// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_X64 #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "safepoint-table.h" namespace v8 { namespace internal { const int Deoptimizer::table_entry_size_ = 10; int Deoptimizer::patch_size() { return Assembler::kCallSequenceLength; } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); // For each LLazyBailout instruction insert a absolute call to the // corresponding deoptimization entry, or a short call to an absolute // jump if space is short. The absolute jumps are put in a table just // before the safepoint table (space was allocated there when the Code // object was created, if necessary). Address instruction_start = code->instruction_start(); #ifdef DEBUG Address prev_call_address = NULL; #endif DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; // Position where Call will be patched in. Address call_address = instruction_start + deopt_data->Pc(i)->value(); // There is room enough to write a long call instruction because we pad // LLazyBailout instructions with nops if necessary. CodePatcher patcher(call_address, Assembler::kCallSequenceLength); patcher.masm()->Call(GetDeoptimizationEntry(isolate, i, LAZY), RelocInfo::NONE64); ASSERT(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); ASSERT(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } } static const byte kJnsInstruction = 0x79; static const byte kJnsOffset = 0x1d; static const byte kCallInstruction = 0xe8; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; // The back edge bookkeeping code matches the pattern: // // add , <-delta> // jns ok // call // ok: // // We will patch away the branch so the code is: // // add , <-delta> ;; Not changed // nop // nop // call // ok: void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { ASSERT(!InterruptCodeIsPatched(unoptimized_code, pc_after, interrupt_code, replacement_code)); // Turn the jump into nops. Address call_target_address = pc_after - kIntSize; *(call_target_address - 3) = kNopByteOne; *(call_target_address - 2) = kNopByteTwo; // Replace the call address. Assembler::set_target_address_at(call_target_address, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { ASSERT(InterruptCodeIsPatched(unoptimized_code, pc_after, interrupt_code, replacement_code)); // Restore the original jump. Address call_target_address = pc_after - kIntSize; *(call_target_address - 3) = kJnsInstruction; *(call_target_address - 2) = kJnsOffset; // Restore the original call address. Assembler::set_target_address_at(call_target_address, interrupt_code->entry()); interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, interrupt_code); } #ifdef DEBUG bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT_EQ(kCallInstruction, *(call_target_address - 1)); if (*(call_target_address - 3) == kNopByteOne) { ASSERT(replacement_code->entry() == Assembler::target_address_at(call_target_address)); ASSERT_EQ(kNopByteTwo, *(call_target_address - 2)); return true; } else { ASSERT_EQ(interrupt_code->entry(), Assembler::target_address_at(call_target_address)); ASSERT_EQ(kJnsInstruction, *(call_target_address - 3)); ASSERT_EQ(kJnsOffset, *(call_target_address - 2)); return false; } } #endif // DEBUG static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) { ByteArray* translations = data->TranslationByteArray(); int length = data->DeoptCount(); for (int i = 0; i < length; i++) { if (data->AstId(i) == ast_id) { TranslationIterator it(translations, data->TranslationIndex(i)->value()); int value = it.Next(); ASSERT(Translation::BEGIN == static_cast(value)); // Read the number of frames. value = it.Next(); if (value == 1) return i; } } UNREACHABLE(); return -1; } void Deoptimizer::DoComputeOsrOutputFrame() { DeoptimizationInputData* data = DeoptimizationInputData::cast( compiled_code_->deoptimization_data()); unsigned ast_id = data->OsrAstId()->value(); // TODO(kasperl): This should not be the bailout_id_. It should be // the ast id. Confusing. ASSERT(bailout_id_ == ast_id); int bailout_id = LookupBailoutId(data, BailoutId(ast_id)); unsigned translation_index = data->TranslationIndex(bailout_id)->value(); ByteArray* translations = data->TranslationByteArray(); TranslationIterator iterator(translations, translation_index); Translation::Opcode opcode = static_cast(iterator.Next()); ASSERT(Translation::BEGIN == opcode); USE(opcode); int count = iterator.Next(); iterator.Skip(1); // Drop JS frame count. ASSERT(count == 1); USE(count); opcode = static_cast(iterator.Next()); USE(opcode); ASSERT(Translation::JS_FRAME == opcode); unsigned node_id = iterator.Next(); USE(node_id); ASSERT(node_id == ast_id); int closure_id = iterator.Next(); USE(closure_id); ASSERT_EQ(Translation::kSelfLiteralId, closure_id); unsigned height = iterator.Next(); unsigned height_in_bytes = height * kPointerSize; USE(height_in_bytes); unsigned fixed_size = ComputeFixedSize(function_); unsigned input_frame_size = input_->GetFrameSize(); ASSERT(fixed_size + height_in_bytes == input_frame_size); unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize; unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); unsigned outgoing_size = outgoing_height * kPointerSize; unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. if (FLAG_trace_osr) { PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", reinterpret_cast(function_)); PrintFunctionName(); PrintF(" => node=%u, frame=%d->%d]\n", ast_id, input_frame_size, output_frame_size); } // There's only one output frame in the OSR case. output_count_ = 1; output_ = new FrameDescription*[1]; output_[0] = new(output_frame_size) FrameDescription( output_frame_size, function_); output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT); // Clear the incoming parameters in the optimized frame to avoid // confusing the garbage collector. unsigned output_offset = output_frame_size - kPointerSize; int parameter_count = function_->shared()->formal_parameter_count() + 1; for (int i = 0; i < parameter_count; ++i) { output_[0]->SetFrameSlot(output_offset, 0); output_offset -= kPointerSize; } // Translate the incoming parameters. This may overwrite some of the // incoming argument slots we've just cleared. int input_offset = input_frame_size - kPointerSize; bool ok = true; int limit = input_offset - (parameter_count * kPointerSize); while (ok && input_offset > limit) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // There are no translation commands for the caller's pc and fp, the // context, and the function. Set them up explicitly. for (int i = StandardFrameConstants::kCallerPCOffset; ok && i >= StandardFrameConstants::kMarkerOffset; i -= kPointerSize) { intptr_t input_value = input_->GetFrameSlot(input_offset); if (FLAG_trace_osr) { const char* name = "UNKNOWN"; switch (i) { case StandardFrameConstants::kCallerPCOffset: name = "caller's pc"; break; case StandardFrameConstants::kCallerFPOffset: name = "fp"; break; case StandardFrameConstants::kContextOffset: name = "context"; break; case StandardFrameConstants::kMarkerOffset: name = "function"; break; } PrintF(" [rsp + %d] <- 0x%08" V8PRIxPTR " ; [rsp + %d] " "(fixed part - %s)\n", output_offset, input_value, input_offset, name); } output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); input_offset -= kPointerSize; output_offset -= kPointerSize; } // Translate the rest of the frame. while (ok && input_offset >= 0) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // If translation of any command failed, continue using the input frame. if (!ok) { delete output_[0]; output_[0] = input_; output_[0]->SetPc(reinterpret_cast(from_)); } else { // Set up the frame pointer and the context pointer. output_[0]->SetRegister(rbp.code(), input_->GetRegister(rbp.code())); output_[0]->SetRegister(rsi.code(), input_->GetRegister(rsi.code())); unsigned pc_offset = data->OsrPcOffset()->value(); intptr_t pc = reinterpret_cast( compiled_code_->entry() + pc_offset); output_[0]->SetPc(pc); } Code* continuation = function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); output_[0]->SetContinuation( reinterpret_cast(continuation->entry())); if (FLAG_trace_osr) { PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", ok ? "finished" : "aborted", reinterpret_cast(function_)); PrintFunctionName(); PrintF(" => pc=0x%0" V8PRIxPTR "]\n", output_[0]->GetPc()); } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers rbp and rsp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(rsp.code(), reinterpret_cast(frame->sp())); input_->SetRegister(rbp.code(), reinterpret_cast(frame->fp())); for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint64_at(tos + i)); } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) { intptr_t handler = reinterpret_cast(descriptor->deoptimization_handler_); int params = descriptor->register_param_count_; if (descriptor->stack_parameter_count_ != NULL) { params++; } output_frame->SetRegister(rax.code(), params); output_frame->SetRegister(rbx.