// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include #include "include/v8-internal.h" #include "src/base/bits.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/platform/platform.h" #include "src/builtins/builtins.h" #include "src/codegen/assembler.h" #include "src/codegen/bailout-reason.h" #include "src/codegen/code-factory.h" #include "src/codegen/cpu-features.h" #include "src/codegen/external-reference.h" #include "src/codegen/ia32/assembler-ia32.h" #include "src/codegen/ia32/register-ia32.h" #include "src/codegen/interface-descriptors-inl.h" #include "src/codegen/label.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/register.h" #include "src/codegen/reglist.h" #include "src/codegen/reloc-info.h" #include "src/codegen/turbo-assembler.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/execution/isolate-data.h" #include "src/execution/isolate.h" #include "src/flags/flags.h" #include "src/handles/handles-inl.h" #include "src/handles/handles.h" #include "src/heap/basic-memory-chunk.h" #include "src/heap/factory-inl.h" #include "src/heap/factory.h" #include "src/heap/memory-chunk.h" #include "src/logging/counters.h" #include "src/objects/code.h" #include "src/objects/contexts.h" #include "src/objects/fixed-array.h" #include "src/objects/heap-object.h" #include "src/objects/js-function.h" #include "src/objects/map.h" #include "src/objects/objects.h" #include "src/objects/oddball.h" #include "src/objects/shared-function-info.h" #include "src/objects/slots-inl.h" #include "src/objects/smi.h" #include "src/roots/roots-inl.h" #include "src/roots/roots.h" #include "src/runtime/runtime.h" #include "src/utils/utils.h" // Satisfy cpplint check, but don't include platform-specific header. It is // included recursively via macro-assembler.h. #if 0 #include "src/codegen/ia32/macro-assembler-ia32.h" #endif #define __ ACCESS_MASM(masm) namespace v8 { namespace internal { Operand StackArgumentsAccessor::GetArgumentOperand(int index) const { DCHECK_GE(index, 0); // arg[0] = esp + kPCOnStackSize; // arg[i] = arg[0] + i * kSystemPointerSize; return Operand(esp, kPCOnStackSize + index * kSystemPointerSize); } // ------------------------------------------------------------------------- // MacroAssembler implementation. void TurboAssembler::InitializeRootRegister() { ASM_CODE_COMMENT(this); ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); Move(kRootRegister, Immediate(isolate_root)); } Operand TurboAssembler::RootAsOperand(RootIndex index) { DCHECK(root_array_available()); return Operand(kRootRegister, RootRegisterOffsetForRootIndex(index)); } void TurboAssembler::LoadRoot(Register destination, RootIndex index) { ASM_CODE_COMMENT(this); if (root_array_available()) { mov(destination, RootAsOperand(index)); return; } if (RootsTable::IsImmortalImmovable(index)) { Handle object = isolate()->root_handle(index); if (object->IsSmi()) { mov(destination, Immediate(Smi::cast(*object))); return; } else { DCHECK(object->IsHeapObject()); mov(destination, Handle::cast(object)); return; } } ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); lea(destination, Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); mov(destination, Operand(destination, RootRegisterOffsetForRootIndex(index))); } void TurboAssembler::CompareRoot(Register with, Register scratch, RootIndex index) { ASM_CODE_COMMENT(this); if (root_array_available()) { CompareRoot(with, index); } else { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); lea(scratch, Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); cmp(with, Operand(scratch, RootRegisterOffsetForRootIndex(index))); } } void TurboAssembler::CompareRoot(Register with, RootIndex index) { ASM_CODE_COMMENT(this); if (root_array_available()) { cmp(with, RootAsOperand(index)); return; } DCHECK(RootsTable::IsImmortalImmovable(index)); Handle object = isolate()->root_handle(index); if (object->IsHeapObject()) { cmp(with, Handle::cast(object)); } else { cmp(with, Immediate(Smi::cast(*object))); } } void MacroAssembler::PushRoot(RootIndex index) { ASM_CODE_COMMENT(this); if (root_array_available()) { DCHECK(RootsTable::IsImmortalImmovable(index)); push(RootAsOperand(index)); return; } // TODO(v8:6666): Add a scratch register or remove all uses. DCHECK(RootsTable::IsImmortalImmovable(index)); Handle object = isolate()->root_handle(index); if (object->IsHeapObject()) { Push(Handle::cast(object)); } else { Push(Smi::cast(*object)); } } void MacroAssembler::CompareRange(Register value, unsigned lower_limit, unsigned higher_limit, Register scratch) { ASM_CODE_COMMENT(this); DCHECK_LT(lower_limit, higher_limit); if (lower_limit != 0) { lea(scratch, Operand(value, 0u - lower_limit)); cmp(scratch, Immediate(higher_limit - lower_limit)); } else { cmp(value, Immediate(higher_limit)); } } void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Register scratch, Label* on_in_range, Label::Distance near_jump) { CompareRange(value, lower_limit, higher_limit, scratch); j(below_equal, on_in_range, near_jump); } void TurboAssembler::PushArray(Register array, Register size, Register scratch, PushArrayOrder order) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(array, size, scratch)); Register counter = scratch; Label loop, entry; if (order == PushArrayOrder::kReverse) { mov(counter, 0); jmp(&entry); bind(&loop); Push(Operand(array, counter, times_system_pointer_size, 0)); inc(counter); bind(&entry); cmp(counter, size); j(less, &loop, Label::kNear); } else { mov(counter, size); jmp(&entry); bind(&loop); Push(Operand(array, counter, times_system_pointer_size, 0)); bind(&entry); dec(counter); j(greater_equal, &loop, Label::kNear); } } Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference, Register scratch) { if (root_array_available() && options().enable_root_relative_access) { intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), reference); return Operand(kRootRegister, delta); } if (root_array_available() && options().isolate_independent_code) { if (IsAddressableThroughRootRegister(isolate(), reference)) { // Some external references can be efficiently loaded as an offset from // kRootRegister. intptr_t offset = RootRegisterOffsetForExternalReference(isolate(), reference); return Operand(kRootRegister, offset); } else { // Otherwise, do a memory load from the external reference table. mov(scratch, Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( isolate(), reference))); return Operand(scratch, 0); } } Move(scratch, Immediate(reference)); return Operand(scratch, 0); } // TODO(v8:6666): If possible, refactor into a platform-independent function in // TurboAssembler. Operand TurboAssembler::ExternalReferenceAddressAsOperand( ExternalReference reference) { DCHECK(root_array_available()); DCHECK(options().isolate_independent_code); return Operand( kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry(isolate(), reference)); } // TODO(v8:6666): If possible, refactor into a platform-independent function in // TurboAssembler. Operand TurboAssembler::HeapObjectAsOperand(Handle object) { DCHECK(root_array_available()); Builtin builtin; RootIndex root_index; if (isolate()->roots_table().IsRootHandle(object, &root_index)) { return RootAsOperand(root_index); } else if (isolate()->builtins()->IsBuiltinHandle(object, &builtin)) { return Operand(kRootRegister, RootRegisterOffsetForBuiltin(builtin)); } else if (object.is_identical_to(code_object_) && Builtins::IsBuiltinId(maybe_builtin_)) { return Operand(kRootRegister, RootRegisterOffsetForBuiltin(maybe_builtin_)); } else { // Objects in the constants table need an additional indirection, which // cannot be represented as a single Operand. UNREACHABLE(); } } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { ASM_CODE_COMMENT(this); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); mov(destination, FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index))); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { ASM_CODE_COMMENT(this); DCHECK(is_int32(offset)); DCHECK(root_array_available()); if (offset == 0) { mov(destination, kRootRegister); } else { lea(destination, Operand(kRootRegister, static_cast(offset))); } } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { ASM_CODE_COMMENT(this); DCHECK(root_array_available()); mov(destination, Operand(kRootRegister, offset)); } void TurboAssembler::LoadAddress(Register destination, ExternalReference source) { // TODO(jgruber): Add support for enable_root_relative_access. if (root_array_available() && options().isolate_independent_code) { IndirectLoadExternalReference(destination, source); return; } mov(destination, Immediate(source)); } int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) const { int bytes = 0; RegList saved_regs = kCallerSaved - exclusion; bytes += kSystemPointerSize * saved_regs.Count(); if (fp_mode == SaveFPRegsMode::kSave) { // Count all XMM registers except XMM0. bytes += kStackSavedSavedFPSize * (XMMRegister::kNumRegisters - 1); } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { ASM_CODE_COMMENT(this); // We don't allow a GC in a write barrier slow path so there is no need to // store the registers in any particular way, but we do have to store and // restore them. int bytes = 0; RegList saved_regs = kCallerSaved - exclusion; for (Register reg : saved_regs) { push(reg); bytes += kSystemPointerSize; } if (fp_mode == SaveFPRegsMode::kSave) { // Save all XMM registers except XMM0. const int delta = kStackSavedSavedFPSize * (XMMRegister::kNumRegisters - 1); AllocateStackSpace(delta); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); #if V8_ENABLE_WEBASSEMBLY Movdqu(Operand(esp, (i - 1) * kStackSavedSavedFPSize), reg); #else Movsd(Operand(esp, (i - 1) * kStackSavedSavedFPSize), reg); #endif // V8_ENABLE_WEBASSEMBLY } bytes += delta; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { ASM_CODE_COMMENT(this); int bytes = 0; if (fp_mode == SaveFPRegsMode::kSave) { // Restore all XMM registers except XMM0. const int delta = kStackSavedSavedFPSize * (XMMRegister::kNumRegisters - 1); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); #if V8_ENABLE_WEBASSEMBLY Movdqu(reg, Operand(esp, (i - 1) * kStackSavedSavedFPSize)); #else Movsd(reg, Operand(esp, (i - 1) * kStackSavedSavedFPSize)); #endif // V8_ENABLE_WEBASSEMBLY } add(esp, Immediate(delta)); bytes += delta; } RegList saved_regs = kCallerSaved - exclusion; for (Register reg : base::Reversed(saved_regs)) { pop(reg); bytes += kSystemPointerSize; } return bytes; } void MacroAssembler::RecordWriteField(Register object, int offset, Register value, Register slot_address, SaveFPRegsMode save_fp, SmiCheck smi_check) { ASM_CODE_COMMENT(this); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == SmiCheck::kInline) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kTaggedSize. DCHECK(IsAligned(offset, kTaggedSize)); lea(slot_address, FieldOperand(object, offset)); if (v8_flags.debug_code) { Label ok; test_b(slot_address, Immediate(kTaggedSize - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } RecordWrite(object, slot_address, value, save_fp, SmiCheck::kOmit); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (v8_flags.debug_code) { mov(value, Immediate(base::bit_cast(kZapValue))); mov(slot_address, Immediate(base::bit_cast(kZapValue))); } } void TurboAssembler::MaybeSaveRegisters(RegList registers) { for (Register reg : registers) { push(reg); } } void TurboAssembler::MaybeRestoreRegisters(RegList registers) { for (Register reg : base::Reversed(registers)) { pop(reg); } } void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register slot_address, SaveFPRegsMode fp_mode) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(object, slot_address)); RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address); MaybeSaveRegisters(registers); Register object_parameter = WriteBarrierDescriptor::ObjectRegister(); Register slot_address_parameter = WriteBarrierDescriptor::SlotAddressRegister(); push(object); push(slot_address); pop(slot_address_parameter); pop(object_parameter); Call(isolate()->builtins()->code_handle( Builtins::GetEphemeronKeyBarrierStub(fp_mode)), RelocInfo::CODE_TARGET); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStubSaveRegisters(Register object, Register slot_address, SaveFPRegsMode fp_mode, StubCallMode mode) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(object, slot_address)); RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address); MaybeSaveRegisters(registers); Register object_parameter = WriteBarrierDescriptor::ObjectRegister(); Register slot_address_parameter = WriteBarrierDescriptor::SlotAddressRegister(); push(object); push(slot_address); pop(slot_address_parameter); pop(object_parameter); CallRecordWriteStub(object_parameter, slot_address_parameter, fp_mode, mode); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStub(Register object, Register slot_address, SaveFPRegsMode fp_mode, StubCallMode mode) { ASM_CODE_COMMENT(this); // Use CallRecordWriteStubSaveRegisters if the object and slot registers // need to be caller saved. DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object); DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address); #if V8_ENABLE_WEBASSEMBLY if (mode == StubCallMode::kCallWasmRuntimeStub) { // Use {wasm_call} for direct Wasm call within a module. auto wasm_target = wasm::WasmCode::GetRecordWriteStub(fp_mode); wasm_call(wasm_target, RelocInfo::WASM_STUB_CALL); #else if (false) { #endif } else { Builtin builtin = Builtins::GetRecordWriteStub(fp_mode); CallBuiltin(builtin); } } void MacroAssembler::RecordWrite(Register object, Register slot_address, Register value, SaveFPRegsMode fp_mode, SmiCheck smi_check) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(object, value, slot_address)); AssertNotSmi(object); if (v8_flags.disable_write_barriers) { return; } if (v8_flags.debug_code) { ASM_CODE_COMMENT_STRING(this, "Verify slot_address"); Label ok; cmp(value, Operand(slot_address, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; if (smi_check == SmiCheck::kInline) { // Skip barrier if writing a smi. JumpIfSmi(value, &done, Label::kNear); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingOrInSharedHeapMask, zero, &done, Label::kNear); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); RecordComment("CheckPageFlag]"); CallRecordWriteStub(object, slot_address, fp_mode); bind(&done); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (v8_flags.debug_code) { ASM_CODE_COMMENT_STRING(this, "Clobber slot_address and value"); mov(slot_address, Immediate(base::bit_cast(kZapValue))); mov(value, Immediate(base::bit_cast(kZapValue))); } } void TurboAssembler::Cvtsi2ss(XMMRegister dst, Operand src) { xorps(dst, dst); cvtsi2ss(dst, src); } void TurboAssembler::Cvtsi2sd(XMMRegister