// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_NUMBERS_DOUBLE_H_ #define V8_NUMBERS_DOUBLE_H_ #include "src/base/macros.h" #include "src/numbers/diy-fp.h" namespace v8 { namespace internal { // We assume that doubles and uint64_t have the same endianness. inline uint64_t double_to_uint64(double d) { return bit_cast(d); } inline double uint64_to_double(uint64_t d64) { return bit_cast(d64); } // Helper functions for doubles. class Double { public: static constexpr uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); static constexpr uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000); static constexpr uint64_t kSignificandMask = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); static constexpr uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000); static constexpr int kPhysicalSignificandSize = 52; // Excludes the hidden bit. static constexpr int kSignificandSize = 53; Double() : d64_(0) {} explicit Double(double d) : d64_(double_to_uint64(d)) {} explicit Double(uint64_t d64) : d64_(d64) {} explicit Double(DiyFp diy_fp) : d64_(DiyFpToUint64(diy_fp)) {} // The value encoded by this Double must be greater or equal to +0.0. // It must not be special (infinity, or NaN). DiyFp AsDiyFp() const { DCHECK_GT(Sign(), 0); DCHECK(!IsSpecial()); return DiyFp(Significand(), Exponent()); } // The value encoded by this Double must be strictly greater than 0. DiyFp AsNormalizedDiyFp() const { DCHECK_GT(value(), 0.0); uint64_t f = Significand(); int e = Exponent(); // The current double could be a denormal. while ((f & kHiddenBit) == 0) { f <<= 1; e--; } // Do the final shifts in one go. f <<= DiyFp::kSignificandSize - kSignificandSize; e -= DiyFp::kSignificandSize - kSignificandSize; return DiyFp(f, e); } // Returns the double's bit as uint64. uint64_t AsUint64() const { return d64_; } // Returns the next greater double. Returns +infinity on input +infinity. double NextDouble() const { if (d64_ == kInfinity) return Double(kInfinity).value(); if (Sign() < 0 && Significand() == 0) { // -0.0 return 0.0; } if (Sign() < 0) { return Double(d64_ - 1).value(); } else { return Double(d64_ + 1).value(); } } int Exponent() const { if (IsDenormal()) return kDenormalExponent; uint64_t d64 = AsUint64(); int biased_e = static_cast((d64 & kExponentMask) >> kPhysicalSignificandSize); return biased_e - kExponentBias; } uint64_t Significand() const { uint64_t d64 = AsUint64(); uint64_t significand = d64 & kSignificandMask; if (!IsDenormal()) { return significand + kHiddenBit; } else { return significand; } } // Returns true if the double is a denormal. bool IsDenormal() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == 0; } // We consider denormals not to be special. // Hence only Infinity and NaN are special. bool IsSpecial() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == kExponentMask; } bool IsInfinite() const { uint64_t d64 = AsUint64(); return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) == 0); } int Sign() const { uint64_t d64 = AsUint64(); return (d64 & kSignMask) == 0 ? 1 : -1; } // Precondition: the value encoded by this Double must be greater or equal // than +0.0. DiyFp UpperBoundary() const { DCHECK_GT(Sign(), 0); return DiyFp(Significand() * 2 + 1, Exponent() - 1); } // Returns the two boundaries of this. // The bigger boundary (m_plus) is normalized. The lower boundary has the same // exponent as m_plus. // Precondition: the value encoded by this Double must be greater than 0. void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { DCHECK_GT(value(), 0.0); DiyFp v = this->AsDiyFp(); bool significand_is_zero = (v.f() == kHiddenBit); DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); DiyFp m_minus; if (significand_is_zero && v.e() != kDenormalExponent) { // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but // at a distance of 1e8. // The only exception is for the smallest normal: the largest denormal is // at the same distance as its successor. // Note: denormals have the same exponent as the smallest normals. m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); } else { m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); } m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); m_minus.set_e(m_plus.e()); *out_m_plus = m_plus; *out_m_minus = m_minus; } double value() const { return uint64_to_double(d64_); } // Returns the significand size for a given order of magnitude. // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. // This function returns the number of significant binary digits v will have // once its encoded into a double. In almost all cases this is equal to // kSignificandSize. The only exception are denormals. They start with leading // zeroes and their effective significand-size is hence smaller. static int SignificandSizeForOrderOfMagnitude(int order) { if (order >= (kDenormalExponent + kSignificandSize)) { return kSignificandSize; } if (order <= kDenormalExponent) return 0; return order - kDenormalExponent; } private: static constexpr int kExponentBias = 0x3FF + kPhysicalSignificandSize; static constexpr int kDenormalExponent = -kExponentBias + 1; static constexpr int kMaxExponent = 0x7FF - kExponentBias; static constexpr uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000); // The field d64_ is not marked as const to permit the usage of the copy // constructor. uint64_t d64_; static uint64_t DiyFpToUint64(DiyFp diy_fp) { uint64_t significand = diy_fp.f(); int exponent = diy_fp.e(); while (significand > kHiddenBit + kSignificandMask) { significand >>= 1; exponent++; } if (exponent >= kMaxExponent) { return kInfinity; } if (exponent < kDenormalExponent) { return 0; } while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { significand <<= 1; exponent--; } uint64_t biased_exponent; if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { biased_exponent = 0; } else { biased_exponent = static_cast(exponent + kExponentBias); } return (significand & kSignificandMask) | (biased_exponent << kPhysicalSignificandSize); } }; } // namespace internal } // namespace v8 #endif // V8_NUMBERS_DOUBLE_H_