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } bool Deoptimizer::HasAlignmentPadding(JSFunction* function) { // There is no dynamic alignment padding on x64 in the input frame. return false; } #define __ masm()-> void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; const int kDoubleRegsSize = kDoubleSize * XMMRegister::NumAllocatableRegisters(); __ subq(rsp, Immediate(kDoubleRegsSize)); for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ movsd(Operand(rsp, offset), xmm_reg); } // We push all registers onto the stack, even though we do not need // to restore all later. for (int i = 0; i < kNumberOfRegisters; i++) { Register r = Register::from_code(i); __ push(r); } const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + kDoubleRegsSize; // We use this to keep the value of the fifth argument temporarily. // Unfortunately we can't store it directly in r8 (used for passing // this on linux), since it is another parameter passing register on windows. Register arg5 = r11; // Get the bailout id from the stack. __ movq(arg_reg_3, Operand(rsp, kSavedRegistersAreaSize)); // Get the address of the location in the code object // and compute the fp-to-sp delta in register arg5. __ movq(arg_reg_4, Operand(rsp, kSavedRegistersAreaSize + 1 * kPointerSize)); __ lea(arg5, Operand(rsp, kSavedRegistersAreaSize + 2 * kPointerSize)); __ subq(arg5, rbp); __ neg(arg5); // Allocate a new deoptimizer object. __ PrepareCallCFunction(6); __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(arg_reg_1, rax); __ Set(arg_reg_2, type()); // Args 3 and 4 are already in the right registers. // On windows put the arguments on the stack (PrepareCallCFunction // has created space for this). On linux pass the arguments in r8 and r9. #ifdef _WIN64 __ movq(Operand(rsp, 4 * kPointerSize), arg5); __ LoadAddress(arg5, ExternalReference::isolate_address(isolate())); __ movq(Operand(rsp, 5 * kPointerSize), arg5); #else __ movq(r8, arg5); __ LoadAddress(r9, ExternalReference::isolate_address(isolate())); #endif { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } // Preserve deoptimizer object in register rax and get the input // frame descriptor pointer. __ movq(rbx, Operand(rax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters -1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ pop(Operand(rbx, offset)); } // Fill in the double input registers. int double_regs_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); i++) { int dst_offset = i * kDoubleSize + double_regs_offset; __ pop(Operand(rbx, dst_offset)); } // Remove the bailout id and return address from the stack. __ addq(rsp, Immediate(2 * kPointerSize)); // Compute a pointer to the unwinding limit in register rcx; that is // the first stack slot not part of the input frame. __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ addq(rcx, rsp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ lea(rdx, Operand(rbx, FrameDescription::frame_content_offset())); Label pop_loop_header; __ jmp(&pop_loop_header); Label pop_loop; __ bind(&pop_loop); __ pop(Operand(rdx, 0)); __ addq(rdx, Immediate(sizeof(intptr_t))); __ bind(&pop_loop_header); __ cmpq(rcx, rsp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ push(rax); __ PrepareCallCFunction(2); __ movq(arg_reg_1, rax); __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate())); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 2); } __ pop(rax); // Replace the current frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: rax = current FrameDescription**, rdx = one past the // last FrameDescription**. __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset())); __ movq(rax, Operand(rax, Deoptimizer::output_offset())); __ lea(rdx, Operand(rax, rdx, times_pointer_size, 0)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: rbx = current FrameDescription*, rcx = loop index. __ movq(rbx, Operand(rax, 0)); __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ subq(rcx, Immediate(sizeof(intptr_t))); __ push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset())); __ bind(&inner_loop_header); __ testq(rcx, rcx); __ j(not_zero, &inner_push_loop); __ addq(rax, Immediate(kPointerSize)); __ bind(&outer_loop_header); __ cmpq(rax, rdx); __ j(below, &outer_push_loop); for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int src_offset = i * kDoubleSize + double_regs_offset; __ movsd(xmm_reg, Operand(rbx, src_offset)); } // Push state, pc, and continuation from the last output frame. if (type() != OSR) { __ push(Operand(rbx, FrameDescription::state_offset())); } __ push(Operand(rbx, FrameDescription::pc_offset())); __ push(Operand(rbx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ push(Operand(rbx, offset)); } // Restore the registers from the stack. for (int i = kNumberOfRegisters - 1; i >= 0 ; i--) { Register r = Register::from_code(i); // Do not restore rsp, simply pop the value into the next register // and overwrite this afterwards. if (r.is(rsp)) { ASSERT(i > 0); r = Register::from_code(i - 1); } __ pop(r); } // Set up the roots register. __ InitializeRootRegister(); __ InitializeSmiConstantRegister(); // Return to the continuation point. __ ret(0); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ push_imm32(i); __ jmp(&done); ASSERT(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64