dst, Operand src) { xorpd(dst, dst); cvtsi2sd(dst, src); } void TurboAssembler::Cvtui2ss(XMMRegister dst, Operand src, Register tmp) { Label done; Register src_reg = src.is_reg_only() ? src.reg() : tmp; if (src_reg == tmp) mov(tmp, src); cvtsi2ss(dst, src_reg); test(src_reg, src_reg); j(positive, &done, Label::kNear); // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors). if (src_reg != tmp) mov(tmp, src_reg); shr(tmp, 1); // The LSB is shifted into CF. If it is set, set the LSB in {tmp}. Label msb_not_set; j(not_carry, &msb_not_set, Label::kNear); or_(tmp, Immediate(1)); bind(&msb_not_set); cvtsi2ss(dst, tmp); addss(dst, dst); bind(&done); } void TurboAssembler::Cvttss2ui(Register dst, Operand src, XMMRegister tmp) { Label done; cvttss2si(dst, src); test(dst, dst); j(positive, &done); Move(tmp, static_cast(INT32_MIN)); addss(tmp, src); cvttss2si(dst, tmp); or_(dst, Immediate(0x80000000)); bind(&done); } void TurboAssembler::Cvtui2sd(XMMRegister dst, Operand src, Register scratch) { Label done; cmp(src, Immediate(0)); ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); Cvtsi2sd(dst, src); j(not_sign, &done, Label::kNear); addsd(dst, ExternalReferenceAsOperand(uint32_bias, scratch)); bind(&done); } void TurboAssembler::Cvttsd2ui(Register dst, Operand src, XMMRegister tmp) { Move(tmp, -2147483648.0); addsd(tmp, src); cvttsd2si(dst, tmp); add(dst, Immediate(0x80000000)); } void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { DCHECK_GE(63, shift); if (shift >= 32) { mov(high, low); if (shift != 32) shl(high, shift - 32); xor_(low, low); } else { shld(high, low, shift); shl(low, shift); } } void TurboAssembler::ShlPair_cl(Register high, Register low) { ASM_CODE_COMMENT(this); shld_cl(high, low); shl_cl(low); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(high, low); xor_(low, low); bind(&done); } void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) { DCHECK_GE(63, shift); if (shift >= 32) { mov(low, high); if (shift != 32) shr(low, shift - 32); xor_(high, high); } else { shrd(low, high, shift); shr(high, shift); } } void TurboAssembler::ShrPair_cl(Register high, Register low) { ASM_CODE_COMMENT(this); shrd_cl(low, high); shr_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); xor_(high, high); bind(&done); } void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) { ASM_CODE_COMMENT(this); DCHECK_GE(63, shift); if (shift >= 32) { mov(low, high); if (shift != 32) sar(low, shift - 32); sar(high, 31); } else { shrd(low, high, shift); sar(high, shift); } } void TurboAssembler::SarPair_cl(Register high, Register low) { ASM_CODE_COMMENT(this); shrd_cl(low, high); sar_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); sar(high, 31); bind(&done); } void TurboAssembler::LoadMap(Register destination, Register object) { mov(destination, FieldOperand(object, HeapObject::kMapOffset)); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { ASM_CODE_COMMENT(this); LoadMap(map, heap_object); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); } void MacroAssembler::CmpInstanceTypeRange(Register map, Register instance_type_out, Register scratch, InstanceType lower_limit, InstanceType higher_limit) { ASM_CODE_COMMENT(this); DCHECK_LT(lower_limit, higher_limit); movzx_w(instance_type_out, FieldOperand(map, Map::kInstanceTypeOffset)); CompareRange(instance_type_out, lower_limit, higher_limit, scratch); } void MacroAssembler::TestCodeTIsMarkedForDeoptimization(Register codet, Register scratch) { mov(scratch, FieldOperand(codet, Code::kCodeDataContainerOffset)); test(FieldOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); } Immediate MacroAssembler::ClearedValue() const { return Immediate( static_cast(HeapObjectReference::ClearedValue(isolate()).ptr())); } namespace { void TailCallOptimizedCodeSlot(MacroAssembler* masm, Register optimized_code_entry) { // ----------- S t a t e ------------- // -- eax : actual argument count // -- edx : new target (preserved for callee if needed, and caller) // -- edi : target function (preserved for callee if needed, and caller) // ----------------------------------- ASM_CODE_COMMENT(masm); DCHECK(!AreAliased(edx, edi, optimized_code_entry)); Register closure = edi; __ Push(eax); __ Push(edx); Label heal_optimized_code_slot; // If the optimized code is cleared, go to runtime to update the optimization // marker field. __ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot); // Check if the optimized code is marked for deopt. If it is, bailout to a // given label. __ TestCodeTIsMarkedForDeoptimization(optimized_code_entry, eax); __ j(not_zero, &heal_optimized_code_slot); // Optimized code is good, get it into the closure and link the closure // into the optimized functions list, then tail call the optimized code. __ Push(optimized_code_entry); __ ReplaceClosureCodeWithOptimizedCode(optimized_code_entry, closure, edx, ecx); static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ Pop(optimized_code_entry); __ LoadCodeObjectEntry(ecx, optimized_code_entry); __ Pop(edx); __ Pop(eax); __ jmp(ecx); // Optimized code slot contains deoptimized code or code is cleared and // optimized code marker isn't updated. Evict the code, update the marker // and re-enter the closure's code. __ bind(&heal_optimized_code_slot); __ Pop(edx); __ Pop(eax); __ GenerateTailCallToReturnedCode(Runtime::kHealOptimizedCodeSlot); } } // namespace #ifdef V8_ENABLE_DEBUG_CODE void MacroAssembler::AssertFeedbackVector(Register object, Register scratch) { if (v8_flags.debug_code) { CmpObjectType(object, FEEDBACK_VECTOR_TYPE, scratch); Assert(equal, AbortReason::kExpectedFeedbackVector); } } #endif // V8_ENABLE_DEBUG_CODE void MacroAssembler::ReplaceClosureCodeWithOptimizedCode( Register optimized_code, Register closure, Register value, Register slot_address) { ASM_CODE_COMMENT(this); // Store the optimized code in the closure. mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); mov(value, optimized_code); // Write barrier clobbers slot_address below. RecordWriteField(closure, JSFunction::kCodeOffset, value, slot_address, SaveFPRegsMode::kIgnore, SmiCheck::kOmit); } void MacroAssembler::GenerateTailCallToReturnedCode( Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- eax : actual argument count // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- ASM_CODE_COMMENT(this); { FrameScope scope(this, StackFrame::INTERNAL); // Push a copy of the target function, the new target and the actual // argument count. push(kJavaScriptCallTargetRegister); push(kJavaScriptCallNewTargetRegister); SmiTag(kJavaScriptCallArgCountRegister); push(kJavaScriptCallArgCountRegister); // Function is also the parameter to the runtime call. push(kJavaScriptCallTargetRegister); CallRuntime(function_id, 1); mov(ecx, eax); // Restore target function, new target and actual argument count. pop(kJavaScriptCallArgCountRegister); SmiUntag(kJavaScriptCallArgCountRegister); pop(kJavaScriptCallNewTargetRegister); pop(kJavaScriptCallTargetRegister); } static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); JumpCodeObject(ecx); } // Read off the flags in the feedback vector and check if there // is optimized code or a tiering state that needs to be processed. // Registers flags and feedback_vector must be aliased. void MacroAssembler::LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing( Register flags, XMMRegister