// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/api/api-inl.h" #include "src/api/api.h" #include "src/builtins/builtins.h" #include "src/common/message-template.h" #include "src/execution/arguments-inl.h" #include "src/execution/isolate-inl.h" #include "src/execution/messages.h" #include "src/execution/tiering-manager.h" #include "src/handles/maybe-handles.h" #include "src/logging/counters.h" #include "src/numbers/conversions.h" #include "src/objects/template-objects-inl.h" #include "src/utils/ostreams.h" #if V8_ENABLE_WEBASSEMBLY // TODO(chromium:1236668): Drop this when the "SaveAndClearThreadInWasmFlag" // approach is no longer needed. #include "src/trap-handler/trap-handler.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { RUNTIME_FUNCTION(Runtime_AccessCheck) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); if (!isolate->MayAccess(handle(isolate->context(), isolate), object)) { isolate->ReportFailedAccessCheck(object); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); } return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInAllocateRaw) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("CodeStubAssembler::AllocateRaw"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInvalidArrayLength) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("invalid array length"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_Throw) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(Runtime_ReThrow) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(Runtime_ReThrowWithMessage) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); return isolate->ReThrow(args[0], args[1]); } RUNTIME_FUNCTION(Runtime_ThrowStackOverflow) { SealHandleScope shs(isolate); DCHECK_LE(0, args.length()); return isolate->StackOverflow(); } RUNTIME_FUNCTION(Runtime_ThrowSymbolAsyncIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolAsyncIteratorInvalid)); } RUNTIME_FUNCTION(Runtime_TerminateExecution) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); return isolate->TerminateExecution(); } #define THROW_ERROR(isolate, args, call) \ HandleScope scope(isolate); \ DCHECK_LE(1, args.length()); \ int message_id_smi = args.smi_value_at(0); \ \ Handle undefined = isolate->factory()->undefined_value(); \ Handle arg0 = (args.length() > 1) ? args.at(1) : undefined; \ Handle arg1 = (args.length() > 2) ? args.at(2) : undefined; \ Handle arg2 = (args.length() > 3) ? args.at(3) : undefined; \ \ MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); \ \ THROW_NEW_ERROR_RETURN_FAILURE(isolate, call(message_id, arg0, arg1, arg2)); RUNTIME_FUNCTION(Runtime_ThrowRangeError) { if (v8_flags.correctness_fuzzer_suppressions) { DCHECK_LE(1, args.length()); int message_id_smi = args.smi_value_at(0); // If the result of a BigInt computation is truncated to 64 bit, Turbofan // can sometimes truncate intermediate results already, which can prevent // those from exceeding the maximum length, effectively preventing a // RangeError from being thrown. As this is a performance optimization, this // behavior is accepted. To prevent the correctness fuzzer from detecting // this difference, we crash the program. if (MessageTemplateFromInt(message_id_smi) == MessageTemplate::kBigIntTooBig) { FATAL("Aborting on invalid BigInt length"); } } THROW_ERROR(isolate, args, NewRangeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeError) { THROW_ERROR(isolate, args, NewTypeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeErrorIfStrict) { if (GetShouldThrow(isolate, Nothing()) == ShouldThrow::kDontThrow) return ReadOnlyRoots(isolate).undefined_value(); THROW_ERROR(isolate, args, NewTypeError); } #undef THROW_ERROR namespace { const char* ElementsKindToType(ElementsKind fixed_elements_kind) { switch (fixed_elements_kind) { #define ELEMENTS_KIND_CASE(Type, type, TYPE, ctype) \ case TYPE##_ELEMENTS: \ return #Type "Array"; TYPED_ARRAYS(ELEMENTS_KIND_CASE) RAB_GSAB_TYPED_ARRAYS_WITH_TYPED_ARRAY_TYPE(ELEMENTS_KIND_CASE) #undef ELEMENTS_KIND_CASE default: UNREACHABLE(); } } } // namespace RUNTIME_FUNCTION(Runtime_ThrowInvalidTypedArrayAlignment) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); Handle map = args.at(0); Handle problem_string = args.at(1); ElementsKind kind = map->elements_kind(); Handle type = isolate->factory()->NewStringFromAsciiChecked(ElementsKindToType(kind)); ExternalArrayType external_type; size_t size; Factory::TypeAndSizeForElementsKind(kind, &external_type, &size); Handle element_size = handle(Smi::FromInt(static_cast(size)), isolate); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayAlignment, problem_string, type, element_size)); } RUNTIME_FUNCTION(Runtime_UnwindAndFindExceptionHandler) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->UnwindAndFindHandler(); } RUNTIME_FUNCTION(Runtime_PromoteScheduledException) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(Runtime_ThrowReferenceError) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle name = args.at(0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } RUNTIME_FUNCTION(Runtime_ThrowAccessedUninitializedVariable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle name = args.at(0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kAccessedUninitializedVariable, name)); } RUNTIME_FUNCTION(Runtime_NewError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); int template_index = args.smi_value_at(0); Handle arg0 = args.at(1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewForeign) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); return *isolate->factory()->NewForeign(kNullAddress); } RUNTIME_FUNCTION(Runtime_NewTypeError) { HandleScope scope(isolate); DCHECK_LE(args.length(), 4); DCHECK_GE(args.length(), 1); int template_index = args.smi_value_at(0); MessageTemplate message_template = MessageTemplateFromInt(template_index); Handle arg0; if (args.length() >= 2) { arg0 = args.at(1); } Handle arg1; if (args.length() >= 3) { arg1 = args.at(2); } Handle arg2; if (args.length() >= 4) { arg2 = args.at(3); } return *isolate->factory()->NewTypeError(message_template, arg0, arg1, arg2); } RUNTIME_FUNCTION(Runtime_NewReferenceError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); int template_index = args.smi_value_at(0); Handle arg0 = args.at(1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewReferenceError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewSyntaxError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); int template_index = args.smi_value_at(0); Handle arg0 = args.at(1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewSyntaxError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_ThrowInvalidStringLength) { HandleScope scope(isolate); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } RUNTIME_FUNCTION(Runtime_ThrowIteratorResultNotAnObject) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle value = args.at(0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kIteratorResultNotAnObject, value)); } RUNTIME_FUNCTION(Runtime_ThrowThrowMethodMissing) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kThrowMethodMissing)); } RUNTIME_FUNCTION(Runtime_ThrowSymbolIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid)); } RUNTIME_FUNCTION(Runtime_ThrowNoAccess) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); // TODO(verwaest): We would like to throw using the calling context instead // of the entered context but we don't currently have access to that. HandleScopeImplementer* impl = isolate->handle_scope_implementer(); SaveAndSwitchContext save( isolate, impl->LastEnteredOrMicrotaskContext()->native_context()); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(MessageTemplate::kNoAccess)); } RUNTIME_FUNCTION(Runtime_ThrowNotConstructor) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotConstructor, object)); } RUNTIME_FUNCTION(Runtime_ThrowApplyNonFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); Handle type = Object::TypeOf(isolate, object); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kApplyNonFunction, object, type)); } RUNTIME_FUNCTION(Runtime_StackGuard) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); TRACE_EVENT0("v8.execute", "V8.StackGuard"); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } RUNTIME_FUNCTION(Runtime_StackGuardWithGap) { SealHandleScope shs(isolate); DCHECK_EQ(args.length(), 1); uint32_t gap = args.positive_smi_value_at(0); TRACE_EVENT0("v8.execute", "V8.StackGuard"); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed(gap)) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } namespace { Object BytecodeBudgetInterruptWithStackCheck(Isolate* isolate, RuntimeArguments& args, CodeKind code_kind) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle function = args.at(0); TRACE_EVENT0("v8.execute", "V8.BytecodeBudgetInterruptWithStackCheck"); // Check for stack interrupts here so that we can fold the interrupt check // into bytecode budget interrupts. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { // We ideally wouldn't actually get StackOverflows here, since we stack // check on bytecode entry, but it's possible that this check fires due to // the runtime function call being what overflows the stack. // if our function entry return isolate->StackOverflow(); } else if (check.InterruptRequested()) { Object return_value = isolate->stack_guard()->HandleInterrupts(); if (!return_value.IsUndefined(isolate)) { return return_value; } } isolate->tiering_manager()->OnInterruptTick(function, code_kind); return ReadOnlyRoots(isolate).undefined_value(); } Object BytecodeBudgetInterrupt(Isolate* isolate, RuntimeArguments& args, CodeKind code_kind) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle function = args.at(0); TRACE_EVENT0("v8.execute", "V8.BytecodeBudgetInterrupt"); isolate->tiering_manager()->OnInterruptTick(function, code_kind); return ReadOnlyRoots(isolate).undefined_value(); } } // namespace RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterruptWithStackCheck_Ignition) { return BytecodeBudgetInterruptWithStackCheck(isolate, args, CodeKind::INTERPRETED_FUNCTION); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterrupt_Ignition) { return BytecodeBudgetInterrupt(isolate, args, CodeKind::INTERPRETED_FUNCTION); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterruptWithStackCheck_Sparkplug) { return BytecodeBudgetInterruptWithStackCheck(isolate, args, CodeKind::BASELINE); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterrupt_Sparkplug) { return