/* * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BytecodeGenerator.h" #include "DFGCapabilities.h" #include "DFGNode.h" #include "DFGRepatch.h" #include "Debugger.h" #include "Interpreter.h" #include "JIT.h" #include "JITStubs.h" #include "JSActivation.h" #include "JSFunction.h" #include "JSStaticScopeObject.h" #include "JSValue.h" #include "LowLevelInterpreter.h" #include "MethodCallLinkStatus.h" #include "RepatchBuffer.h" #include "UStringConcatenate.h" #include #include #include #if ENABLE(DFG_JIT) #include "DFGOperations.h" #endif #define DUMP_CODE_BLOCK_STATISTICS 0 namespace JSC { #if ENABLE(DFG_JIT) using namespace DFG; #endif static UString escapeQuotes(const UString& str) { UString result = str; size_t pos = 0; while ((pos = result.find('\"', pos)) != notFound) { result = makeUString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1)); pos += 4; } return result; } static UString valueToSourceString(ExecState* exec, JSValue val) { if (!val) return "0"; if (val.isString()) return makeUString("\"", escapeQuotes(val.toString(exec)->value(exec)), "\""); return val.description(); } static CString constantName(ExecState* exec, int k, JSValue value) { return makeUString(valueToSourceString(exec, value), "(@k", UString::number(k - FirstConstantRegisterIndex), ")").utf8(); } static CString idName(int id0, const Identifier& ident) { return makeUString(ident.ustring(), "(@id", UString::number(id0), ")").utf8(); } void CodeBlock::dumpBytecodeCommentAndNewLine(int location) { #if ENABLE(BYTECODE_COMMENTS) const char* comment = commentForBytecodeOffset(location); if (comment) dataLog("\t\t ; %s", comment); #else UNUSED_PARAM(location); #endif dataLog("\n"); } CString CodeBlock::registerName(ExecState* exec, int r) const { if (r == missingThisObjectMarker()) return ""; if (isConstantRegisterIndex(r)) return constantName(exec, r, getConstant(r)); return makeUString("r", UString::number(r)).utf8(); } static UString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; return makeUString("/", regExp->pattern(), postfix); } static CString regexpName(int re, RegExp* regexp) { return makeUString(regexpToSourceString(regexp), "(@re", UString::number(re), ")").utf8(); } static UString pointerToSourceString(void* p) { char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0 snprintf(buffer, sizeof(buffer), "%p", p); return buffer; } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] %s\t\t %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); } void CodeBlock::printBinaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] %s\t\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); } void CodeBlock::printConditionalJump(ExecState* exec, const Vector::const_iterator&, Vector::const_iterator& it, int location, const char* op) { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(exec, r0).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); } void CodeBlock::printGetByIdOp(ExecState* exec, int location, Vector::const_iterator& it) { const char* op; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_get_by_id: op = "get_by_id"; break; case op_get_by_id_out_of_line: op = "get_by_id_out_of_line"; break; case op_get_by_id_self: op = "get_by_id_self"; break; case op_get_by_id_proto: op = "get_by_id_proto"; break; case op_get_by_id_chain: op = "get_by_id_chain"; break; case op_get_by_id_getter_self: op = "get_by_id_getter_self"; break; case op_get_by_id_getter_proto: op = "get_by_id_getter_proto"; break; case op_get_by_id_getter_chain: op = "get_by_id_getter_chain"; break; case op_get_by_id_custom_self: op = "get_by_id_custom_self"; break; case op_get_by_id_custom_proto: op = "get_by_id_custom_proto"; break; case op_get_by_id_custom_chain: op = "get_by_id_custom_chain"; break; case op_get_by_id_generic: op = "get_by_id_generic"; break; case op_get_array_length: op = "array_length"; break; case op_get_string_length: op = "string_length"; break; default: ASSERT_NOT_REACHED(); op = 0; } int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it += 5; } #if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations static void dumpStructure(const char* name, ExecState* exec, Structure* structure, Identifier& ident) { if (!structure) return; dataLog("%s = %p", name, structure); PropertyOffset offset = structure->get(exec->globalData(), ident); if (offset != invalidOffset) dataLog(" (offset = %d)", offset); } #endif #if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings static void dumpChain(ExecState* exec, StructureChain* chain, Identifier& ident) { dataLog("chain = %p: [", chain); bool first = true; for (WriteBarrier* currentStructure = chain->head(); *currentStructure; ++currentStructure) { if (first) first = false; else dataLog(", "); dumpStructure("struct", exec, currentStructure->get(), ident); } dataLog("]"); } #endif void CodeBlock::printGetByIdCacheStatus(ExecState* exec, int location) { Instruction* instruction = instructions().begin() + location; if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_method_check) instruction++; Identifier& ident = identifier(instruction[3].u.operand); UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. #if ENABLE(LLINT) Structure* structure = instruction[4].u.structure.get(); dataLog(" llint("); dumpStructure("struct", exec, structure, ident); dataLog(")"); #endif #if ENABLE(JIT) if (numberOfStructureStubInfos()) { dataLog(" jit("); StructureStubInfo& stubInfo = getStubInfo(location); if (!stubInfo.seen) dataLog("not seen"); else { Structure* baseStructure = 0; Structure* prototypeStructure = 0; StructureChain* chain = 0; PolymorphicAccessStructureList* structureList = 0; int listSize = 0; switch (stubInfo.accessType) { case access_get_by_id_self: dataLog("self"); baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); break; case access_get_by_id_proto: dataLog("proto"); baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get(); prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get(); break; case access_get_by_id_chain: dataLog("chain"); baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get(); chain = stubInfo.u.getByIdChain.chain.get(); break; case access_get_by_id_self_list: dataLog("self_list"); structureList = stubInfo.u.getByIdSelfList.structureList; listSize = stubInfo.u.getByIdSelfList.listSize; break; case access_get_by_id_proto_list: dataLog("proto_list"); structureList = stubInfo.u.getByIdProtoList.structureList; listSize = stubInfo.u.getByIdProtoList.listSize; break; case access_unset: dataLog("unset"); break; case access_get_by_id_generic: dataLog("generic"); break; case access_get_array_length: dataLog("array_length"); break; case access_get_string_length: dataLog("string_length"); break; default: ASSERT_NOT_REACHED(); break; } if (baseStructure) { dataLog(", "); dumpStructure("struct", exec, baseStructure, ident); } if (prototypeStructure) { dataLog(", "); dumpStructure("prototypeStruct", exec, baseStructure, ident); } if (chain) { dataLog(", "); dumpChain(exec, chain, ident); } if (structureList) { dataLog(", list = %p: [", structureList); for (int i = 0; i < listSize; ++i) { if (i) dataLog(", "); dataLog("("); dumpStructure("base", exec, structureList->list[i].base.get(), ident); if (structureList->list[i].isChain) { if (structureList->list[i].u.chain.get()) { dataLog(", "); dumpChain(exec, structureList->list[i].u.chain.get(), ident); } } else { if (structureList->list[i].u.proto.get()) { dataLog(", "); dumpStructure("proto", exec, structureList->list[i].u.proto.get(), ident); } } dataLog(")"); } dataLog("]"); } } dataLog(")"); } #endif } void CodeBlock::printCallOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op, CacheDumpMode cacheDumpMode) { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; dataLog("[%4d] %s\t %s, %d, %d", location, op, registerName(exec, func).data(), argCount, registerOffset); if (cacheDumpMode == DumpCaches) { #if ENABLE(LLINT) LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; if (callLinkInfo->lastSeenCallee) { dataLog(" llint(%p, exec %p)", callLinkInfo->lastSeenCallee.get(), callLinkInfo->lastSeenCallee->executable()); } else dataLog(" llint(not set)"); #endif #if ENABLE(JIT) if (numberOfCallLinkInfos()) { JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get(); if (target) dataLog(" jit(%p, exec %p)", target, target->executable()); else dataLog(" jit(not set)"); } #endif } dumpBytecodeCommentAndNewLine(location); it += 2; } void CodeBlock::printPutByIdOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); it += 5; } #if ENABLE(JIT) static bool isGlobalResolve(OpcodeID opcodeID) { return opcodeID == op_resolve_global || opcodeID == op_resolve_global_dynamic; } static unsigned instructionOffsetForNth(ExecState* exec, const RefCountedArray& instructions, int nth, bool (*predicate)(OpcodeID)) { size_t i = 0; while (i < instructions.size()) { OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode); if (predicate(currentOpcode)) { if (!