// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/render_text.h" #include #include #include #include "base/check_op.h" #include "base/command_line.h" #include "base/cxx17_backports.h" #include "base/i18n/break_iterator.h" #include "base/i18n/char_iterator.h" #include "base/notreached.h" #include "base/numerics/safe_conversions.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "base/trace_event/trace_event.h" #include "build/build_config.h" #include "cc/paint/paint_canvas.h" #include "cc/paint/paint_shader.h" #include "third_party/icu/source/common/unicode/rbbi.h" #include "third_party/icu/source/common/unicode/uchar.h" #include "third_party/icu/source/common/unicode/utf16.h" #include "third_party/skia/include/core/SkDrawLooper.h" #include "third_party/skia/include/core/SkFontStyle.h" #include "third_party/skia/include/core/SkTextBlob.h" #include "third_party/skia/include/core/SkTypeface.h" #include "third_party/skia/include/effects/SkGradientShader.h" #include "ui/gfx/canvas.h" #include "ui/gfx/geometry/insets.h" #include "ui/gfx/geometry/size_conversions.h" #include "ui/gfx/platform_font.h" #include "ui/gfx/render_text_harfbuzz.h" #include "ui/gfx/scoped_canvas.h" #include "ui/gfx/skia_paint_util.h" #include "ui/gfx/skia_util.h" #include "ui/gfx/text_elider.h" #include "ui/gfx/text_utils.h" #include "ui/gfx/utf16_indexing.h" #if defined(OS_WIN) #include "base/win/windows_version.h" #endif namespace gfx { namespace { // Replacement codepoint for elided text. constexpr char16_t kEllipsisCodepoint = 0x2026; // Fraction of the text size to raise the center of a strike-through line above // the baseline. const SkScalar kStrikeThroughOffset = (SK_Scalar1 * 65 / 252); // Fraction of the text size to lower an underline below the baseline. const SkScalar kUnderlineOffset = (SK_Scalar1 / 9); // Float comparison needs epsilon to consider rounding errors in float // arithmetic. Epsilon should be dependent on the context and here, we are // dealing with glyph widths, use a fairly large number. const float kFloatComparisonEpsilon = 0.001f; float Clamp(float f) { return f < kFloatComparisonEpsilon ? 0 : f; } // Given |font| and |display_width|, returns the width of the fade gradient. int CalculateFadeGradientWidth(const FontList& font_list, int display_width) { // Fade in/out about 3 characters of the beginning/end of the string. // Use a 1/3 of the display width if the display width is very short. const int narrow_width = font_list.GetExpectedTextWidth(3); const int gradient_width = std::min(narrow_width, base::ClampRound(display_width / 3.f)); DCHECK_GE(gradient_width, 0); return gradient_width; } // Appends to |positions| and |colors| values corresponding to the fade over // |fade_rect| from color |c0| to color |c1|. void AddFadeEffect(const Rect& text_rect, const Rect& fade_rect, SkColor c0, SkColor c1, std::vector* positions, std::vector* colors) { const SkScalar left = static_cast(fade_rect.x() - text_rect.x()); const SkScalar width = static_cast(fade_rect.width()); const SkScalar p0 = left / text_rect.width(); const SkScalar p1 = (left + width) / text_rect.width(); // Prepend 0.0 to |positions|, as required by Skia. if (positions->empty() && p0 != 0.0) { positions->push_back(0.0); colors->push_back(c0); } positions->push_back(p0); colors->push_back(c0); positions->push_back(p1); colors->push_back(c1); } // Creates a SkShader to fade the text, with |left_part| specifying the left // fade effect, if any, and |right_part| specifying the right fade effect. sk_sp CreateFadeShader(const FontList& font_list, const Rect& text_rect, const Rect& left_part, const Rect& right_part, SkColor color) { // The shader should only specify transparency of the fade itself, not the // original transparency, which will be applied by the actual renderer. DCHECK_EQ(SkColorGetA(color), static_cast(0xff)); // In general, fade down to 0 alpha. But when the available width is less // than four characters, linearly ramp up the fade target alpha to as high as // 20% at