BytecodeBudgetInterrupt(isolate, args, CodeKind::BASELINE); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterruptWithStackCheck_Maglev) { return BytecodeBudgetInterruptWithStackCheck(isolate, args, CodeKind::MAGLEV); } namespace { #if V8_ENABLE_WEBASSEMBLY class V8_NODISCARD SaveAndClearThreadInWasmFlag { public: SaveAndClearThreadInWasmFlag() { if (trap_handler::IsTrapHandlerEnabled()) { if (trap_handler::IsThreadInWasm()) { thread_was_in_wasm_ = true; trap_handler::ClearThreadInWasm(); } } } ~SaveAndClearThreadInWasmFlag() { if (thread_was_in_wasm_) { trap_handler::SetThreadInWasm(); } } private: bool thread_was_in_wasm_{false}; }; #else class SaveAndClearThreadInWasmFlag {}; #endif // V8_ENABLE_WEBASSEMBLY } // namespace RUNTIME_FUNCTION(Runtime_AllocateInYoungGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); // TODO(v8:13070): Align allocations in the builtins that call this. int size = ALIGN_TO_ALLOCATION_ALIGNMENT(args.smi_value_at(0)); int flags = args.smi_value_at(1); AllocationAlignment alignment = AllocateDoubleAlignFlag::decode(flags) ? kDoubleAligned : kTaggedAligned; bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } #if V8_ENABLE_WEBASSEMBLY // When this is called from WasmGC code, clear the "thread in wasm" flag, // which is important in case any GC needs to happen. // TODO(chromium:1236668): Find a better fix, likely by replacing the global // flag. SaveAndClearThreadInWasmFlag clear_wasm_flag; #endif // V8_ENABLE_WEBASSEMBLY // TODO(v8:9472): Until double-aligned allocation is fixed for new-space // allocations, don't request it. alignment = kTaggedAligned; return *isolate->factory()->NewFillerObject(size, alignment, AllocationType::kYoung, AllocationOrigin::kGeneratedCode); } RUNTIME_FUNCTION(Runtime_AllocateInOldGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); // TODO(v8:13070): Align allocations in the builtins that call this. int size = ALIGN_TO_ALLOCATION_ALIGNMENT(args.smi_value_at(0)); int flags = args.smi_value_at(1); AllocationAlignment alignment = AllocateDoubleAlignFlag::decode(flags) ? kDoubleAligned : kTaggedAligned; bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } return *isolate->factory()->NewFillerObject( size, alignment, AllocationType::kOld, AllocationOrigin::kGeneratedCode); } RUNTIME_FUNCTION(Runtime_AllocateByteArray) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); int length = args.smi_value_at(0); DCHECK_LT(0, length); return *isolate->factory()->NewByteArray(length); } RUNTIME_FUNCTION(Runtime_AllocateSeqOneByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); int length = args.smi_value_at(0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); return *result; } RUNTIME_FUNCTION(Runtime_AllocateSeqTwoByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); int length = args.smi_value_at(0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); return *result; } RUNTIME_FUNCTION(Runtime_ThrowIteratorError) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); return isolate->Throw(*ErrorUtils::NewIteratorError(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowSpreadArgError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); int message_id_smi = args.smi_value_at(0); MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); Handle object = args.at(1); return ErrorUtils::ThrowSpreadArgError(isolate, message_id, object); } RUNTIME_FUNCTION(Runtime_ThrowCalledNonCallable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); return isolate->Throw( *ErrorUtils::NewCalledNonCallableError(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowConstructedNonConstructable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); return isolate->Throw( *ErrorUtils::NewConstructedNonConstructable(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowPatternAssignmentNonCoercible) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); return ErrorUtils::ThrowLoadFromNullOrUndefined(isolate, object, MaybeHandle()); } RUNTIME_FUNCTION(Runtime_ThrowConstructorReturnedNonObject) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kDerivedConstructorReturnedNonObject)); } // ES6 section 7.3.17 CreateListFromArrayLike (obj) RUNTIME_FUNCTION(Runtime_CreateListFromArrayLike) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); RETURN_RESULT_OR_FAILURE(isolate, Object::CreateListFromArrayLike( isolate, object, ElementTypes::kAll)); } RUNTIME_FUNCTION(Runtime_IncrementUseCounter) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); int counter = args.smi_value_at(0); isolate->CountUsage(static_cast(counter)); return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_GetAndResetTurboProfilingData) { HandleScope scope(isolate); DCHECK_LE(args.length(), 2); if (!BasicBlockProfiler::Get()->HasData(isolate)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError( MessageTemplate::kInvalid, isolate->factory()->NewStringFromAsciiChecked("Runtime Call"), isolate->factory()->NewStringFromAsciiChecked( "V8 was not built with v8_enable_builtins_profiling=true"))); } std::stringstream stats_stream; BasicBlockProfiler::Get()->Log(isolate, stats_stream); Handle result = isolate->factory()->NewStringFromAsciiChecked(stats_stream.str().c_str()); BasicBlockProfiler::Get()->ResetCounts(isolate); return *result; } RUNTIME_FUNCTION(Runtime_GetAndResetRuntimeCallStats) { HandleScope scope(isolate); DCHECK_LE(args.length(), 2); #ifdef V8_RUNTIME_CALL_STATS if (!v8_flags.runtime_call_stats) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kInvalid, isolate->factory()->NewStringFromAsciiChecked( "Runtime Call"), isolate->factory()->NewStringFromAsciiChecked( "--runtime-call-stats is not set"))); } // Append any worker thread runtime call stats to the main table before // printing. isolate->counters()->worker_thread_runtime_call_stats()->AddToMainTable( isolate->counters()->runtime_call_stats()); if (args.length() == 0) { // Without arguments, the result is returned as a string. std::stringstream stats_stream; isolate->counters()->runtime_call_stats()->Print(stats_stream); Handle result = isolate->factory()->NewStringFromAsciiChecked( stats_stream.str().c_str()); isolate->counters()->runtime_call_stats()->Reset(); return *result; } std::FILE* f; if (args[0].IsString()) { // With a string argument, the results are appended to that file. Handle filename = args.at(0); f = std::fopen(filename->ToCString().get(), "a"); DCHECK_NOT_NULL(f); } else { // With an integer argument, the results are written to stdout/stderr. int fd = args.smi_value_at(0); DCHECK(fd == 1 || fd == 2); f = fd == 1 ? stdout : stderr; } // The second argument (if any) is a message header to be printed. if (args.length() >= 2) { Handle message = args.at(1); message->PrintOn(f); std::fputc('\n', f); std::fflush(f); } OFStream stats_stream(f); isolate->counters()->runtime_call_stats()->Print(stats_stream); isolate->counters()->runtime_call_stats()->Reset(); if (args[0].IsString()) { std::fclose(f); } else { std::fflush(f); } return ReadOnlyRoots(isolate).undefined_value(); #else // V8_RUNTIME_CALL_STATS THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kInvalid, isolate->factory()->NewStringFromAsciiChecked( "Runtime Call"), isolate->factory()->NewStringFromAsciiChecked( "RCS was disabled at compile-time"))); #endif // V8_RUNTIME_CALL_STATS } RUNTIME_FUNCTION(Runtime_OrdinaryHasInstance) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); Handle callable = args.at(0); Handle object = args.at(1); RETURN_RESULT_OR_FAILURE( isolate, Object::OrdinaryHasInstance(isolate, callable, object)); } RUNTIME_FUNCTION(Runtime_Typeof) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle object = args.at(0); return *Object::TypeOf(isolate, object); } RUNTIME_FUNCTION(Runtime_AllowDynamicFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle target = args.at(0); Handle global_proxy(target->global_proxy(), isolate); return *isolate->factory()->ToBoolean( Builtins::AllowDynamicFunction(isolate, target, global_proxy)); } RUNTIME_FUNCTION(Runtime_CreateAsyncFromSyncIterator) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle sync_iterator = args.at(0); if (!sync_iterator->IsJSReceiver()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid)); } Handle next; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, next, Object::GetProperty(isolate, sync_iterator, isolate->factory()->next_string())); return *isolate->factory()->NewJSAsyncFromSyncIterator( Handle::cast(sync_iterator), next); } RUNTIME_FUNCTION(Runtime_GetTemplateObject) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); Handle description = args.at(0); Handle shared_info = args.at(1); int slot_id = args.smi_value_at(2); Handle native_context(isolate->context().native_context(), isolate); return *TemplateObjectDescription::GetTemplateObject( isolate, native_context, description, shared_info, slot_id); } RUNTIME_FUNCTION(Runtime_ReportMessageFromMicrotask) { // Helper to report messages and continue JS execution. This is intended to // behave similarly to reporting exceptions which reach the top-level, but // allow the JS code to continue. HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle exception = args.at(0); DCHECK(!isolate->has_pending_exception()); isolate->set_pending_exception(*exception); MessageLocation* no_location = nullptr; Handle message = isolate->CreateMessageOrAbort(exception, no_location); MessageHandler::ReportMessage(isolate, no_location, message); isolate->clear_pending_exception(); return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_GetInitializerFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle constructor = args.at(0); Handle key = isolate->factory()->class_fields_symbol(); Handle initializer = JSReceiver::GetDataProperty(isolate, constructor, key); return *initializer; } RUNTIME_FUNCTION(Runtime_DoubleToStringWithRadix) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); double number = args.number_value_at(0); int32_t radix = 0; CHECK(args[1].ToInt32(&radix)); char* const str = DoubleToRadixCString(number, radix); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } RUNTIME_FUNCTION(Runtime_SharedValueBarrierSlow) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); Handle value = args.at(0); Handle shared_value; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, shared_value, Object::ShareSlow(isolate, value, kThrowOnError)); return *shared_value; } } // namespace internal } // namespace v8