--nth) return i; } i += opcodeLengths[currentOpcode]; } ASSERT_NOT_REACHED(); return 0; } static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset) { dataLog(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).utf8().data()); } #endif void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) { unsigned instructionOffset = vPC - instructions().begin(); dataLog(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data()); } void CodeBlock::printStructures(const Instruction* vPC) { Interpreter* interpreter = m_globalData->interpreter; unsigned instructionOffset = vPC - instructions().begin(); if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) { printStructure("get_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) { printStructure("get_by_id_self", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) { dataLog(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { dataLog(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) { dataLog(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) { printStructure("put_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { printStructure("put_by_id_replace", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) { printStructure("resolve_global", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { printStructure("resolve_global_dynamic", vPC, 4); return; } // These m_instructions doesn't ref Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct)); } void CodeBlock::dump(ExecState* exec) { size_t instructionCount = 0; for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; dataLog( "%lu m_instructions; %lu bytes at %p (%s); %d parameter(s); %d callee register(s); %d variable(s)", static_cast(instructions().size()), static_cast(instructions().size() * sizeof(Instruction)), this, codeTypeToString(codeType()), m_numParameters, m_numCalleeRegisters, m_numVars); if (m_numCapturedVars) dataLog("; %d captured var(s)", m_numCapturedVars); if (usesArguments()) { dataLog( "; uses arguments, in r%d, r%d", argumentsRegister(), unmodifiedArgumentsRegister(argumentsRegister())); } if (needsFullScopeChain() && codeType() == FunctionCode) dataLog("; activation in r%d", activationRegister()); dataLog("\n\n"); Vector::const_iterator begin = instructions().begin(); Vector::const_iterator end = instructions().end(); for (Vector::const_iterator it = begin; it != end; ++it) dump(exec, begin, it); if (!m_identifiers.isEmpty()) { dataLog("\nIdentifiers:\n"); size_t i = 0; do { dataLog(" id%u = %s\n", static_cast(i), m_identifiers[i].ustring().utf8().data()); ++i; } while (i != m_identifiers.size()); } if (!m_constantRegisters.isEmpty()) { dataLog("\nConstants:\n"); size_t i = 0; do { dataLog(" k%u = %s\n", static_cast(i), valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data()); ++i; } while (i < m_constantRegisters.size()); } if (m_rareData && !m_rareData->m_regexps.isEmpty()) { dataLog("\nm_regexps:\n"); size_t i = 0; do { dataLog(" re%u = %s\n", static_cast(i), regexpToSourceString(m_rareData->m_regexps[i].get()).utf8().data()); ++i; } while (i < m_rareData->m_regexps.size()); } #if ENABLE(JIT) if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty()) dataLog("\nStructures:\n"); if (!m_globalResolveInfos.isEmpty()) { size_t i = 0; do { printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, instructions(), i + 1, isGlobalResolve)); ++i; } while (i < m_globalResolveInfos.size()); } #endif #if ENABLE(CLASSIC_INTERPRETER) if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty()) dataLog("\nStructures:\n"); if (!m_globalResolveInstructions.isEmpty()) { size_t i = 0; do { printStructures(&instructions()[m_globalResolveInstructions[i]]); ++i; } while (i < m_globalResolveInstructions.size()); } if (!m_propertyAccessInstructions.isEmpty()) { size_t i = 0; do { printStructures(&instructions()[m_propertyAccessInstructions[i]]); ++i; } while (i < m_propertyAccessInstructions.size()); } #endif if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { dataLog("\nException Handlers:\n"); unsigned i = 0; do { dataLog("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) { dataLog("Immediate Switch Jump Tables:\n"); unsigned i = 0; do { dataLog(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; dataLog("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter); } dataLog(" }\n"); ++i; } while (i < m_rareData->m_immediateSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) { dataLog("\nCharacter Switch Jump Tables:\n"); unsigned i = 0; do { dataLog(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF)); UChar ch = static_cast(entry + m_rareData->m_characterSwitchJumpTables[i].min); dataLog("\t\t\"%s\" => %04d\n", UString(&ch, 1).utf8().data(), *iter); } dataLog(" }\n"); ++i; } while (i < m_rareData->m_characterSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { dataLog("\nString Switch Jump Tables:\n"); unsigned i = 0; do { dataLog(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) dataLog("\t\t\"%s\" => %04d\n", UString(iter->first).utf8().data(), iter->second.branchOffset); dataLog(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } dataLog("\n"); } void CodeBlock::dump(ExecState* exec, const Vector::const_iterator& begin, Vector::const_iterator& it) { int location = it - begin; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_enter: { dataLog("[%4d] enter", location); dumpBytecodeCommentAndNewLine(location); break; } case op_create_activation: { int r0 = (++it)->u.operand; dataLog("[%4d] create_activation %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_create_arguments: { int r0 = (++it)->u.operand; dataLog("[%4d] create_arguments\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_init_lazy_reg: { int r0 = (++it)->u.operand; dataLog("[%4d] init_lazy_reg\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_create_this: { int r0 = (++it)->u.operand; dataLog("[%4d] create_this %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_convert_this: { int r0 = (++it)->u.operand; dataLog("[%4d] convert_this\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); ++it; // Skip value profile. break; } case op_new_object: { int r0 = (++it)->u.operand; dataLog("[%4d] new_object\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; dataLog("[%4d] new_array\t %s, %s, %d", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc); dumpBytecodeCommentAndNewLine(location); break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; dataLog("[%4d] new_array_buffer %s, %d, %d", location, registerName(exec, dst).data(), argv, argc); dumpBytecodeCommentAndNewLine(location); break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; dataLog("[%4d] new_regexp\t %s, ", location, registerName(exec, r0).data()); if (r0 >=0 && r0 < (int)numberOfRegExps()) dataLog("%s", regexpName(re0, regexp(re0)).data()); else dataLog("bad_regexp(%d)", re0); dumpBytecodeCommentAndNewLine(location); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] mov\t\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_not: { printUnaryOp(exec, location, it, "not"); break; } case op_eq: { printBinaryOp(exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(exec, location, it, "lesseq"); break; } case op_greater: { printBinaryOp(exec, location, it, "greater"); break; } case op_greatereq: { printBinaryOp(exec, location, it, "greatereq"); break; } case op_pre_inc: { int r0 = (++it)->u.operand; dataLog("[%4d] pre_inc\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_pre_dec: { int r0 = (++it)->u.operand; dataLog("[%4d] pre_dec\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_post_inc: { printUnaryOp(exec, location, it, "post_inc"); break; } case op_post_dec: { printUnaryOp(exec, location, it, "post_dec"); break; } case op_to_jsnumber: { printUnaryOp(exec, location, it, "to_jsnumber"); break; } case op_negate: { printUnaryOp(exec, location, it, "negate"); break; } case op_add: { printBinaryOp(exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(exec, location, it, "bitor"); ++it; break; } case op_check_has_instance: { int base = (++it)->u.operand; dataLog("[%4d] check_has_instance\t\t %s", location, registerName(exec, base).