saved_feedback_vector, CodeKind current_code_kind, Label* flags_need_processing) { ASM_CODE_COMMENT(this); DCHECK(CodeKindCanTierUp(current_code_kind)); Register feedback_vector = flags; // Store feedback_vector. We may need it if we need to load the optimize code // slot entry. movd(saved_feedback_vector, feedback_vector); mov_w(flags, FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset)); // Check if there is optimized code or a tiering state that needes to be // processed. uint32_t kFlagsMask = FeedbackVector::kFlagsTieringStateIsAnyRequested | FeedbackVector::kFlagsMaybeHasTurbofanCode | FeedbackVector::kFlagsLogNextExecution; if (current_code_kind != CodeKind::MAGLEV) { kFlagsMask |= FeedbackVector::kFlagsMaybeHasMaglevCode; } test_w(flags, Immediate(kFlagsMask)); j(not_zero, flags_need_processing); } void MacroAssembler::OptimizeCodeOrTailCallOptimizedCodeSlot( Register flags, XMMRegister saved_feedback_vector) { ASM_CODE_COMMENT(this); Label maybe_has_optimized_code, maybe_needs_logging; // Check if optimized code is available. test(flags, Immediate(FeedbackVector::kFlagsTieringStateIsAnyRequested)); j(zero, &maybe_needs_logging); GenerateTailCallToReturnedCode(Runtime::kCompileOptimized); bind(&maybe_needs_logging); test(flags, Immediate(FeedbackVector::LogNextExecutionBit::kMask)); j(zero, &maybe_has_optimized_code); GenerateTailCallToReturnedCode(Runtime::kFunctionLogNextExecution); bind(&maybe_has_optimized_code); Register optimized_code_entry = flags; Register feedback_vector = flags; movd(feedback_vector, saved_feedback_vector); // Restore feedback vector. mov(optimized_code_entry, FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset)); TailCallOptimizedCodeSlot(this, optimized_code_entry); } #ifdef V8_ENABLE_DEBUG_CODE void MacroAssembler::AssertSmi(Register object) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(equal, AbortReason::kOperandIsNotASmi); } } void MacroAssembler::AssertConstructor(Register object) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor); Push(object); LoadMap(object, object); test_b(FieldOperand(object, Map::kBitFieldOffset), Immediate(Map::Bits1::IsConstructorBit::kMask)); Pop(object); Check(not_zero, AbortReason::kOperandIsNotAConstructor); } } void MacroAssembler::AssertFunction(Register object, Register scratch) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); Push(object); LoadMap(object, object); CmpInstanceTypeRange(object, scratch, scratch, FIRST_JS_FUNCTION_TYPE, LAST_JS_FUNCTION_TYPE); Pop(object); Check(below_equal, AbortReason::kOperandIsNotAFunction); } } void MacroAssembler::AssertCallableFunction(Register object, Register scratch) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); Push(object); LoadMap(object, object); CmpInstanceTypeRange(object, scratch, scratch, FIRST_CALLABLE_JS_FUNCTION_TYPE, LAST_CALLABLE_JS_FUNCTION_TYPE); Pop(object); Check(below_equal, AbortReason::kOperandIsNotACallableFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); Push(object); CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); Pop(object); Check(equal, AbortReason::kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!v8_flags.debug_code) return; ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); { Push(object); Register map = object; LoadMap(map, object); // Check if JSGeneratorObject CmpInstanceTypeRange(map, map, map, FIRST_JS_GENERATOR_OBJECT_TYPE, LAST_JS_GENERATOR_OBJECT_TYPE); Pop(object); } Check(below_equal, AbortReason::kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); Label done_checking; AssertNotSmi(object); CompareRoot(object, scratch, RootIndex::kUndefinedValue); j(equal, &done_checking); LoadRoot(scratch, RootIndex::kAllocationSiteWithWeakNextMap); cmp(FieldOperand(object, 0), scratch); Assert(equal, AbortReason::kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertNotSmi(Register object) { if (v8_flags.debug_code) { ASM_CODE_COMMENT(this); test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmi); } } void TurboAssembler::Assert(Condition cc, AbortReason reason) { if (v8_flags.debug_code) Check(cc, reason); } void TurboAssembler::AssertUnreachable(AbortReason reason) { if (v8_flags.debug_code) Abort(reason); } #endif // V8_ENABLE_DEBUG_CODE void TurboAssembler::StubPrologue(StackFrame::Type type) { ASM_CODE_COMMENT(this); push(ebp); // Caller's frame pointer. mov(ebp, esp); push(Immediate(StackFrame::TypeToMarker(type))); } void TurboAssembler::Prologue() { ASM_CODE_COMMENT(this); push(ebp); // Caller's frame pointer. mov(ebp, esp); push(kContextRegister); // Callee's context. push(kJSFunctionRegister); // Callee's JS function. push(kJavaScriptCallArgCountRegister); // Actual argument count. } void TurboAssembler::DropArguments(Register count, ArgumentsCountType type, ArgumentsCountMode mode) { int receiver_bytes = (mode == kCountExcludesReceiver) ? kSystemPointerSize : 0; switch (type) { case kCountIsInteger: { lea(esp, Operand(esp, count, times_system_pointer_size, receiver_bytes)); break; } case kCountIsSmi: { static_assert(kSmiTagSize == 1 && kSmiTag == 0); // SMIs are stored shifted left by 1 byte with the tag being 0. // This is equivalent to multiplying by 2. To convert SMIs to bytes we // can therefore just multiply the stored value by half the system pointer // size. lea(esp, Operand(esp, count, times_half_system_pointer_size, receiver_bytes)); break; } case kCountIsBytes: { if (receiver_bytes == 0) { add(esp, count); } else { lea(esp, Operand(esp, count, times_1, receiver_bytes)); } break; } } } void TurboAssembler::DropArguments(Register count, Register scratch, ArgumentsCountType type, ArgumentsCountMode mode) { DCHECK(!AreAliased(count, scratch)); PopReturnAddressTo(scratch); DropArguments(count, type, mode); PushReturnAddressFrom(scratch); } void TurboAssembler::DropArgumentsAndPushNewReceiver(Register argc, Register receiver, Register scratch, ArgumentsCountType type, ArgumentsCountMode mode) { DCHECK(!AreAliased(argc, receiver, scratch)); PopReturnAddressTo(scratch); DropArguments(argc, type, mode); Push(receiver); PushReturnAddressFrom(scratch); } void TurboAssembler::DropArgumentsAndPushNewReceiver(Register argc, Operand receiver, Register scratch, ArgumentsCountType type, ArgumentsCountMode mode) { DCHECK(!AreAliased(argc, scratch)); DCHECK(!receiver.is_reg(scratch)); PopReturnAddressTo(scratch); DropArguments(argc, type, mode); Push(receiver); PushReturnAddressFrom(scratch); } void TurboAssembler::EnterFrame(StackFrame::Type type) { ASM_CODE_COMMENT(this); push(ebp); mov(ebp, esp); if (!StackFrame::IsJavaScript(type)) { Push(Immediate(StackFrame::TypeToMarker(type))); } #if V8_ENABLE_WEBASSEMBLY if (type == StackFrame::WASM) Push(kWasmInstanceRegister); #endif // V8_ENABLE_WEBASSEMBLY } void TurboAssembler::LeaveFrame(StackFrame::Type type) { ASM_CODE_COMMENT(this); if (v8_flags.debug_code && !StackFrame::IsJavaScript(type)) { cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(type))); Check(equal, AbortReason::kStackFrameTypesMustMatch); } leave(); } #ifdef V8_OS_WIN void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { ASM_CODE_COMMENT(this); // In windows, we cannot increment the stack size by more than one page // (minimum page size is 4KB) without accessing at least one byte on the // page. Check this: // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx. Label check_offset; Label