// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/redundancy-elimination.h" #include "src/compiler/node-properties.h" #include "src/compiler/simplified-operator.h" namespace v8 { namespace internal { namespace compiler { RedundancyElimination::RedundancyElimination(Editor* editor, Zone* zone) : AdvancedReducer(editor), node_checks_(zone), zone_(zone) {} RedundancyElimination::~RedundancyElimination() = default; Reduction RedundancyElimination::Reduce(Node* node) { if (node_checks_.Get(node)) return NoChange(); switch (node->opcode()) { case IrOpcode::kCheckBigInt: case IrOpcode::kCheckBounds: case IrOpcode::kCheckEqualsInternalizedString: case IrOpcode::kCheckEqualsSymbol: case IrOpcode::kCheckFloat64Hole: case IrOpcode::kCheckHeapObject: case IrOpcode::kCheckIf: case IrOpcode::kCheckInternalizedString: case IrOpcode::kCheckNotTaggedHole: case IrOpcode::kCheckNumber: case IrOpcode::kCheckReceiver: case IrOpcode::kCheckReceiverOrNullOrUndefined: case IrOpcode::kCheckSmi: case IrOpcode::kCheckString: case IrOpcode::kCheckSymbol: #define SIMPLIFIED_CHECKED_OP(Opcode) case IrOpcode::k##Opcode: SIMPLIFIED_CHECKED_OP_LIST(SIMPLIFIED_CHECKED_OP) #undef SIMPLIFIED_CHECKED_OP return ReduceCheckNode(node); case IrOpcode::kSpeculativeNumberEqual: case IrOpcode::kSpeculativeNumberLessThan: case IrOpcode::kSpeculativeNumberLessThanOrEqual: return ReduceSpeculativeNumberComparison(node); case IrOpcode::kSpeculativeNumberAdd: case IrOpcode::kSpeculativeNumberSubtract: case IrOpcode::kSpeculativeSafeIntegerAdd: case IrOpcode::kSpeculativeSafeIntegerSubtract: case IrOpcode::kSpeculativeToNumber: return ReduceSpeculativeNumberOperation(node); case IrOpcode::kEffectPhi: return ReduceEffectPhi(node); case IrOpcode::kDead: break; case IrOpcode::kStart: return ReduceStart(node); default: return ReduceOtherNode(node); } return NoChange(); } // static RedundancyElimination::EffectPathChecks* RedundancyElimination::EffectPathChecks::Copy(Zone* zone, EffectPathChecks const* checks) { return new (zone->New(sizeof(EffectPathChecks))) EffectPathChecks(*checks); } // static RedundancyElimination::EffectPathChecks const* RedundancyElimination::EffectPathChecks::Empty(Zone* zone) { return new (zone->New(sizeof(EffectPathChecks))) EffectPathChecks(nullptr, 0); } bool RedundancyElimination::EffectPathChecks::Equals( EffectPathChecks const* that) const { if (this->size_ != that->size_) return false; Check* this_head = this->head_; Check* that_head = that->head_; while (this_head != that_head) { if (this_head->node != that_head->node) return false; this_head = this_head->next; that_head = that_head->next; } return true; } void RedundancyElimination::EffectPathChecks::Merge( EffectPathChecks const* that) { // Change the current check list to a longest common tail of this check // list and the other list. // First, we throw away the prefix of the longer list, so that // we have lists of the same length. Check* that_head = that->head_; size_t that_size = that->size_; while (that_size > size_) { that_head = that_head->next; that_size--; } while (size_ > that_size) { head_ = head_->next; size_--; } // Then we go through both lists in lock-step until we find // the common tail. while (head_ != that_head) { DCHECK_LT(0u, size_); DCHECK_NOT_NULL(head_); size_--; head_ = head_->next; that_head = that_head->next; } } RedundancyElimination::EffectPathChecks const* RedundancyElimination::EffectPathChecks::AddCheck(Zone* zone, Node* node) const { Check* head = new (zone->New(sizeof(Check))) Check(node, head_); return new (zone->New(sizeof(EffectPathChecks))) EffectPathChecks(head, size_ + 1); } namespace { // Does check {a} subsume check {b}? bool CheckSubsumes(Node const* a, Node const* b) { if (a->op() != b->op()) { if (a->opcode() == IrOpcode::kCheckInternalizedString && b->opcode() == IrOpcode::kCheckString) { // CheckInternalizedString(node) implies