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; dataLog("[%4d] instanceof\t\t %s, %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_typeof: { printUnaryOp(exec, location, it, "typeof"); break; } case op_is_undefined: { printUnaryOp(exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(exec, location, it, "is_object"); break; } case op_is_function: { printUnaryOp(exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(exec, location, it, "in"); break; } case op_resolve: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] resolve\t\t %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_resolve_skip: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int skipLevels = (++it)->u.operand; dataLog("[%4d] resolve_skip\t %s, %s, %d", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), skipLevels); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_resolve_global: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] resolve_global\t %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); it += 3; break; } case op_resolve_global_dynamic: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; JSValue scope = JSValue((++it)->u.jsCell.get()); ++it; int depth = (++it)->u.operand; dataLog("[%4d] resolve_global_dynamic\t %s, %s, %s, %d", location, registerName(exec, r0).data(), valueToSourceString(exec, scope).utf8().data(), idName(id0, m_identifiers[id0]).data(), depth); dumpBytecodeCommentAndNewLine(location); ++it; break; } case op_get_scoped_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; dataLog("[%4d] get_scoped_var\t %s, %d, %d", location, registerName(exec, r0).data(), index, skipLevels); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_put_scoped_var: { int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; int r0 = (++it)->u.operand; dataLog("[%4d] put_scoped_var\t %d, %d, %s", location, index, skipLevels, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_get_global_var: { int r0 = (++it)->u.operand; WriteBarrier* registerPointer = (++it)->u.registerPointer; dataLog("[%4d] get_global_var\t %s, g%d(%p)", location, registerName(exec, r0).data(), m_globalObject->findRegisterIndex(registerPointer), registerPointer); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_get_global_var_watchable: { int r0 = (++it)->u.operand; WriteBarrier* registerPointer = (++it)->u.registerPointer; dataLog("[%4d] get_global_var_watchable\t %s, g%d(%p)", location, registerName(exec, r0).data(), m_globalObject->findRegisterIndex(registerPointer), registerPointer); dumpBytecodeCommentAndNewLine(location); it++; it++; break; } case op_put_global_var: { WriteBarrier* registerPointer = (++it)->u.registerPointer; int r0 = (++it)->u.operand; dataLog("[%4d] put_global_var\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_put_global_var_check: { WriteBarrier* registerPointer = (++it)->u.registerPointer; int r0 = (++it)->u.operand; dataLog("[%4d] put_global_var_check\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); it++; it++; break; } case op_resolve_base: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int isStrict = (++it)->u.operand; dataLog("[%4d] resolve_base%s\t %s, %s", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_ensure_property_exists: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] ensure_property_exists\t %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_resolve_with_base: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] resolve_with_base %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_resolve_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] resolve_with_this %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_get_by_id: case op_get_by_id_out_of_line: case op_get_by_id_self: case op_get_by_id_proto: case op_get_by_id_chain: case op_get_by_id_getter_self: case op_get_by_id_getter_proto: case op_get_by_id_getter_chain: case op_get_by_id_custom_self: case op_get_by_id_custom_proto: case op_get_by_id_custom_chain: case op_get_by_id_generic: case op_get_array_length: case op_get_string_length: { printGetByIdOp(exec, location, it); printGetByIdCacheStatus(exec, location); dumpBytecodeCommentAndNewLine(location); break; } case op_get_arguments_length: { printUnaryOp(exec, location, it, "get_arguments_length"); it++; break; } case op_put_by_id: { printPutByIdOp(exec, location, it, "put_by_id"); break; } case op_put_by_id_out_of_line: { printPutByIdOp(exec, location, it, "put_by_id_out_of_line"); break; } case op_put_by_id_replace: { printPutByIdOp(exec, location, it, "put_by_id_replace"); break; } case op_put_by_id_transition: { printPutByIdOp(exec, location, it, "put_by_id_transition"); break; } case op_put_by_id_transition_direct: { printPutByIdOp(exec, location, it, "put_by_id_transition_direct"); break; } case op_put_by_id_transition_direct_out_of_line: { printPutByIdOp(exec, location, it, "put_by_id_transition_direct_out_of_line"); break; } case op_put_by_id_transition_normal: { printPutByIdOp(exec, location, it, "put_by_id_transition_normal"); break; } case op_put_by_id_transition_normal_out_of_line: { printPutByIdOp(exec, location, it, "put_by_id_transition_normal_out_of_line"); break; } case op_put_by_id_generic: { printPutByIdOp(exec, location, it, "put_by_id_generic"); break; } case op_put_getter_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_method_check: { dataLog("[%4d] method_check", location); #if ENABLE(JIT) if (numberOfMethodCallLinkInfos()) { MethodCallLinkInfo& methodCall = getMethodCallLinkInfo(location); dataLog(" jit("); if (!methodCall.seen) dataLog("not seen"); else { // Use the fact that MethodCallLinkStatus already does smart things // for decoding seen method calls. MethodCallLinkStatus status = MethodCallLinkStatus::computeFor(this, location); if (!status) dataLog("not set"); else { dataLog("function = %p (executable = ", status.function()); JSCell* functionAsCell = getJSFunction(status.function()); if (functionAsCell) dataLog("%p", jsCast(functionAsCell)->executable()); else dataLog("N/A"); dataLog("), struct = %p", status.structure()); if (status.needsPrototypeCheck()) dataLog(", prototype = %p, struct = %p", status.prototype(), status.prototypeStructure()); } } dataLog(")"); } #endif dumpBytecodeCommentAndNewLine(location); ++it; printGetByIdOp(exec, location, it); printGetByIdCacheStatus(exec, location); dataLog("\n"); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; dataLog("[%4d] del_by_id\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] get_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_get_argument_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); ++it; break; } case op_get_by_pname: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; int r4 = (++it)->u.operand; int r5 = (++it)->u.operand; dataLog("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] put_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; dataLog("[%4d] del_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] put_by_index\t %s, %u, %s", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_jmp: { int offset = (++it)->u.operand; dataLog("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop: { int offset = (++it)->u.operand; dataLog("[%4d] loop\t\t %d(->%d)", location, offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jtrue: { printConditionalJump(exec, begin, it, location, "jtrue"); break; } case op_loop_if_true: { printConditionalJump(exec, begin, it, location, "loop_if_true"); break; } case op_loop_if_false: { printConditionalJump(exec, begin, it, location, "loop_if_false"); break; } case op_jfalse: { printConditionalJump(exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; void* pointer = (++it)->u.pointer; int offset = (++it)->u.operand; dataLog("[%4d] jneq_ptr\t\t %s, %p, %d(->%d)", location, registerName(exec, r0).data(), pointer, offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop_if_less: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] loop_if_less\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop_if_lesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop_if_greater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] loop_if_greater\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop_if_greatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] loop_if_greatereq\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_loop_hint: { dataLog("[%4d] loop_hint", location); dumpBytecodeCommentAndNewLine(location); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; dataLog("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; dataLog("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; dataLog("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_new_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; int shouldCheck = (++it)->u.operand; dataLog("[%4d] new_func\t\t %s, f%d, %s", location, registerName(exec, r0).data(), f0, shouldCheck ? "" : ""); dumpBytecodeCommentAndNewLine(location); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; dataLog("[%4d] new_func_exp\t %s, f%d", location, registerName(exec, r0).data(), f0); dumpBytecodeCommentAndNewLine(location); break; } case op_call: { printCallOp(exec, location, it, "call", DumpCaches); break; } case