touch_next_page; jmp(&check_offset); bind(&touch_next_page); sub(esp, Immediate(kStackPageSize)); // Just to touch the page, before we increment further. mov(Operand(esp, 0), Immediate(0)); sub(bytes_scratch, Immediate(kStackPageSize)); bind(&check_offset); cmp(bytes_scratch, kStackPageSize); j(greater_equal, &touch_next_page); sub(esp, bytes_scratch); } void TurboAssembler::AllocateStackSpace(int bytes) { ASM_CODE_COMMENT(this); DCHECK_GE(bytes, 0); while (bytes >= kStackPageSize) { sub(esp, Immediate(kStackPageSize)); mov(Operand(esp, 0), Immediate(0)); bytes -= kStackPageSize; } if (bytes == 0) return; sub(esp, Immediate(bytes)); } #endif void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type, Register scratch) { ASM_CODE_COMMENT(this); DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(+2 * kSystemPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(+1 * kSystemPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset); push(ebp); mov(ebp, esp); // Reserve room for entry stack pointer. push(Immediate(StackFrame::TypeToMarker(frame_type))); DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset); push(Immediate(0)); // Saved entry sp, patched before call. static_assert(edx == kRuntimeCallFunctionRegister); static_assert(esi == kContextRegister); // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address = ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); ExternalReference context_address = ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); ExternalReference c_function_address = ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()); DCHECK(!AreAliased(scratch, ebp, esi, edx)); mov(ExternalReferenceAsOperand(c_entry_fp_address, scratch), ebp); mov(ExternalReferenceAsOperand(context_address, scratch), esi); mov(ExternalReferenceAsOperand(c_function_address, scratch), edx); } void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { ASM_CODE_COMMENT(this); // Optionally save all XMM registers. if (save_doubles) { int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kSystemPointerSize; AllocateStackSpace(space); const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); } } else { AllocateStackSpace(argc * kSystemPointerSize); } // Get the required frame alignment for the OS. const int kFrameAlignment = base::OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); and_(esp, -kFrameAlignment); } // Patch the saved entry sp. mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); } void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type) { ASM_CODE_COMMENT(this); EnterExitFramePrologue(frame_type, edi); // Set up argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kSystemPointerSize; mov(edi, eax); lea(esi, Operand(ebp, eax, times_system_pointer_size, offset)); // Reserve space for argc, argv and isolate. EnterExitFrameEpilogue(argc, save_doubles); } void MacroAssembler::EnterApiExitFrame(int argc, Register scratch) { EnterExitFramePrologue(StackFrame::EXIT, scratch); EnterExitFrameEpilogue(argc, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { ASM_CODE_COMMENT(this); // Optionally restore all XMM registers. if (save_doubles) { const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); } } if (pop_arguments) { // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kSystemPointerSize)); mov(ebp, Operand(ebp, 0 * kSystemPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kSystemPointerSize)); // Push the return address to get ready to return. push(ecx); } else { // Otherwise just leave the exit frame. leave(); } LeaveExitFrameEpilogue(); } void MacroAssembler::LeaveExitFrameEpilogue() { ASM_CODE_COMMENT(this); // Clear the top frame. ExternalReference c_entry_fp_address = ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); mov(ExternalReferenceAsOperand(c_entry_fp_address, esi), Immediate(0)); // Restore current context from top and clear it in debug mode. ExternalReference context_address = ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); mov(esi, ExternalReferenceAsOperand(context_address, esi)); #ifdef DEBUG push(eax); mov(ExternalReferenceAsOperand(context_address, eax), Immediate(Context::kInvalidContext)); pop(eax); #endif } void MacroAssembler::LeaveApiExitFrame() { ASM_CODE_COMMENT(this); mov(esp, ebp); pop(ebp); LeaveExitFrameEpilogue(); } void MacroAssembler::PushStackHandler(Register scratch) { ASM_CODE_COMMENT(this); // Adjust this code if not the case. static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize); static_assert(StackHandlerConstants::kNextOffset == 0); push(Immediate(0)); // Padding. // Link the current handler as the next handler. ExternalReference handler_address = ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); push(ExternalReferenceAsOperand(handler_address, scratch)); // Set this new handler as the current one. mov(ExternalReferenceAsOperand(handler_address, scratch), esp); } void MacroAssembler::PopStackHandler(Register scratch) { ASM_CODE_COMMENT(this); static_assert(StackHandlerConstants::kNextOffset == 0); ExternalReference handler_address = ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); pop(ExternalReferenceAsOperand(handler_address, scratch)); add(esp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize)); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { ASM_CODE_COMMENT(this); // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(kRuntimeCallArgCountRegister, Immediate(num_arguments)); Move(kRuntimeCallFunctionRegister, Immediate(ExternalReference::Create(f))); Handle code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[8] : argument num_arguments - 1 // ... // -- esp[8 * num_arguments] : argument 0 (receiver) // // For runtime functions with variable arguments: // -- eax : number of arguments // ----------------------------------- ASM_CODE_COMMENT(this); const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(kRuntimeCallArgCountRegister, Immediate(function->nargs)); } JumpToExternalReference(ExternalReference::Create(fid)); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame) { ASM_CODE_COMMENT(this); // Set the entry point and jump to the C entry runtime stub. Move(kRuntimeCallFunctionRegister, Immediate(ext)); Handle code = CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore, ArgvMode::kStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToOffHeapInstructionStream(Address entry) { jmp(entry, RelocInfo::OFF_HEAP_TARGET); } void MacroAssembler::CompareStackLimit(Register with, StackLimitKind kind) { ASM_CODE_COMMENT(this); DCHECK(root_array_available()); Isolate* isolate = this->isolate(); // Address through the root register. No load is needed. ExternalReference limit = kind == StackLimitKind::kRealStackLimit ? ExternalReference::address_of_real_jslimit(isolate) : ExternalReference::address_of_jslimit(isolate); DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); intptr_t offset = TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); cmp(with, Operand(kRootRegister, offset)); } void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch, Label* stack_overflow, bool include_receiver) { ASM_CODE_COMMENT(this); DCHECK_NE(num_args, scratch); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. ExternalReference real_stack_limit = ExternalReference::address_of_real_jslimit(isolate()); // Compute the space that is left as a negative number in scratch. If // we already overflowed, this