CheckString(node) } else if (a->opcode() == IrOpcode::kCheckSmi && b->opcode() == IrOpcode::kCheckNumber) { // CheckSmi(node) implies CheckNumber(node) } else if (a->opcode() == IrOpcode::kCheckedTaggedSignedToInt32 && b->opcode() == IrOpcode::kCheckedTaggedToInt32) { // CheckedTaggedSignedToInt32(node) implies CheckedTaggedToInt32(node) } else if (a->opcode() == IrOpcode::kCheckReceiver && b->opcode() == IrOpcode::kCheckReceiverOrNullOrUndefined) { // CheckReceiver(node) implies CheckReceiverOrNullOrUndefined(node) } else if (a->opcode() != b->opcode()) { return false; } else { switch (a->opcode()) { case IrOpcode::kCheckBounds: case IrOpcode::kCheckSmi: case IrOpcode::kCheckString: case IrOpcode::kCheckNumber: case IrOpcode::kCheckBigInt: break; case IrOpcode::kCheckedInt32ToCompressedSigned: case IrOpcode::kCheckedInt32ToTaggedSigned: case IrOpcode::kCheckedInt64ToInt32: case IrOpcode::kCheckedInt64ToTaggedSigned: case IrOpcode::kCheckedTaggedSignedToInt32: case IrOpcode::kCheckedTaggedToTaggedPointer: case IrOpcode::kCheckedTaggedToTaggedSigned: case IrOpcode::kCheckedCompressedToTaggedPointer: case IrOpcode::kCheckedCompressedToTaggedSigned: case IrOpcode::kCheckedTaggedToCompressedPointer: case IrOpcode::kCheckedTaggedToCompressedSigned: case IrOpcode::kCheckedUint32Bounds: case IrOpcode::kCheckedUint32ToInt32: case IrOpcode::kCheckedUint32ToTaggedSigned: case IrOpcode::kCheckedUint64Bounds: case IrOpcode::kCheckedUint64ToInt32: case IrOpcode::kCheckedUint64ToTaggedSigned: break; case IrOpcode::kCheckedFloat64ToInt32: case IrOpcode::kCheckedFloat64ToInt64: case IrOpcode::kCheckedTaggedToInt32: case IrOpcode::kCheckedTaggedToInt64: { const CheckMinusZeroParameters& ap = CheckMinusZeroParametersOf(a->op()); const CheckMinusZeroParameters& bp = CheckMinusZeroParametersOf(b->op()); if (ap.mode() != bp.mode()) { return false; } break; } case IrOpcode::kCheckedTaggedToFloat64: case IrOpcode::kCheckedTruncateTaggedToWord32: { CheckTaggedInputParameters const& ap = CheckTaggedInputParametersOf(a->op()); CheckTaggedInputParameters const& bp = CheckTaggedInputParametersOf(b->op()); // {a} subsumes {b} if the modes are either the same, or {a} checks // for Number, in which case {b} will be subsumed no matter what. if (ap.mode() != bp.mode() && ap.mode() != CheckTaggedInputMode::kNumber) { return false; } break; } default: DCHECK(!IsCheckedWithFeedback(a->op())); return false; } } } for (int i = a->op()->ValueInputCount(); --i >= 0;) { if (a->InputAt(i) != b->InputAt(i)) return false; } return true; } bool TypeSubsumes(Node* node, Node* replacement) { if (!NodeProperties::IsTyped(node) || !NodeProperties::IsTyped(replacement)) { // If either node is untyped, we are running during an untyped optimization // phase, and replacement is OK. return true; } Type node_type = NodeProperties::GetType(node); Type replacement_type = NodeProperties::GetType(replacement); return replacement_type.Is(node_type); } } // namespace Node* RedundancyElimination::EffectPathChecks::LookupCheck(Node* node) const { for (Check const* check = head_; check != nullptr; check = check->next) { if (CheckSubsumes(check->node, node) && TypeSubsumes(node, check->node)) { DCHECK(!check->node->IsDead()); return check->node; } } return nullptr; } Node* RedundancyElimination::EffectPathChecks::LookupBoundsCheckFor( Node* node) const { for (Check const* check = head_; check != nullptr; check = check->next) { if (check->node->opcode() == IrOpcode::kCheckBounds && check->node->InputAt(0) == node) { return check->node; } } return nullptr; } RedundancyElimination::EffectPathChecks const* RedundancyElimination::PathChecksForEffectNodes::Get(Node* node) const { size_t const id = node->id(); if (id < info_for_node_.size()) return info_for_node_[id]; return nullptr; } void