op_call_eval: { printCallOp(exec, location, it, "call_eval", DontDumpCaches); break; } case op_call_varargs: { int callee = (++it)->u.operand; int thisValue = (++it)->u.operand; int arguments = (++it)->u.operand; int firstFreeRegister = (++it)->u.operand; dataLog("[%4d] call_varargs\t %s, %s, %s, %d", location, registerName(exec, callee).data(), registerName(exec, thisValue).data(), registerName(exec, arguments).data(), firstFreeRegister); dumpBytecodeCommentAndNewLine(location); break; } case op_tear_off_activation: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] tear_off_activation\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_tear_off_arguments: { int r0 = (++it)->u.operand; dataLog("[%4d] tear_off_arguments %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_ret: { int r0 = (++it)->u.operand; dataLog("[%4d] ret\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_call_put_result: { int r0 = (++it)->u.operand; dataLog("[%4d] call_put_result\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); it++; break; } case op_ret_object_or_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] constructor_ret\t\t %s %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_construct: { printCallOp(exec, location, it, "construct", DumpCaches); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; dataLog("[%4d] strcat\t\t %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count); dumpBytecodeCommentAndNewLine(location); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] to_primitive\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_get_pnames: { int r0 = it[1].u.operand; int r1 = it[2].u.operand; int r2 = it[3].u.operand; int r3 = it[4].u.operand; int offset = it[5].u.operand; dataLog("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); it += OPCODE_LENGTH(op_get_pnames) - 1; break; } case op_next_pname: { int dest = it[1].u.operand; int base = it[2].u.operand; int i = it[3].u.operand; int size = it[4].u.operand; int iter = it[5].u.operand; int offset = it[6].u.operand; dataLog("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset); dumpBytecodeCommentAndNewLine(location); it += OPCODE_LENGTH(op_next_pname) - 1; break; } case op_push_scope: { int r0 = (++it)->u.operand; dataLog("[%4d] push_scope\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_pop_scope: { dataLog("[%4d] pop_scope", location); dumpBytecodeCommentAndNewLine(location); break; } case op_push_new_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; dataLog("[%4d] push_new_scope \t%s, %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_jmp_scopes: { int scopeDelta = (++it)->u.operand; int offset = (++it)->u.operand; dataLog("[%4d] jmp_scopes\t^%d, %d(->%d)", location, scopeDelta, offset, location + offset); dumpBytecodeCommentAndNewLine(location); break; } case op_catch: { int r0 = (++it)->u.operand; dataLog("[%4d] catch\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_throw: { int r0 = (++it)->u.operand; dataLog("[%4d] throw\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_throw_reference_error: { int k0 = (++it)->u.operand; dataLog("[%4d] throw_reference_error\t %s", location, constantName(exec, k0, getConstant(k0)).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_debug: { int debugHookID = (++it)->u.operand; int firstLine = (++it)->u.operand; int lastLine = (++it)->u.operand; int column = (++it)->u.operand; dataLog("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column); dumpBytecodeCommentAndNewLine(location); break; } case op_profile_will_call: { int function = (++it)->u.operand; dataLog("[%4d] profile_will_call %s", location, registerName(exec, function).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_profile_did_call: { int function = (++it)->u.operand; dataLog("[%4d] profile_did_call\t %s", location, registerName(exec, function).data()); dumpBytecodeCommentAndNewLine(location); break; } case op_end: { int r0 = (++it)->u.operand; dataLog("[%4d] end\t\t %s", location, registerName(exec, r0).data()); dumpBytecodeCommentAndNewLine(location); break; } } } #if DUMP_CODE_BLOCK_STATISTICS static HashSet liveCodeBlockSet; #endif #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(globalResolveInfos) \ macro(structureStubInfos) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(immediateSwitchJumpTables) \ macro(characterSwitchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template static size_t sizeInBytes(const Vector& vector) { return vector.capacity() * sizeof(T); } void CodeBlock::dumpStatistics() { #if DUMP_CODE_BLOCK_STATISTICS #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) #undef DEFINE_VARS // Non-vector data members size_t evalCodeCacheIsNotEmpty = 0; size_t symbolTableIsNotEmpty = 0; size_t symbolTableTotalSize = 0; size_t hasRareData = 0; size_t isFunctionCode = 0; size_t isGlobalCode = 0; size_t isEvalCode = 0; HashSet::const_iterator end = liveCodeBlockSet.end(); for (HashSet::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { CodeBlock* codeBlock = *it; #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } FOR_EACH_MEMBER_VECTOR(GET_STATS) #undef GET_STATS if (!codeBlock->m_symbolTable.isEmpty()) { symbolTableIsNotEmpty++; symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); } if (codeBlock->m_rareData) { hasRareData++; #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) #undef GET_STATS if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) evalCodeCacheIsNotEmpty++; } switch (codeBlock->codeType()) { case FunctionCode: ++isFunctionCode; break; case GlobalCode: ++isGlobalCode; break; case EvalCode: ++isEvalCode; break; } } size_t totalSize = 0; #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) #undef GET_TOTAL_SIZE totalSize += symbolTableTotalSize; totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); dataLog("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); dataLog("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); dataLog("Size of all CodeBlocks: %zu\n", totalSize); dataLog("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); dataLog("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); dataLog("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); dataLog("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast(isEvalCode) * 100.0 / liveCodeBlockSet.size()); dataLog("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast(hasRareData) * 100.0 / liveCodeBlockSet.size()); #define PRINT_STATS(name) dataLog("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLog("Size of all " #name ": %zu\n", name##TotalSize); FOR_EACH_MEMBER_VECTOR(PRINT_STATS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) #undef PRINT_STATS dataLog("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); dataLog("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); dataLog("Size of all symbolTables: %zu\n", symbolTableTotalSize); #else dataLog("Dumping CodeBlock statistics is not enabled.\n"); #endif } CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other, SymbolTable* symTab) : m_globalObject(other.m_globalObject) , m_heap(other.m_heap) , m_numCalleeRegisters(other.m_numCalleeRegisters) , m_numVars(other.m_numVars) , m_numCapturedVars(other.m_numCapturedVars) , m_isConstructor(other.m_isConstructor) , m_ownerExecutable(*other.m_globalData, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) , m_globalData(other.m_globalData) , m_instructions(other.m_instructions) , m_thisRegister(other.m_thisRegister) , m_argumentsRegister(other.m_argumentsRegister) , m_activationRegister(other.m_activationRegister) , m_needsFullScopeChain(other.m_needsFullScopeChain) , m_usesEval(other.m_usesEval) , m_isNumericCompareFunction(other.m_isNumericCompareFunction) , m_isStrictMode(other.m_isStrictMode) , m_codeType(other.m_codeType) , m_source(other.m_source) , m_sourceOffset(other.m_sourceOffset) #if ENABLE(JIT) , m_globalResolveInfos(other.m_globalResolveInfos.size()) #endif #if ENABLE(VALUE_PROFILER) , m_executionEntryCount(0) #endif , m_jumpTargets(other.m_jumpTargets) , m_loopTargets(other.m_loopTargets) , m_identifiers(other.m_identifiers) , m_constantRegisters(other.m_constantRegisters) , m_functionDecls(other.m_functionDecls) , m_functionExprs(other.m_functionExprs) , m_symbolTable(symTab) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_lineInfo(other.m_lineInfo) #if ENABLE(BYTECODE_COMMENTS) , m_bytecodeCommentIterator(0) #endif #if ENABLE(JIT) , m_canCompileWithDFGState(DFG::CapabilityLevelNotSet) #endif { setNumParameters(other.numParameters()); optimizeAfterWarmUp(); jitAfterWarmUp(); #if ENABLE(JIT) for (unsigned i = m_globalResolveInfos.size(); i--;) m_globalResolveInfos[i] = GlobalResolveInfo(other.m_globalResolveInfos[i].bytecodeOffset); #endif if (other.m_rareData) { createRareDataIfNecessary(); m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; m_rareData->m_regexps = other.m_rareData->m_regexps; m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; m_rareData->m_immediateSwitchJumpTables = other.m_rareData->m_immediateSwitchJumpTables; m_rareData->m_characterSwitchJumpTables = other.m_rareData->m_characterSwitchJumpTables; m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; m_rareData->m_expressionInfo = other.m_rareData->m_expressionInfo; } } CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject *globalObject, PassRefPtr sourceProvider, unsigned sourceOffset, SymbolTable* symTab, bool isConstructor, PassOwnPtr alternative) : m_globalObject(globalObject->globalData(), ownerExecutable, globalObject) , m_heap(&m_globalObject->globalData().heap) , m_numCalleeRegisters(0) , m_numVars(0) , m_isConstructor(isConstructor) , m_numParameters(0) , m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable) , m_globalData(0) , m_argumentsRegister(-1) , m_needsFullScopeChain(ownerExecutable->needsActivation()) , m_usesEval(ownerExecutable->usesEval()) , m_isNumericCompareFunction(false) , m_isStrictMode(ownerExecutable->isStrictMode()) , m_codeType(codeType) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) #if ENABLE(VALUE_PROFILER) , m_executionEntryCount(0) #endif , m_symbolTable(symTab) , m_alternative(alternative) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) #if ENABLE(BYTECODE_COMMENTS) , m_bytecodeCommentIterator(0) #endif { ASSERT(m_source); optimizeAfterWarmUp(); jitAfterWarmUp(); #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.add(this); #endif } CodeBlock::~CodeBlock() { #if ENABLE(DFG_JIT) // Remove myself from the set of DFG code blocks. Note that I may not be in this set // (because I'm not a DFG code block), in which case this is a no-op anyway. m_globalData->heap.m_dfgCodeBlocks.m_set.remove(this); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif #if ENABLE(LLINT) while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->remove(); #endif // ENABLE(LLINT) #if ENABLE(JIT) // We may be destroyed before any CodeBlocks that refer to us are destroyed. // Consider that two CodeBlocks become unreachable at the same time. There // is no guarantee about the order in which the CodeBlocks are destroyed. // So, if we don't remove incoming calls, and get destroyed before the // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's // destructor will try to remove nodes from our (no longer valid) linked list. while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->remove(); // Note that our outgoing calls will be removed from other CodeBlocks' // m_incomingCalls linked lists through the execution of the ~CallLinkInfo // destructors. for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) m_structureStubInfos[i].deref(); #endif // ENABLE(JIT) #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.remove(this); #endif } void CodeBlock::setNumParameters(int newValue) { m_numParameters = newValue; #if ENABLE(VALUE_PROFILER) m_argumentValueProfiles.resize(newValue); #endif } void CodeBlock::addParameter() { m_numParameters++; #if ENABLE(VALUE_PROFILER) m_argumentValueProfiles.append(ValueProfile()); #endif } void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC) { Interpreter* interpreter = m_globalData->interpreter; if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) { visitor.append(&vPC[4].u.structure); if (vPC[5].u.structureChain) visitor.append(&vPC[5].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); if (vPC[6].u.structureChain) visitor.append(&vPC[6].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global) || vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { if (vPC[3].u.structure) visitor.append(&vPC[3].u.structure); return; } // These instructions don't ref their Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length)); } void EvalCodeCache::visitAggregate(SlotVisitor& visitor) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) visitor.append(&ptr->second); } void CodeBlock::visitAggregate(SlotVisitor& visitor) { #if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) if (!!m_dfgData) { // I may be asked to scan myself more than once, and it may even happen concurrently. // To this end, use a CAS loop to check if I've been called already. Only one thread // may proceed past this point - whichever one wins the CAS race. unsigned oldValue; do { oldValue = m_dfgData->visitAggregateHasBeenCalled; if (oldValue) { // Looks like someone else won! Return immediately to ensure that we don't // trace the same CodeBlock concurrently. Doing so is hazardous since we will // be mutating the state of ValueProfiles, which contain JSValues, which can // have word-tearing on 32-bit, leading to awesome timing-dependent crashes // that are nearly impossible to track down. // Also note that it must be safe to return early as soon as we see the // value true (well, (unsigned)1), since once a GC thread is in this method // and has won the CAS race (i.e. was responsible for setting the value true) // it will definitely complete the rest of this method before declaring // termination. return; } } while (!WTF::weakCompareAndSwap(&m_dfgData->visitAggregateHasBeenCalled, 0, 1)); } #endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) if (!!m_alternative) m_alternative->visitAggregate(visitor); // There are three things that may use unconditional finalizers: lazy bytecode freeing, // inline cache clearing, and jettisoning. The probability of us wanting to do at // least one of those things is probably quite close to 1. So we add one no matter what // and when it runs, it figures out whether it has any work to do. visitor.addUnconditionalFinalizer(this); if (shouldImmediatelyAssumeLivenessDuringScan()) { // This code block is live, so scan all references strongly and return. stronglyVisitStrongReferences(visitor); stronglyVisitWeakReferences(visitor); return; } #if ENABLE(DFG_JIT) // We get here if we're live in the sense that our owner executable is live, // but we're not yet live for sure in another sense: we may yet decide that this // code block should be jettisoned based on its outgoing weak references being // stale. Set a flag to indicate that we're still assuming that we're dead, and // perform one round of determining if we're live. The GC may determine, based on // either us marking additional objects, or by other objects being marked for // other reasons, that this iteration should run again; it will notify us of this // decision by calling harvestWeakReferences(). m_dfgData->livenessHasBeenProved = false; m_dfgData->allTransitionsHaveBeenMarked = false; performTracingFixpointIteration(visitor); // GC doesn't have enough information yet for us to decide whether to keep our DFG // data, so we need to register a handler to run again at the end of GC, when more // information is available. if (!(m_dfgData->livenessHasBeenProved && m_dfgData->allTransitionsHaveBeenMarked)) visitor.addWeakReferenceHarvester(this); #else // ENABLE(DFG_JIT) ASSERT_NOT_REACHED(); #endif // ENABLE(DFG_JIT) } void CodeBlock::performTracingFixpointIteration(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) // Evaluate our weak reference transitions, if there are still some to evaluate. if (!m_dfgData->allTransitionsHaveBeenMarked) { bool allAreMarkedSoFar = true; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if ((!m_dfgData->transitions[i].m_codeOrigin || Heap::isMarked(m_dfgData->transitions[i].m_codeOrigin.get())) && Heap::isMarked(m_dfgData->transitions[i].m_from.get())) { // If the following three things are live, then the target of the // transition is also live: // - This code block. We know it's live already because otherwise // we wouldn't be scanning ourselves. // - The code origin of the transition. Transitions may arise from // code that was inlined. They are not relevant if the user's // object that is required for the inlinee to run is no longer // live. // - The source of the transition. The transition checks if some // heap location holds the source, and if so, stores the target. // Hence the source must be live for the transition to be live. visitor.append(&m_dfgData->transitions[i].m_to); } else allAreMarkedSoFar = false; } if (allAreMarkedSoFar) m_dfgData->allTransitionsHaveBeenMarked = true; } // Check if we have any remaining work to do. if (m_dfgData->livenessHasBeenProved) return; // Now check all of our weak references. If all of them are live, then we // have proved liveness and so we scan our strong references. If at end of // GC we still have not proved liveness, then this code block is toast. bool allAreLiveSoFar = true; for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) { if (!Heap::isMarked(m_dfgData->weakReferences[i].get())) { allAreLiveSoFar = false; break; } } // If some weak references are dead, then this fixpoint iteration was // unsuccessful. if (!allAreLiveSoFar) return; // All weak references are live. Record this information so we don't // come back here again, and scan the strong references. m_dfgData->livenessHasBeenProved = true; stronglyVisitStrongReferences(visitor); #endif // ENABLE(DFG_JIT) } void CodeBlock::visitWeakReferences(SlotVisitor& visitor) { performTracingFixpointIteration(visitor); } #if ENABLE(JIT) #if ENABLE(JIT_VERBOSE_OSR) static const bool verboseUnlinking = true; #else static const bool verboseUnlinking = false; #endif #endif // ENABLE(JIT) void CodeBlock::finalizeUnconditionally() { #if ENABLE(LLINT) Interpreter* interpreter = m_globalData->interpreter; // interpreter->classicEnabled() returns true if the old C++ interpreter is enabled. If that's enabled // then we're not using LLInt. if (!interpreter->classicEnabled() && !!numberOfInstructions()) { for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i) { Instruction* curInstruction = &instructions()[m_propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { case op_get_by_id: case op_get_by_id_out_of_line: case op_put_by_id: case op_put_by_id_out_of_line: if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) break; if (verboseUnlinking) dataLog("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); curInstruction[4].u.structure.clear(); curInstruction[5].u.operand = 0; break; case op_put_by_id_transition_direct: case op_put_by_id_transition_normal: case op_put_by_id_transition_direct_out_of_line: case op_put_by_id_transition_normal_out_of_line: if (Heap::isMarked(curInstruction[4].u.structure.get()) && Heap::isMarked(curInstruction[6].u.structure.get()) && Heap::isMarked(curInstruction[7].u.structureChain.get())) break; if (verboseUnlinking) { dataLog("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", curInstruction[4].u.structure.get(), curInstruction[6].u.structure.get(), curInstruction[7].u.structureChain.get()); } curInstruction[4].u.structure.clear(); curInstruction[6].u.structure.clear(); curInstruction[7].u.structureChain.clear(); curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); break; default: ASSERT_NOT_REACHED(); } } for (size_t size = m_globalResolveInstructions.size(), i = 0; i < size; ++i) { Instruction* curInstruction = &instructions()[m_globalResolveInstructions[i]]; ASSERT(interpreter->getOpcodeID(curInstruction[0].u.opcode) == op_resolve_global || interpreter->getOpcodeID(curInstruction[0].u.opcode) == op_resolve_global_dynamic); if (!curInstruction[3].u.structure || Heap::isMarked(curInstruction[3].u.structure.get())) continue; if (verboseUnlinking) dataLog("Clearing LLInt global resolve cache with structure %p.\n", curInstruction[3].u.structure.get()); curInstruction[3].u.structure.clear(); curInstruction[4].u.operand = 0; } for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { if (verboseUnlinking) dataLog("Clearing LLInt call from %p.\n", this); m_llintCallLinkInfos[i].unlink(); } if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) m_llintCallLinkInfos[i].lastSeenCallee.clear(); } } #endif // ENABLE(LLINT) #if ENABLE(DFG_JIT) // Check if we're not live. If we are, then jettison. if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_dfgData->livenessHasBeenProved)) { if (verboseUnlinking) dataLog("Code block %p has dead weak references, jettisoning during GC.\n", this); // Make sure that the baseline JIT knows that it should re-warm-up before // optimizing. alternative()->optimizeAfterWarmUp(); jettison(); return; } #endif // ENABLE(DFG_JIT) #if ENABLE(JIT) // Handle inline caches. if (!!getJITCode()) { RepatchBuffer repatchBuffer(this); for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) { if (callLinkInfo(i).isLinked() && !Heap::isMarked(callLinkInfo(i).callee.get())) { if (verboseUnlinking) dataLog("Clearing call from %p to %p.\n", this, callLinkInfo(i).callee.get()); callLinkInfo(i).unlink(*m_globalData, repatchBuffer); } if (!!callLinkInfo(i).lastSeenCallee && !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get())) callLinkInfo(i).lastSeenCallee.clear(); } for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) { if (m_globalResolveInfos[i].structure && !Heap::isMarked(m_globalResolveInfos[i].structure.get())) { if (verboseUnlinking) dataLog("Clearing resolve info in %p.\n", this); m_globalResolveInfos[i].structure.clear(); } } for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) { StructureStubInfo& stubInfo = m_structureStubInfos[i]; if (stubInfo.visitWeakReferences()) continue; resetStubInternal(repatchBuffer, stubInfo); } for (size_t size = m_methodCallLinkInfos.size(), i = 0; i < size; ++i) { if (!m_methodCallLinkInfos[i].cachedStructure) continue; ASSERT(m_methodCallLinkInfos[i].seenOnce()); ASSERT(!!m_methodCallLinkInfos[i].cachedPrototypeStructure); if (!Heap::isMarked(m_methodCallLinkInfos[i].cachedStructure.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedPrototypeStructure.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedFunction.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedPrototype.get())) { if (verboseUnlinking) dataLog("Clearing method call in %p.\n", this); m_methodCallLinkInfos[i].reset(repatchBuffer, getJITType()); StructureStubInfo& stubInfo = getStubInfo(m_methodCallLinkInfos[i].bytecodeIndex); AccessType accessType = static_cast(stubInfo.accessType); if (accessType != access_unset) { ASSERT(isGetByIdAccess(accessType)); if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetGetByID(repatchBuffer, stubInfo); else JIT::resetPatchGetById(repatchBuffer, &stubInfo); stubInfo.reset(); } } } } #endif } #if ENABLE(JIT) void CodeBlock::resetStub(StructureStubInfo& stubInfo) { if (stubInfo.accessType == access_unset) return; RepatchBuffer repatchBuffer(this); resetStubInternal(repatchBuffer, stubInfo); } void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) { AccessType accessType = static_cast(stubInfo.accessType); if (verboseUnlinking) dataLog("Clearing structure cache (kind %d) in %p.\n", stubInfo.accessType, this); if (isGetByIdAccess(accessType)) { if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetGetByID(repatchBuffer, stubInfo); else JIT::resetPatchGetById(repatchBuffer, &stubInfo); } else { ASSERT(isPutByIdAccess(accessType)); if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetPutByID(repatchBuffer, stubInfo); else JIT::resetPatchPutById(repatchBuffer, &stubInfo); } stubInfo.reset(); } #endif void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) { visitor.append(&m_globalObject); visitor.append(&m_ownerExecutable); if (m_rareData) { m_rareData->m_evalCodeCache.visitAggregate(visitor); size_t regExpCount = m_rareData->m_regexps.size(); WriteBarrier* regexps = m_rareData->m_regexps.data(); for (size_t i = 0; i < regExpCount; i++) visitor.append(regexps + i); } visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) visitor.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) visitor.append(&m_functionDecls[i]); #if ENABLE(CLASSIC_INTERPRETER) if (m_globalData->interpreter->classicEnabled() && !!numberOfInstructions()) { for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i) visitStructures(visitor, &instructions()[m_propertyAccessInstructions[i]]); for (size_t size = m_globalResolveInstructions.size(), i = 0; i < size; ++i) visitStructures(visitor, &instructions()[m_globalResolveInstructions[i]]); } #endif updateAllPredictions(Collection); } void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) if (!m_dfgData) return; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if (!!m_dfgData->transitions[i].m_codeOrigin) visitor.append(&m_dfgData->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. visitor.append(&m_dfgData->transitions[i].m_from); visitor.append(&m_dfgData->transitions[i].m_to); } for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) visitor.append(&m_dfgData->weakReferences[i]); #endif } #if ENABLE(BYTECODE_COMMENTS) // Finds the comment string for the specified bytecode offset/PC is available. const char* CodeBlock::commentForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < instructions().size()); Vector& comments = m_bytecodeComments; size_t numberOfComments = comments.size(); const char* result = 0; if (!numberOfComments) return 0; // No comments to match with. // The next match is most likely the next comment in the list. // Do a quick check to see if that is a match first. // m_bytecodeCommentIterator should already be pointing to the // next comment we should check. ASSERT(m_bytecodeCommentIterator < comments.size()); size_t i = m_bytecodeCommentIterator; size_t