will be a positive number. mov(scratch, ExternalReferenceAsOperand(real_stack_limit, scratch)); sub(scratch, esp); // TODO(victorgomes): Remove {include_receiver} and always require one extra // word of the stack space. lea(scratch, Operand(scratch, num_args, times_system_pointer_size, 0)); if (include_receiver) { add(scratch, Immediate(kSystemPointerSize)); } // See if we overflowed, i.e. scratch is positive. cmp(scratch, Immediate(0)); // TODO(victorgomes): Save some bytes in the builtins that use stack checks // by jumping to a builtin that throws the exception. j(greater, stack_overflow); // Signed comparison. } void MacroAssembler::InvokePrologue(Register expected_parameter_count, Register actual_parameter_count, Label* done, InvokeType type) { if (expected_parameter_count == actual_parameter_count) return; ASM_CODE_COMMENT(this); DCHECK_EQ(actual_parameter_count, eax); DCHECK_EQ(expected_parameter_count, ecx); Label regular_invoke; // If the expected parameter count is equal to the adaptor sentinel, no need // to push undefined value as arguments. if (kDontAdaptArgumentsSentinel != 0) { cmp(expected_parameter_count, Immediate(kDontAdaptArgumentsSentinel)); j(equal, ®ular_invoke, Label::kFar); } // If overapplication or if the actual argument count is equal to the // formal parameter count, no need to push extra undefined values. sub(expected_parameter_count, actual_parameter_count); j(less_equal, ®ular_invoke, Label::kFar); // We need to preserve edx, edi, esi and ebx. movd(xmm0, edx); movd(xmm1, edi); movd(xmm2, esi); movd(xmm3, ebx); Label stack_overflow; StackOverflowCheck(expected_parameter_count, edx, &stack_overflow); Register scratch = esi; // Underapplication. Move the arguments already in the stack, including the // receiver and the return address. { Label copy, check; Register src = edx, dest = esp, num = edi, current = ebx; mov(src, esp); lea(scratch, Operand(expected_parameter_count, times_system_pointer_size, 0)); AllocateStackSpace(scratch); // Extra words are the receiver (if not already included in argc) and the // return address (if a jump). int extra_words = type == InvokeType::kCall ? 0 : 1; lea(num, Operand(eax, extra_words)); // Number of words to copy. Move(current, 0); // Fall-through to the loop body because there are non-zero words to copy. bind(©); mov(scratch, Operand(src, current, times_system_pointer_size, 0)); mov(Operand(dest, current, times_system_pointer_size, 0), scratch); inc(current); bind(&check); cmp(current, num); j(less, ©); lea(edx, Operand(esp, num, times_system_pointer_size, 0)); } // Fill remaining expected arguments with undefined values. movd(ebx, xmm3); // Restore root. LoadRoot(scratch, RootIndex::kUndefinedValue); { Label loop; bind(&loop); dec(expected_parameter_count); mov(Operand(edx, expected_parameter_count, times_system_pointer_size, 0), scratch); j(greater, &loop, Label::kNear); } // Restore remaining registers. movd(esi, xmm2); movd(edi, xmm1); movd(edx, xmm0); jmp(®ular_invoke); bind(&stack_overflow); { FrameScope frame( this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL); CallRuntime(Runtime::kThrowStackOverflow); int3(); // This should be unreachable. } bind(®ular_invoke); } void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count) { ASM_CODE_COMMENT(this); FrameScope frame( this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL); SmiTag(expected_parameter_count); Push(expected_parameter_count); SmiTag(actual_parameter_count); Push(actual_parameter_count); SmiUntag(actual_parameter_count); if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); // Arguments are located 2 words below the base pointer. Operand receiver_op = Operand(ebp, kSystemPointerSize * 2); Push(receiver_op); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } Pop(actual_parameter_count); SmiUntag(actual_parameter_count); Pop(expected_parameter_count); SmiUntag(expected_parameter_count); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeType type) { ASM_CODE_COMMENT(this); // You can't call a function without a valid frame. DCHECK_IMPLIES(type == InvokeType::kCall, has_frame()); DCHECK_EQ(function, edi); DCHECK_IMPLIES(new_target.is_valid(), new_target == edx); DCHECK(expected_parameter_count == ecx || expected_parameter_count == eax); DCHECK_EQ(actual_parameter_count, eax); // On function call, call into the debugger if necessary. Label debug_hook, continue_after_hook; { ExternalReference debug_hook_active = ExternalReference::debug_hook_on_function_call_address(isolate()); push(eax); cmpb(ExternalReferenceAsOperand(debug_hook_active, eax), Immediate(0)); pop(eax); j(not_equal, &debug_hook); } bind(&continue_after_hook); // Clear the new.target register if not given. if (!new_target.is_valid()) { Move(edx, isolate()->factory()->undefined_value()); } Label done; InvokePrologue(expected_parameter_count, actual_parameter_count, &done, type); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); mov(ecx, FieldOperand(function, JSFunction::kCodeOffset)); switch (type) { case InvokeType::kCall: CallCodeObject(ecx); break; case InvokeType::kJump: JumpCodeObject(ecx); break; } jmp(&done, Label::kNear); // Deferred debug hook. bind(&debug_hook); CallDebugOnFunctionCall(function, new_target, expected_parameter_count, actual_parameter_count); jmp(&continue_after_hook); bind(&done); } void MacroAssembler::InvokeFunction(Register fun, Register new_target, Register actual_parameter_count, InvokeType type) { ASM_CODE_COMMENT(this); // You can't call a function without a valid frame. DCHECK(type == InvokeType::kJump || has_frame()); DCHECK(fun == edi); mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); movzx_w(ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset)); InvokeFunctionCode(edi, new_target, ecx, actual_parameter_count, type); } void MacroAssembler::LoadGlobalProxy(Register dst) { LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); } void MacroAssembler::LoadNativeContextSlot(Register destination, int index) { ASM_CODE_COMMENT(this); // Load the native context from the current context. LoadMap(destination, esi); mov(destination, FieldOperand(destination, Map::kConstructorOrBackPointerOrNativeContextOffset)); // Load the function from the native context. mov(destination, Operand(destination, Context::SlotOffset(index))); } void TurboAssembler::Ret() { ret(0); } void TurboAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); add(esp, Immediate(bytes_dropped)); push(scratch); ret(0); } } void TurboAssembler::Push(Immediate value) { if (root_array_available() && options().isolate_independent_code) { if (value.is_embedded_object()) { Push(HeapObjectAsOperand(value.embedded_object())); return; } else if (value.is_external_reference()) { Push(ExternalReferenceAddressAsOperand(value.external_reference())); return; } } push(value); } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { add(esp, Immediate(stack_elements * kSystemPointerSize)); } } void TurboAssembler::Move(Register dst, Register src) { if (dst != src) { mov(dst, src); } } void TurboAssembler::Move(Register dst, const Immediate& src) { if (!src.is_heap_number_request() && src.is_zero()) { xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. } else if (src.is_external_reference()) { LoadAddress(dst, src.external_reference()); } else { mov(dst, src); } } void TurboAssembler::Move(Operand dst, const