RedundancyElimination::PathChecksForEffectNodes::Set( Node* node, EffectPathChecks const* checks) { size_t const id = node->id(); if (id >= info_for_node_.size()) info_for_node_.resize(id + 1, nullptr); info_for_node_[id] = checks; } Reduction RedundancyElimination::ReduceCheckNode(Node* node) { Node* const effect = NodeProperties::GetEffectInput(node); EffectPathChecks const* checks = node_checks_.Get(effect); // If we do not know anything about the predecessor, do not propagate just yet // because we will have to recompute anyway once we compute the predecessor. if (checks == nullptr) return NoChange(); // See if we have another check that dominates us. if (Node* check = checks->LookupCheck(node)) { ReplaceWithValue(node, check); return Replace(check); } // Learn from this check. return UpdateChecks(node, checks->AddCheck(zone(), node)); } Reduction RedundancyElimination::ReduceEffectPhi(Node* node) { Node* const control = NodeProperties::GetControlInput(node); if (control->opcode() == IrOpcode::kLoop) { // Here we rely on having only reducible loops: // The loop entry edge always dominates the header, so we can just use // the information from the loop entry edge. return TakeChecksFromFirstEffect(node); } DCHECK_EQ(IrOpcode::kMerge, control->opcode()); // Shortcut for the case when we do not know anything about some input. int const input_count = node->op()->EffectInputCount(); for (int i = 0; i < input_count; ++i) { Node* const effect = NodeProperties::GetEffectInput(node, i); if (node_checks_.Get(effect) == nullptr) return NoChange(); } // Make a copy of the first input's checks and merge with the checks // from other inputs. EffectPathChecks* checks = EffectPathChecks::Copy( zone(), node_checks_.Get(NodeProperties::GetEffectInput(node, 0))); for (int i = 1; i < input_count; ++i) { Node* const input = NodeProperties::GetEffectInput(node, i); checks->Merge(node_checks_.Get(input)); } return UpdateChecks(node, checks); } Reduction RedundancyElimination::ReduceSpeculativeNumberComparison(Node* node) { NumberOperationHint const hint = NumberOperationHintOf(node->op()); Node* const first = NodeProperties::GetValueInput(node, 0); Type const first_type = NodeProperties::GetType(first); Node* const second = NodeProperties::GetValueInput(node, 1); Type const second_type = NodeProperties::GetType(second); Node* const effect = NodeProperties::GetEffectInput(node); EffectPathChecks const* checks = node_checks_.Get(effect); // If we do not know anything about the predecessor, do not propagate just yet // because we will have to recompute anyway once we compute the predecessor. if (checks == nullptr) return NoChange(); // Avoid the potentially expensive lookups below if the {node} // has seen non-Smi inputs in the past, which is a clear signal // that the comparison is probably not performed on a value that // already passed an array bounds check. if (hint == NumberOperationHint::kSignedSmall) { // Don't bother trying to find a CheckBounds for the {first} input // if it's type is already in UnsignedSmall range, since the bounds // check is only going to narrow that range further, but the result // is not going to make the representation selection any better. if (!first_type.Is(Type::UnsignedSmall())) { if (Node* check = checks->LookupBoundsCheckFor(first)) { if (!first_type.Is(NodeProperties::GetType(check))) { // Replace the {first} input with the {check}. This is safe, // despite the fact that {check} can truncate -0 to 0, because // the regular Number comparisons in JavaScript also identify // 0 and -0 (unlike special comparisons as Object.is). NodeProperties::ReplaceValueInput(node, check, 0); Reduction const reduction = ReduceSpeculativeNumberComparison(node); return reduction.Changed() ? reduction : Changed(node); } } } // Don't bother trying to find a CheckBounds for the {second} input // if it's type is already in