commentPC = comments[i].pc; if (commentPC == bytecodeOffset) { // We've got a match. All done! m_bytecodeCommentIterator = i; result = comments[i].string; } else if (commentPC > bytecodeOffset) { // The current comment is already greater than the requested PC. // Start searching from the first comment. i = 0; } else { // Otherwise, the current comment's PC is less than the requested PC. // Hence, we can just start searching from the next comment in the // list. i++; } // If the result is still not found, do a linear search in the range // that we've determined above. if (!result) { for (; i < comments.size(); ++i) { commentPC = comments[i].pc; if (commentPC == bytecodeOffset) { result = comments[i].string; break; } if (comments[i].pc > bytecodeOffset) { // The current comment PC is already past the requested // bytecodeOffset. Hence, there are no more possible // matches. Just fail. break; } } } // Update the iterator to point to the next comment. if (++i >= numberOfComments) { // At most point to the last comment entry. This ensures that the // next time we call this function, the quick checks will at least // have one entry to check and can fail fast if appropriate. i = numberOfComments - 1; } m_bytecodeCommentIterator = i; return result; } void CodeBlock::dumpBytecodeComments() { Vector& comments = m_bytecodeComments; printf("Comments for codeblock %p: size %lu\n", this, comments.size()); for (size_t i = 0; i < comments.size(); ++i) printf(" pc %lu : '%s'\n", comments[i].pc, comments[i].string); printf("End of comments for codeblock %p\n", this); } #endif // ENABLE_BYTECODE_COMMENTS HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < instructions().size()); if (!m_rareData) return 0; Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset) return &exceptionHandlers[i]; } return 0; } int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < instructions().size()); Vector& lineInfo = m_lineInfo; int low = 0; int high = lineInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (lineInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low) return m_ownerExecutable->source().firstLine(); return lineInfo[low - 1].lineNumber; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset) { ASSERT(bytecodeOffset < instructions().size()); if (!m_rareData) { startOffset = 0; endOffset = 0; divot = 0; return; } Vector& expressionInfo = m_rareData->m_expressionInfo; int low = 0; int high = expressionInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (expressionInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } ASSERT(low); if (!low) { startOffset = 0; endOffset = 0; divot = 0; return; } startOffset = expressionInfo[low - 1].startOffset; endOffset = expressionInfo[low - 1].endOffset; divot = expressionInfo[low - 1].divotPoint + m_sourceOffset; return; } #if ENABLE(CLASSIC_INTERPRETER) bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInstructions.isEmpty()) return false; int low = 0; int high = m_globalResolveInstructions.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInstructions[mid] <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset) return false; return true; } #endif #if ENABLE(JIT) bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInfos.isEmpty()) return false; int low = 0; int high = m_globalResolveInfos.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset) return false; return true; } GlobalResolveInfo& CodeBlock::globalResolveInfoForBytecodeOffset(unsigned bytecodeOffset) { return *(binarySearch(m_globalResolveInfos.begin(), m_globalResolveInfos.size(), bytecodeOffset)); } #endif void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) { m_propertyAccessInstructions.shrinkToFit(); m_globalResolveInstructions.shrinkToFit(); #if ENABLE(LLINT) m_llintCallLinkInfos.shrinkToFit(); #endif #if ENABLE(JIT) m_structureStubInfos.shrinkToFit(); if (shrinkMode == EarlyShrink) m_globalResolveInfos.shrinkToFit(); m_callLinkInfos.shrinkToFit(); m_methodCallLinkInfos.shrinkToFit(); #endif #if ENABLE(VALUE_PROFILER) if (shrinkMode == EarlyShrink) m_argumentValueProfiles.shrinkToFit(); m_valueProfiles.shrinkToFit(); m_rareCaseProfiles.shrinkToFit(); m_specialFastCaseProfiles.shrinkToFit(); #endif if (shrinkMode == EarlyShrink) { m_identifiers.shrinkToFit(); m_functionDecls.shrinkToFit(); m_functionExprs.shrinkToFit(); m_constantRegisters.shrinkToFit(); } // else don't shrink these, because we would have already pointed pointers into these tables. m_lineInfo.shrinkToFit(); if (m_rareData) { m_rareData->m_exceptionHandlers.shrinkToFit(); m_rareData->m_regexps.shrinkToFit(); m_rareData->m_immediateSwitchJumpTables.shrinkToFit(); m_rareData->m_characterSwitchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); m_rareData->m_expressionInfo.shrinkToFit(); #if ENABLE(JIT) m_rareData->m_callReturnIndexVector.shrinkToFit(); #endif #if ENABLE(DFG_JIT) m_rareData->m_inlineCallFrames.shrinkToFit(); m_rareData->m_codeOrigins.shrinkToFit(); #endif } #if ENABLE(DFG_JIT) if (m_dfgData) { m_dfgData->osrEntry.shrinkToFit(); m_dfgData->osrExit.shrinkToFit(); m_dfgData->speculationRecovery.shrinkToFit(); m_dfgData->weakReferences.shrinkToFit(); m_dfgData->transitions.shrinkToFit(); m_dfgData->minifiedDFG.prepareAndShrink(); m_dfgData->variableEventStream.shrinkToFit(); } #endif } void CodeBlock::createActivation(CallFrame* callFrame) { ASSERT(codeType() == FunctionCode); ASSERT(needsFullScopeChain()); ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); JSActivation* activation = JSActivation::create(callFrame->globalData(), callFrame, static_cast(ownerExecutable())); callFrame->uncheckedR(activationRegister()) = JSValue(activation); callFrame->setScopeChain(callFrame->scopeChain()->push(activation)); } unsigned CodeBlock::addOrFindConstant(JSValue v) { unsigned numberOfConstants = numberOfConstantRegisters(); for (unsigned i = 0; i < numberOfConstants; ++i) { if (getConstant(FirstConstantRegisterIndex + i) == v) return i; } return addConstant(v); } #if ENABLE(JIT) void CodeBlock::unlinkCalls() { if (!!m_alternative) m_alternative->unlinkCalls(); #if ENABLE(LLINT) for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked()) m_llintCallLinkInfos[i].unlink(); } #endif if (!(m_callLinkInfos.size() || m_methodCallLinkInfos.size())) return; if (!m_globalData->canUseJIT()) return; RepatchBuffer repatchBuffer(this); for (size_t i = 0; i < m_callLinkInfos.size(); i++) { if (!m_callLinkInfos[i].isLinked()) continue; m_callLinkInfos[i].unlink(*m_globalData, repatchBuffer); } } void CodeBlock::unlinkIncomingCalls() { #if ENABLE(LLINT) while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->unlink(); #endif if (m_incomingCalls.isEmpty()) return; RepatchBuffer repatchBuffer(this); while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->unlink(*m_globalData, repatchBuffer); } unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress) { #if ENABLE(LLINT) if (returnAddress.value() >= bitwise_cast(&llint_begin) && returnAddress.value() <= bitwise_cast(&llint_end)) { ASSERT(exec->codeBlock()); ASSERT(exec->codeBlock() == this); ASSERT(JITCode::isBaselineCode(getJITType())); Instruction* instruction = exec->currentVPC(); ASSERT(instruction); // The LLInt stores the PC after the call instruction rather than the PC of // the call instruction. This requires some correcting. We rely on the fact // that the preceding instruction must be one of the call instructions, so // either it's a call_varargs or it's a call, construct, or eval. ASSERT(OPCODE_LENGTH(op_call_varargs) <= OPCODE_LENGTH(op_call)); ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct)); ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_call_eval)); if (instruction[-OPCODE_LENGTH(op_call_varargs)].u.pointer == bitwise_cast(llint_op_call_varargs)) { // We know that the preceding instruction must be op_call_varargs because there is no way that // the pointer to the call_varargs could be an operand to the call. instruction -= OPCODE_LENGTH(op_call_varargs); ASSERT(instruction[-OPCODE_LENGTH(op_call)].u.pointer != bitwise_cast(llint_op_call) && instruction[-OPCODE_LENGTH(op_call)].u.pointer != bitwise_cast(llint_op_construct) && instruction[-OPCODE_LENGTH(op_call)].u.pointer != bitwise_cast(llint_op_call_eval)); } else { // Must be that the last instruction was some op_call. ASSERT(instruction[-OPCODE_LENGTH(op_call)].u.pointer == bitwise_cast(llint_op_call) || instruction[-OPCODE_LENGTH(op_call)].u.pointer == bitwise_cast(llint_op_construct) || instruction[-OPCODE_LENGTH(op_call)].u.pointer == bitwise_cast(llint_op_call_eval)); instruction -= OPCODE_LENGTH(op_call); } return bytecodeOffset(instruction); } #else UNUSED_PARAM(exec); #endif if (!m_rareData) return 1; Vector& callIndices = m_rareData->m_callReturnIndexVector; if (!callIndices.size()) return 1; return binarySearch(callIndices.begin(), callIndices.size(), getJITCode().offsetOf(returnAddress.value()))->bytecodeOffset; } #endif void CodeBlock::clearEvalCache() { if (!!m_alternative) m_alternative->clearEvalCache(); if (!m_rareData) return; m_rareData->m_evalCodeCache.clear(); } template inline void replaceExistingEntries(Vector& target, Vector& source) { ASSERT(target.size() <= source.size()); for (size_t i = 0; i < target.size(); ++i) target[i] = source[i]; } void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative) { if (!alternative) return; replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters); replaceExistingEntries(m_functionDecls, alternative->m_functionDecls); replaceExistingEntries(m_functionExprs, alternative->m_functionExprs); if (!!m_rareData && !!alternative->m_rareData) replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers); } void CodeBlock::copyPostParseDataFromAlternative() { copyPostParseDataFrom(m_alternative.get()); } #if ENABLE(JIT) void CodeBlock::reoptimize() { ASSERT(replacement() != this); ASSERT(replacement()->alternative() == this); replacement()->tallyFrequentExitSites(); replacement()->jettison(); countReoptimization(); optimizeAfterWarmUp(); } CodeBlock* ProgramCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* EvalCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* FunctionCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall); } JSObject* ProgramCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scopeChainNode); return error; } JSObject* EvalCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scopeChainNode); return error; } JSObject* FunctionCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimizedFor(exec, scopeChainNode, m_isConstructor ? CodeForConstruct : CodeForCall); return error; } DFG::CapabilityLevel ProgramCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileProgram(this); } DFG::CapabilityLevel EvalCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileEval(this); } DFG::CapabilityLevel FunctionCodeBlock::canCompileWithDFGInternal() { if (m_isConstructor) return DFG::canCompileFunctionForConstruct(this); return DFG::canCompileFunctionForCall(this); } void ProgramCodeBlock::jettison() { ASSERT(JITCode::isOptimizingJIT(getJITType())); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCode(*globalData()); } void EvalCodeBlock::jettison() { ASSERT(JITCode::isOptimizingJIT(getJITType())); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCode(*globalData()); } void FunctionCodeBlock::jettison() { ASSERT(JITCode::isOptimizingJIT(getJITType())); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCodeFor(*globalData(), m_isConstructor ? CodeForConstruct : CodeForCall); } bool ProgramCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompile(exec); } bool EvalCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompile(exec); } bool FunctionCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompileFor(exec, m_isConstructor ? CodeForConstruct : CodeForCall); } #endif #if ENABLE(VALUE_PROFILER) void CodeBlock::updateAllPredictionsAndCountLiveness( OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) { numberOfLiveNonArgumentValueProfiles = 0; numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); unsigned numSamples = profile->totalNumberOfSamples(); if (numSamples > ValueProfile::numberOfBuckets) numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. numberOfSamplesInProfiles += numSamples; if (profile->m_bytecodeOffset < 0) { profile->computeUpdatedPrediction(operation); continue; } if (profile->numberOfSamples() || profile->m_prediction != SpecNone) numberOfLiveNonArgumentValueProfiles++; profile->computeUpdatedPrediction(operation); } #if ENABLE(DFG_JIT) m_lazyOperandValueProfiles.computeUpdatedPredictions(operation); #endif } void CodeBlock::updateAllPredictions(OperationInProgress operation) { unsigned ignoredValue1, ignoredValue2; updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2); } bool CodeBlock::shouldOptimizeNow() { #if ENABLE(JIT_VERBOSE_OSR) dataLog("Considering optimizing %p...\n", this); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) return true; unsigned numberOfLiveNonArgumentValueProfiles; unsigned numberOfSamplesInProfiles; updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); #if ENABLE(JIT_VERBOSE_OSR) dataLog("Profile hotness: %lf, %lf\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles()); #endif if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) return true; ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); m_optimizationDelayCounter++; optimizeAfterWarmUp(); return false; } #endif #if ENABLE(DFG_JIT) void CodeBlock::tallyFrequentExitSites() { ASSERT(getJITType() == JITCode::DFGJIT); ASSERT(alternative()->getJITType() == JITCode::BaselineJIT); ASSERT(!!m_dfgData); CodeBlock* profiledBlock = alternative(); for (unsigned i = 0; i < m_dfgData->osrExit.size(); ++i) { DFG::OSRExit& exit = m_dfgData->osrExit[i]; if (!exit.considerAddingAsFrequentExitSite(this, profiledBlock)) continue; #if DFG_ENABLE(DEBUG_VERBOSE) dataLog("OSR exit #%u (bc#%u, @%u, %s) for code block %p occurred frequently; counting as frequent exit site.\n", i, exit.m_codeOrigin.bytecodeIndex, exit.m_nodeIndex, DFG::exitKindToString(exit.m_kind), this); #endif } } #endif // ENABLE(DFG_JIT) #if ENABLE(VERBOSE_VALUE_PROFILE) void CodeBlock::dumpValueProfiles() { dataLog("ValueProfile for %p:\n", this); for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); if (profile->m_bytecodeOffset < 0) { ASSERT(profile->m_bytecodeOffset == -1); dataLog(" arg = %u: ", i); } else dataLog(" bc = %d: ", profile->m_bytecodeOffset); if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { dataLog("\n"); continue; } profile->dump(WTF::dataFile()); dataLog("\n"); } dataLog("RareCaseProfile for %p:\n", this); for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { RareCaseProfile* profile = rareCaseProfile(i); dataLog(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } dataLog("SpecialFastCaseProfile for %p:\n", this); for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { RareCaseProfile* profile = specialFastCaseProfile(i); dataLog(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } } #endif // ENABLE(VERBOSE_VALUE_PROFILE) size_t CodeBlock::predictedMachineCodeSize() { // This will be called from CodeBlock::CodeBlock before either m_globalData or the // instructions have been initialized. It's OK to return 0 because what will really // matter is the recomputation of this value when the slow path is triggered. if (!m_globalData) return 0; if (!m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT) return 0; // It's as good of a prediction as we'll get. // Be conservative: return a size that will be an overestimation 84% of the time. double multiplier = m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing // here is OK, since this whole method is just a heuristic. if (multiplier < 0 || multiplier > 1000) return 0; double doubleResult = multiplier * m_instructions.size(); // Be even more paranoid: silently reject values that won't fit into a size_t. If // the function is so huge that we can't even fit it into virtual memory then we // should probably have some other guards in place to prevent us from even getting // to this point. if (doubleResult > std::numeric_limits::max()) return 0; return static_cast(doubleResult); } bool CodeBlock::usesOpcode(OpcodeID opcodeID) { Interpreter* interpreter = globalData()->interpreter; Instruction* instructionsBegin = instructions().begin(); unsigned instructionCount = instructions().size(); for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { #define DEFINE_OP(curOpcode, length) \ case curOpcode: \ if (curOpcode == opcodeID) \ return true; \ bytecodeOffset += length; \ break; FOR_EACH_OPCODE_ID(DEFINE_OP) #undef DEFINE_OP default: ASSERT_NOT_REACHED(); break; } } return false; } UString CodeBlock::nameForRegister(int registerNumber) { SymbolTable::iterator end = m_symbolTable->end(); for (SymbolTable::iterator ptr = m_symbolTable->begin(); ptr != end; ++ptr) { if (ptr->second.getIndex() == registerNumber) return UString(ptr->first); } if (needsActivation() && registerNumber == activationRegister()) return "activation"; if (registerNumber == thisRegister()) return "this"; if (usesArguments()) { if (registerNumber == argumentsRegister()) return "arguments"; if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber) return "real arguments"; } if (registerNumber < 0) { int argumentPosition = -registerNumber; argumentPosition -= RegisterFile::CallFrameHeaderSize + 1; return String::format("arguments[%3d]", argumentPosition - 1).impl(); } return ""; } } // namespace JSC