Immediate& src) { // Since there's no scratch register available, take a detour through the // stack. if (root_array_available() && options().isolate_independent_code) { if (src.is_embedded_object() || src.is_external_reference() || src.is_heap_number_request()) { Push(src); pop(dst); return; } } if (src.is_embedded_object()) { mov(dst, src.embedded_object()); } else { mov(dst, src); } } void TurboAssembler::Move(Register dst, Operand src) { mov(dst, src); } void TurboAssembler::Move(Register dst, Handle src) { if (root_array_available() && options().isolate_independent_code) { IndirectLoadConstant(dst, src); return; } mov(dst, src); } void TurboAssembler::Move(XMMRegister dst, uint32_t src) { if (src == 0) { pxor(dst, dst); } else { unsigned cnt = base::bits::CountPopulation(src); unsigned nlz = base::bits::CountLeadingZeros32(src); unsigned ntz = base::bits::CountTrailingZeros32(src); if (nlz + cnt + ntz == 32) { pcmpeqd(dst, dst); if (ntz == 0) { psrld(dst, 32 - cnt); } else { pslld(dst, 32 - cnt); if (nlz != 0) psrld(dst, nlz); } } else { push(eax); mov(eax, Immediate(src)); movd(dst, Operand(eax)); pop(eax); } } } void TurboAssembler::Move(XMMRegister dst, uint64_t src) { if (src == 0) { pxor(dst, dst); } else { uint32_t lower = static_cast(src); uint32_t upper = static_cast(src >> 32); unsigned cnt = base::bits::CountPopulation(src); unsigned nlz = base::bits::CountLeadingZeros64(src); unsigned ntz = base::bits::CountTrailingZeros64(src); if (nlz + cnt + ntz == 64) { pcmpeqd(dst, dst); if (ntz == 0) { psrlq(dst, 64 - cnt); } else { psllq(dst, 64 - cnt); if (nlz != 0) psrlq(dst, nlz); } } else if (lower == 0) { Move(dst, upper); psllq(dst, 32); } else if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope(this, SSE4_1); push(eax); Move(eax, Immediate(lower)); movd(dst, Operand(eax)); if (upper != lower) { Move(eax, Immediate(upper)); } pinsrd(dst, Operand(eax), 1); pop(eax); } else { push(Immediate(upper)); push(Immediate(lower)); movsd(dst, Operand(esp, 0)); add(esp, Immediate(kDoubleSize)); } } } void TurboAssembler::PextrdPreSse41(Register dst, XMMRegister src, uint8_t imm8) { if (imm8 == 0) { Movd(dst, src); return; } // Without AVX or SSE, we can only have 64-bit values in xmm registers. // We don't have an xmm scratch register, so move the data via the stack. This // path is rarely required, so it's acceptable to be slow. DCHECK_LT(imm8, 2); AllocateStackSpace(kDoubleSize); movsd(Operand(esp, 0), src); mov(dst, Operand(esp, imm8 * kUInt32Size)); add(esp, Immediate(kDoubleSize)); } void TurboAssembler::PinsrdPreSse41(XMMRegister dst, Operand src, uint8_t imm8, uint32_t* load_pc_offset) { // Without AVX or SSE, we can only have 64-bit values in xmm registers. // We don't have an xmm scratch register, so move the data via the stack. This // path is rarely required, so it's acceptable to be slow. DCHECK_LT(imm8, 2); AllocateStackSpace(kDoubleSize); // Write original content of {dst} to the stack. movsd(Operand(esp, 0), dst); // Overwrite the portion specified in {imm8}. if (src.is_reg_only()) { mov(Operand(esp, imm8 * kUInt32Size), src.reg()); } else { movss(dst, src); movss(Operand(esp, imm8 * kUInt32Size), dst); } // Load back the full value into {dst}. movsd(dst, Operand(esp, 0)); add(esp, Immediate(kDoubleSize)); } void TurboAssembler::Lzcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(LZCNT)) { CpuFeatureScope scope(this, LZCNT); lzcnt(dst, src); return; } Label not_zero_src; bsr(dst, src); j(not_zero, ¬_zero_src, Label::kNear); mov(dst, 63); // 63^31 == 32 bind(¬_zero_src); xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. } void TurboAssembler::Tzcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(BMI1)) { CpuFeatureScope scope(this, BMI1); tzcnt(dst, src); return; } Label not_zero_src; bsf(dst, src); j(not_zero, ¬_zero_src, Label::kNear); mov(dst, 32); // The result of tzcnt is 32 if src = 0. bind(¬_zero_src); } void TurboAssembler::Popcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(POPCNT)) { CpuFeatureScope scope(this, POPCNT); popcnt(dst, src); return; } FATAL("no POPCNT support"); } void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) { ASM_CODE_COMMENT(this); cmp(in_out, Immediate(kClearedWeakHeapObjectLower32)); j(equal, target_if_cleared); and_(in_out, Immediate(~kWeakHeapObjectMask)); } void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value, Register scratch) { DCHECK_GT(value, 0); if (v8_flags.native_code_counters && counter->Enabled()) { ASM_CODE_COMMENT(this); Operand operand = ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::EmitDecrementCounter(StatsCounter* counter, int value, Register scratch) { DCHECK_GT(value, 0); if (v8_flags.native_code_counters && counter->Enabled()) { ASM_CODE_COMMENT(this); Operand operand = ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void TurboAssembler::Check(Condition cc, AbortReason reason) { Label L; j(cc, &L); Abort(reason); // will not return here bind(&L); } void TurboAssembler::CheckStackAlignment() { ASM_CODE_COMMENT(this); int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kSystemPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; test(esp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void TurboAssembler::Abort(AbortReason reason) { if (v8_flags.code_comments) { const char* msg = GetAbortReason(reason); RecordComment("Abort message: "); RecordComment(msg); } // Avoid emitting call to builtin if requested. if (trap_on_abort()) { int3(); return; } if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NO_FRAME_TYPE); PrepareCallCFunction(1, eax); mov(Operand(esp, 0), Immediate(static_cast(reason))); CallCFunction(ExternalReference::abort_with_reason(), 1); return; } Move(edx, Smi::FromInt(static_cast(reason))); { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NO_FRAME_TYPE); if (root_array_available()) { // Generate an indirect call via builtins entry table here in order to // ensure that the interpreter_entry_return_pc_offset is the same for // InterpreterEntryTrampoline and InterpreterEntryTrampolineForProfiling // when v8_flags.debug_code is enabled. Call(EntryFromBuiltinAsOperand(Builtin::kAbort)); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } } // will not return here int3(); } void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { ASM_CODE_COMMENT(this); int frame_alignment = base::OS::ActivationFrameAlignment(); if (frame_alignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. mov(scratch, esp); AllocateStackSpace((num_arguments + 1) * kSystemPointerSize); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); and_(esp, -frame_alignment); mov(Operand(esp, num_arguments * kSystemPointerSize), scratch); } else { AllocateStackSpace(num_arguments * kSystemPointerSize); } } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { // Trashing eax is ok as it will be the return value. Move(eax, Immediate(function)); CallCFunction(eax, num_arguments); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { ASM_CODE_COMMENT(this); DCHECK_LE(num_arguments, kMaxCParameters); DCHECK(has_frame()); // Check stack alignment. if (v8_flags.debug_code) { CheckStackAlignment(); } // Save the frame pointer and PC so that the stack layout remains iterable, // even without an ExitFrame which normally exists between JS and C frames. // Find two caller-saved scratch registers. Register pc_scratch = eax; Register