UnsignedSmall range, since the bounds // check is only going to narrow that range further, but the result // is not going to make the representation selection any better. if (!second_type.Is(Type::UnsignedSmall())) { if (Node* check = checks->LookupBoundsCheckFor(second)) { if (!second_type.Is(NodeProperties::GetType(check))) { // Replace the {second} input with the {check}. This is safe, // despite the fact that {check} can truncate -0 to 0, because // the regular Number comparisons in JavaScript also identify // 0 and -0 (unlike special comparisons as Object.is). NodeProperties::ReplaceValueInput(node, check, 1); Reduction const reduction = ReduceSpeculativeNumberComparison(node); return reduction.Changed() ? reduction : Changed(node); } } } } return UpdateChecks(node, checks); } Reduction RedundancyElimination::ReduceSpeculativeNumberOperation(Node* node) { DCHECK(node->opcode() == IrOpcode::kSpeculativeNumberAdd || node->opcode() == IrOpcode::kSpeculativeNumberSubtract || node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd || node->opcode() == IrOpcode::kSpeculativeSafeIntegerSubtract || node->opcode() == IrOpcode::kSpeculativeToNumber); DCHECK_EQ(1, node->op()->EffectInputCount()); DCHECK_EQ(1, node->op()->EffectOutputCount()); Node* const first = NodeProperties::GetValueInput(node, 0); Node* const effect = NodeProperties::GetEffectInput(node); EffectPathChecks const* checks = node_checks_.Get(effect); // If we do not know anything about the predecessor, do not propagate just yet // because we will have to recompute anyway once we compute the predecessor. if (checks == nullptr) return NoChange(); // Check if there's a CheckBounds operation on {first} // in the graph already, which we might be able to // reuse here to improve the representation selection // for the {node} later on. if (Node* check = checks->LookupBoundsCheckFor(first)) { // Only use the bounds {check} if its type is better // than the type of the {first} node, otherwise we // would end up replacing NumberConstant inputs with // CheckBounds operations, which is kind of pointless. if (!NodeProperties::GetType(first).Is(NodeProperties::GetType(check))) { NodeProperties::ReplaceValueInput(node, check, 0); } } return UpdateChecks(node, checks); } Reduction RedundancyElimination::ReduceStart(Node* node) { return UpdateChecks(node, EffectPathChecks::Empty(zone())); } Reduction RedundancyElimination::ReduceOtherNode(Node* node) { if (node->op()->EffectInputCount() == 1) { if (node->op()->EffectOutputCount() == 1) { return TakeChecksFromFirstEffect(node); } else { // Effect terminators should be handled specially. return NoChange(); } } DCHECK_EQ(0, node->op()->EffectInputCount()); DCHECK_EQ(0, node->op()->EffectOutputCount()); return NoChange(); } Reduction RedundancyElimination::TakeChecksFromFirstEffect(Node* node) { DCHECK_EQ(1, node->op()->EffectOutputCount()); Node* const effect = NodeProperties::GetEffectInput(node); EffectPathChecks const* checks = node_checks_.Get(effect); // If we do not know anything about the predecessor, do not propagate just yet // because we will have to recompute anyway once we compute the predecessor. if (checks == nullptr) return NoChange(); // We just propagate the information from the effect input (ideally, // we would only revisit effect uses if there is change). return UpdateChecks(node, checks); } Reduction RedundancyElimination::UpdateChecks(Node* node, EffectPathChecks const* checks) { EffectPathChecks const* original = node_checks_.Get(node); // Only signal that the {node} has Changed, if the information about {checks} // has changed wrt. the {original}. if (checks != original) { if (original == nullptr || !checks->Equals(original)) { node_checks_.Set(node, checks); return Changed(node); } } return NoChange(); } } // namespace compiler } // namespace internal } // namespace v8