters[operands.variableForIndex(index)]) { m_jit.store64(recovery.gpr(), scratchDataBuffer + currentPoisonIndex); m_poisonScratchIndices[operands.variableForIndex(index)] = currentPoisonIndex; currentPoisonIndex++; } else m_jit.store64(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand)); break; default: break; } } // At this point all GPRs are available for scratch use. if (haveFPRs) { // 7) Box all doubles (relies on there being more GPRs than FPRs) for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != InFPR) continue; FPRReg fpr = recovery.fpr(); GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr)); m_jit.boxDouble(fpr, gpr); } // 8) Dump all doubles into the stack, or to the scratch storage if // the destination virtual register is poisoned. for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != InFPR) continue; GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr())); if (operands.isVariable(index) && poisonedVirtualRegisters[operands.variableForIndex(index)]) { m_jit.store64(gpr, scratchDataBuffer + currentPoisonIndex); m_poisonScratchIndices[operands.variableForIndex(index)] = currentPoisonIndex; currentPoisonIndex++; } else m_jit.store64(gpr, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); } } // At this point all GPRs and FPRs are available for scratch use. // 9) Box all unboxed doubles in the stack. if (haveUnboxedDoubles) { for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != AlreadyInJSStackAsUnboxedDouble) continue; m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)), FPRInfo::fpRegT0); m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); } } ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters); // 10) Reshuffle displaced virtual registers. Optimize for the case that // the number of displaced virtual registers is not more than the number // of available physical registers. if (numberOfDisplacedVirtualRegisters) { if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) { // So far this appears to be the case that triggers all the time, but // that is far from guaranteed. unsigned displacementIndex = 0; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++)); break; case Int32DisplacedInJSStack: { GPRReg gpr = GPRInfo::toRegister(displacementIndex++); m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr); m_jit.or64(GPRInfo::tagTypeNumberRegister, gpr); break; } case DoubleDisplacedInJSStack: { GPRReg gpr = GPRInfo::toRegister(displacementIndex++); m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr); m_jit.sub64(GPRInfo::tagTypeNumberRegister, gpr); break; } default: break; } } displacementIndex = 0; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: case Int32DisplacedInJSStack: case DoubleDisplacedInJSStack: m_jit.store64(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); break; default: break; } } } else { // FIXME: This should use the shuffling algorithm that we use // for speculative->non-speculative jumps, if we ever discover that // some hot code with lots of live values that get displaced and // spilled really enjoys frequently failing speculation. // For now this code is engineered to be correct but probably not // super. In particular, it correctly handles cases where for example // the displacements are a permutation of the destination values, like // // 1 -> 2 // 2 -> 1 // // It accomplishes this by simply lifting all of the virtual registers // from their old (DFG JIT) locations and dropping them in a scratch // location in memory, and then transferring from that scratch location // to their new (old JIT) locations. unsigned scratchIndex = numberOfPoisonedVirtualRegisters; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); break; case Int32DisplacedInJSStack: { m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); break; } case DoubleDisplacedInJSStack: { m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); m_jit.sub64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++); break; } default: break; } } scratchIndex = numberOfPoisonedVirtualRegisters; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: case Int32DisplacedInJSStack: case DoubleDisplacedInJSStack: m_jit.load64(scratchDataBuffer + scratchIndex++, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); break; default: break; } } ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters); } } // 11) Dump all poisoned virtual registers. if (numberOfPoisonedVirtualRegisters) { for (int virtualRegister = 0; virtualRegister < (int)operands.numberOfLocals(); ++virtualRegister) { if (!poisonedVirtualRegisters[virtualRegister]) continue; const ValueRecovery& recovery = operands.local(virtualRegister); switch (recovery.technique()) { case InGPR: case UnboxedInt32InGPR: case UInt32InGPR: case InFPR: m_jit.load64(scratchDataBuffer + poisonIndex(virtualRegister), GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister)); break; default: break; } } } // 12) Dump all constants. Optimize for Undefined, since that's a constant we see // often. if (haveConstants) { if (haveUndefined) m_jit.move(AssemblyHelpers::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0); for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != Constant) continue; if (recovery.constant().isUndefined()) m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); else m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index))); } } // 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know // that all new calls into this code will go to the new JIT, so the execute // counter only affects call frames that performed OSR exit and call frames // that were still executing the old JIT at the time of another call frame's // OSR exit. We want to ensure that the following is true: // // (a) Code the performs an OSR exit gets a chance to reenter optimized // code eventually, since optimized code is faster. But we don't // want to do such reentery too aggressively (see (c) below). // // (b) If there is code on the call stack that is still running the old // JIT's code and has never OSR'd, then it should get a chance to // perform OSR entry despite the fact that we've exited. // // (c) Code the performs an OSR exit should not immediately retry OSR // entry, since both forms of OSR are expensive. OSR entry is // particularly expensive. // // (d) Frequent OSR failures, even those that do not result in the code // running in a hot loop, result in recompilation getting triggered. // // To ensure (c), we'd like to set the execute counter to // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger // (a) and (b), since then every OSR exit would delay the opportunity for // every call frame to perform OSR entry. Essentially, if OSR exit happens // frequently and the function has few loops, then the counter will never // become non-negative and OSR entry will never be triggered. OSR entry // will only happen if a loop gets hot in the old JIT, which does a pretty // good job of ensuring (a) and (b). But that doesn't take care of (d), // since each speculation failure would reset the execute counter. // So we check here if the number of speculation failures is significantly // larger than the number of successes (we want 90% success rate), and if // there have been a large enough number of failures. If so, we set the // counter to 0; otherwise we set the counter to // counterValueForOptimizeAfterWarmUp(). handleExitCounts(exit); // 14) Reify inlined call frames. ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT); m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)JSStack::CodeBlock)); for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) { InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame; CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin); CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller); Vector& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller); unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call); BytecodeAndMachineOffset* mapping = binarySearch(decodedCodeMap.begin(), decodedCodeMap.size(), returnBytecodeIndex); ASSERT(mapping); ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex); void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset); GPRReg callerFrameGPR; if (inlineCallFrame->caller.inlineCallFrame) { m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3); callerFrameGPR = GPRInfo::regT3; } else callerFrameGPR = GPRInfo::callFrameRegister; m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::CodeBlock))); m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue(inlineCallFrame->callee->scope()))), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ScopeChain))); m_jit.store64(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::CallerFrame))); m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ReturnPC))); m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ArgumentCount))); m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue(inlineCallFrame->callee.get()))), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::Callee))); } // 15) Create arguments if necessary and place them into the appropriate aliased // registers. if (haveArguments) { HashSet::Hash, NullableHashTraits > didCreateArgumentsObject; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != ArgumentsThatWereNotCreated) continue; int operand = operands.operandForIndex(index); // Find the right inline call frame. InlineCallFrame* inlineCallFrame = 0; for (InlineCallFrame* current = exit.m_codeOrigin.inlineCallFrame; current; current = current->caller.inlineCallFrame) { if (current->stackOffset <= operand) { inlineCallFrame = current; break; } } int argumentsRegister = m_jit.argumentsRegisterFor(inlineCallFrame); if (didCreateArgumentsObject.add(inlineCallFrame).isNewEntry) { // We know this call frame optimized out an arguments object that // the baseline JIT would have created. Do that creation now. if (inlineCallFrame) { m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT0); m_jit.setupArguments(GPRInfo::regT0); } else m_jit.setupArgumentsExecState(); m_jit.move( AssemblyHelpers::TrustedImmPtr( bitwise_cast(operationCreateArguments)), GPRInfo::nonArgGPR0); m_jit.call(GPRInfo::nonArgGPR0); m_jit.store64(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(argumentsRegister)); m_jit.store64( GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(unmodifiedArgumentsRegister(argumentsRegister))); m_jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); // no-op move on almost all platforms. } m_jit.load64(AssemblyHelpers::addressFor(argumentsRegister), GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); } } // 16) Load the result of the last bytecode operation into regT0. for (size_t i = 0; i < exit.m_setOperands.size(); i++) m_jit.load64(AssemblyHelpers::addressFor((VirtualRegister)exit.m_setOperands[i]), GPRInfo::cachedResultRegister); // 17) Adjust the call frame pointer. if (exit.m_codeOrigin.inlineCallFrame) m_jit.addPtr(AssemblyHelpers::TrustedImm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister); // 18) Jump into the corresponding baseline JIT code. CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin); Vector& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock); BytecodeAndMachineOffset* mapping = binarySearch(decodedCodeMap.begin(), decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex); ASSERT(mapping); ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex); void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset); ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister); m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1); m_jit.jump(GPRInfo::regT1); #if DFG_ENABLE(DEBUG_VERBOSE) dataLog("-> %p\n", jumpTarget); #endif } } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT) && USE(JSVALUE64)