scratch = ecx; if (function == eax) pc_scratch = edx; if (function == ecx) scratch = edx; PushPC(); pop(pc_scratch); // See x64 code for reasoning about how to address the isolate data fields. DCHECK_IMPLIES(!root_array_available(), isolate() != nullptr); mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_pc_address(isolate()), scratch), pc_scratch); mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_fp_address(isolate()), scratch), ebp); call(function); // We don't unset the PC; the FP is the source of truth. mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_fp_address(isolate()), scratch), Immediate(0)); if (base::OS::ActivationFrameAlignment() != 0) { mov(esp, Operand(esp, num_arguments * kSystemPointerSize)); } else { add(esp, Immediate(num_arguments * kSystemPointerSize)); } } void TurboAssembler::PushPC() { // Push the current PC onto the stack as "return address" via calling // the next instruction. Label get_pc; call(&get_pc); bind(&get_pc); } void TurboAssembler::Call(Handle code_object, RelocInfo::Mode rmode) { ASM_CODE_COMMENT(this); DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code_object)); Builtin builtin = Builtin::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin)) { CallBuiltin(builtin); return; } DCHECK(RelocInfo::IsCodeTarget(rmode)); call(code_object, rmode); } void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { ASM_CODE_COMMENT(this); static_assert(kSystemPointerSize == 4); static_assert(kSmiShiftSize == 0); static_assert(kSmiTagSize == 1); static_assert(kSmiTag == 0); // The builtin_index register contains the builtin index as a Smi. // Untagging is folded into the indexing operand below (we use // times_half_system_pointer_size instead of times_system_pointer_size since // smis are already shifted by one). mov(builtin_index, Operand(kRootRegister, builtin_index, times_half_system_pointer_size, IsolateData::builtin_entry_table_offset())); } void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { ASM_CODE_COMMENT(this); LoadEntryFromBuiltinIndex(builtin_index); call(builtin_index); } void TurboAssembler::CallBuiltin(Builtin builtin) { ASM_CODE_COMMENT_STRING(this, CommentForOffHeapTrampoline("call", builtin)); switch (options().builtin_call_jump_mode) { case BuiltinCallJumpMode::kAbsolute: { call(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET); break; } case BuiltinCallJumpMode::kPCRelative: UNREACHABLE(); case BuiltinCallJumpMode::kIndirect: call(EntryFromBuiltinAsOperand(builtin)); break; case BuiltinCallJumpMode::kForMksnapshot: { Handle code = isolate()->builtins()->code_handle(builtin); call(code, RelocInfo::CODE_TARGET); break; } } } void TurboAssembler::TailCallBuiltin(Builtin builtin) { ASM_CODE_COMMENT_STRING(this, CommentForOffHeapTrampoline("tail call", builtin)); switch (options().builtin_call_jump_mode) { case BuiltinCallJumpMode::kAbsolute: { jmp(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET); break; } case BuiltinCallJumpMode::kPCRelative: UNREACHABLE(); case BuiltinCallJumpMode::kIndirect: jmp(EntryFromBuiltinAsOperand(builtin)); break; case BuiltinCallJumpMode::kForMksnapshot: { Handle code = isolate()->builtins()->code_handle(builtin); jmp(code, RelocInfo::CODE_TARGET); break; } } } Operand TurboAssembler::EntryFromBuiltinAsOperand(Builtin builtin) { ASM_CODE_COMMENT(this); return Operand(kRootRegister, IsolateData::BuiltinEntrySlotOffset(builtin)); } void TurboAssembler::LoadCodeObjectEntry(Register destination, Register code_object) { ASM_CODE_COMMENT(this); // Code objects are called differently depending on whether we are generating // builtin code (which will later be embedded into the binary) or compiling // user JS code at runtime. // * Builtin code runs in --jitless mode and thus must not call into on-heap // Code targets. Instead, we dispatch through the builtins entry table. // * Codegen at runtime does not have this restriction and we can use the // shorter, branchless instruction sequence. The assumption here is that // targets are usually generated code and not builtin Code objects. if (options().isolate_independent_code) { DCHECK(root_array_available()); Label if_code_is_off_heap, out; // Check whether the Code object is an off-heap trampoline. If so, call its // (off-heap) entry point directly without going through the (on-heap) // trampoline. Otherwise, just call the Code object as always. test(FieldOperand(code_object, Code::kFlagsOffset), Immediate(Code::IsOffHeapTrampoline::kMask)); j(not_equal, &if_code_is_off_heap); // Not an off-heap trampoline, the entry point is at // Code::raw_instruction_start(). Move(destination, code_object); add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); jmp(&out); // An off-heap trampoline, the entry point is loaded from the builtin entry // table. bind(&if_code_is_off_heap); mov(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset)); mov(destination, Operand(kRootRegister, destination, times_system_pointer_size, IsolateData::builtin_entry_table_offset())); bind(&out); } else { Move(destination, code_object); add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); } } void TurboAssembler::CallCodeObject(Register code_object) { ASM_CODE_COMMENT(this); LoadCodeObjectEntry(code_object, code_object); call(code_object); } void TurboAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) { ASM_CODE_COMMENT(this); LoadCodeObjectEntry(code_object, code_object); switch (jump_mode) { case JumpMode::kJump: jmp(code_object); return; case JumpMode::kPushAndReturn: push(code_object); ret(0); return; } } void TurboAssembler::Jump(const ExternalReference& reference) { DCHECK(root_array_available()); jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( isolate(), reference))); } void TurboAssembler::Jump(Handle code_object, RelocInfo::Mode rmode) { DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code_object)); Builtin builtin = Builtin::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin)) { TailCallBuiltin(builtin); return; } DCHECK(RelocInfo::IsCodeTarget(rmode)); jmp(code_object, rmode); } void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { ASM_CODE_COMMENT(this); DCHECK(cc == zero || cc == not_zero); if (scratch == object) { and_(scratch, Immediate(~kPageAlignmentMask)); } else { mov(scratch, Immediate(~kPageAlignmentMask)); and_(scratch, object); } if (mask < (1 << kBitsPerByte)) { test_b(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); } else { test(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void TurboAssembler::ComputeCodeStartAddress(Register dst) { ASM_CODE_COMMENT(this); // In order to get the address of the current instruction, we first need // to use a call and then use a pop, thus pushing the return address to // the stack and then popping it into the register. Label current; call(¤t); int pc = pc_offset(); bind(¤t); pop(dst); if (pc != 0) { sub(dst, Immediate(pc)); } } void TurboAssembler::CallForDeoptimization(Builtin target, int, Label* exit, DeoptimizeKind kind, Label* ret, Label*) { ASM_CODE_COMMENT(this); CallBuiltin(target); DCHECK_EQ(SizeOfCodeGeneratedSince(exit), (kind == DeoptimizeKind::kLazy) ? Deoptimizer::kLazyDeoptExitSize : Deoptimizer::kEagerDeoptExitSize); } void TurboAssembler::Trap() { int3(); } void TurboAssembler::DebugBreak() { int3(); } } // namespace internal } // namespace v8 #undef __ #endif // V8_TARGET_ARCH_IA32