zero width. This allows the user to see the last faded characters a // little better when there are only a few characters shown. const float width_fraction = text_rect.width() / static_cast(font_list.GetExpectedTextWidth(4)); const SkAlpha kAlphaAtZeroWidth = 51; const SkAlpha alpha = (width_fraction < 1) ? base::ClampRound((1 - width_fraction) * kAlphaAtZeroWidth) : 0; const SkColor fade_color = SkColorSetA(color, alpha); std::vector positions; std::vector colors; if (!left_part.IsEmpty()) AddFadeEffect(text_rect, left_part, fade_color, color, &positions, &colors); if (!right_part.IsEmpty()) AddFadeEffect(text_rect, right_part, color, fade_color, &positions, &colors); DCHECK(!positions.empty()); // Terminate |positions| with 1.0, as required by Skia. if (positions.back() != 1.0) { positions.push_back(1.0); colors.push_back(colors.back()); } const SkPoint points[2] = { PointToSkPoint(text_rect.origin()), PointToSkPoint(text_rect.top_right()) }; return cc::PaintShader::MakeLinearGradient( &points[0], &colors[0], &positions[0], static_cast(colors.size()), SkTileMode::kClamp); } // Converts a FontRenderParams::Hinting value to the corresponding // SkFontHinting value. SkFontHinting FontRenderParamsHintingToSkFontHinting( FontRenderParams::Hinting params_hinting) { switch (params_hinting) { case FontRenderParams::HINTING_NONE: return SkFontHinting::kNone; case FontRenderParams::HINTING_SLIGHT: return SkFontHinting::kSlight; case FontRenderParams::HINTING_MEDIUM: return SkFontHinting::kNormal; case FontRenderParams::HINTING_FULL: return SkFontHinting::kFull; } return SkFontHinting::kNone; } // Make sure ranges don't break text graphemes. If a range in |break_list| // does break a grapheme in |render_text|, the range will be slightly // extended to encompass the grapheme. template void RestoreBreakList(RenderText* render_text, BreakList* break_list) { break_list->SetMax(render_text->text().length()); Range range; while (range.end() < break_list->max()) { const auto& current_break = break_list->GetBreak(range.end()); range = break_list->GetRange(current_break); if (range.end() < break_list->max() && !render_text->IsValidCursorIndex(range.end())) { range.set_end( render_text->IndexOfAdjacentGrapheme(range.end(), CURSOR_FORWARD)); break_list->ApplyValue(current_break->second, range); } } } // Move the iterator |iter| forward until |position| is included in the range. template typename BreakList::const_iterator IncrementBreakListIteratorToPosition( const BreakList& break_list, typename BreakList::const_iterator iter, size_t position) { for (; iter != break_list.breaks().end(); ++iter) { const Range range = break_list.GetRange(iter); if (position >= range.start() && position < range.end()) break; } return iter; } // Replaces the unicode control characters, control characters and PUA (Private // Use Areas) codepoints. UChar32 ReplaceControlCharacter(UChar32 codepoint) { // 'REPLACEMENT CHARACTER' used to replace an unknown, // unrecognized or unrepresentable character. constexpr char16_t kReplacementCodepoint = 0xFFFD; // Control Pictures block (see: // https://unicode.org/charts/PDF/U2400.pdf). constexpr char16_t kSymbolsCodepoint = 0x2400; if (codepoint >= 0 && codepoint <= 0x1F) { // Replace codepoints with their visual symbols, which are // at the same offset from kSymbolsCodepoint. return kSymbolsCodepoint + codepoint; } if (codepoint == 0x7F) { // Replace the 'del' codepoint by its symbol (u2421). return kSymbolsCodepoint + 0x21; } if (!U_IS_UNICODE_CHAR(codepoint)) { // Unicode codepoint that can't be assigned a character. // This handles: // - single surrogate codepoints, // - last two codepoints on each plane, // - invalid characters (e.g. u+fdd0..u+fdef) // - codepoints above u+10ffff return kReplacementCodepoint; } if (codepoint > 0x7F) { // Private use codepoints are working with a pair of font // and codepoint, but they are not used in Chrome. #if defined(OS_MAC) // Support Apple defined PUA on Mac. // see: http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/CORPCHAR.TXT if (codepoint == 0xF8FF) return codepoint; #endif #if defined(OS_WIN) // Support Microsoft defined PUA on Windows. // see: // https://docs.microsoft.com/en-us/windows/uwp/design/style/segoe-ui-symbol-font if (base::win::GetVersion() >= base::win::Version::WIN10) { switch (codepoint) { case 0xF093: // ButtonA case 0xF094: // ButtonB case 0xF095: // ButtonY case 0xF096: // ButtonX case 0xF108: // LeftStick case 0xF109: // RightStick case 0xF10A: // TriggerLeft case 0xF10B: // TriggerRight case 0xF10C: // BumperLeft case 0xF10D: // BumperRight case 0xF10E: // Dpad case 0xEECA: // ButtonView2 case 0xEDE3: // ButtonMenu return codepoint; default: break; } } #endif const int8_t codepoint_category = u_charType(codepoint); if (codepoint_category == U_PRIVATE_USE_CHAR || codepoint_category == U_CONTROL_CHAR) { return kReplacementCodepoint; } } return codepoint; } // Returns the line segment index for the |line|, |text_x| pair. |text_x| is // relative to text in the given line. Returns -1 if |text_x| is to the left // of text in the line and |line|.segments.size() if it's to the right. // |offset_relative_segment| will contain the offset of |text_x| relative to // the start of the segment it is contained in. int GetLineSegmentContainingXCoord(const internal::Line& line, float line_x, float* offset_relative_segment) { DCHECK(offset_relative_segment); *offset_relative_segment = 0; if (line_x < 0) return -1; for (size_t i = 0; i < line.segments.size(); i++) { const internal::LineSegment& segment = line.segments[i]; // segment.x_range is not used because it is in text space. if (line_x < segment.width()) { *offset_relative_segment = line_x; return i; } line_x -= segment.width(); } return line.segments.size(); } } // namespace namespace internal { SkiaTextRenderer::SkiaTextRenderer(Canvas* canvas) : canvas_(canvas), canvas_skia_(canvas->sk_canvas()) { DCHECK(canvas_skia_); flags_.setStyle(cc::PaintFlags::kFill_Style); font_.setEdging(SkFont::Edging::kSubpixelAntiAlias); font_.setSubpixel(true); font_.setHinting(SkFontHinting::kNormal); } SkiaTextRenderer::~SkiaTextRenderer() { } void SkiaTextRenderer::SetDrawLooper(sk_sp draw_looper) { flags_.setLooper(std::move(draw_looper)); } void SkiaTextRenderer::SetFontRenderParams(const FontRenderParams& params, bool subpixel_rendering_suppressed) { ApplyRenderParams(params, subpixel_rendering_suppressed, &font_); } void SkiaTextRenderer::SetTypeface(sk_sp typeface) { font_.setTypeface(std::move(typeface)); } void SkiaTextRenderer::SetTextSize(SkScalar size) { font_.setSize(size); } void SkiaTextRenderer::SetForegroundColor(SkColor foreground) { flags_.setColor(foreground); } void SkiaTextRenderer::SetShader(sk_sp shader) { flags_.setShader(std::move(shader)); } void SkiaTextRenderer::DrawPosText(const SkPoint* pos, const uint16_t* glyphs, size_t glyph_count) { SkTextBlobBuilder builder; const auto& run_buffer = builder.allocRunPos(font_, glyph_count); static_assert(sizeof(*glyphs) == sizeof(*run_buffer.glyphs), ""); memcpy(run_buffer.glyphs, glyphs, glyph_count * sizeof(*glyphs)); static_assert(sizeof(*pos) == 2 * sizeof(*run_buffer.pos), ""); memcpy(run_buffer.pos, pos, glyph_count * sizeof(*pos)); canvas_skia_->drawTextBlob(builder.make(), 0, 0, flags_); } void SkiaTextRenderer::DrawUnderline(int x, int y, int width, SkScalar thickness_factor) { SkScalar x_scalar = SkIntToScalar(x); const SkScalar text_size = font_.getSize(); SkRect r = SkRect::MakeLTRB( x_scalar, y + text_size * kUnderlineOffset, x_scalar + width, y + (text_size * (kUnderlineOffset + (thickness_factor * RenderText::kLineThicknessFactor)))); canvas_skia_->drawRect(r, flags_); } void SkiaTextRenderer::DrawStrike(int x, int y, int width, SkScalar thickness_factor) { const SkScalar text_size = font_.getSize(); const SkScalar height = text_size * thickness_factor; const SkScalar top = y - text_size * kStrikeThroughOffset - height / 2; SkScalar x_scalar = SkIntToScalar(x); const SkRect r = SkRect::MakeLTRB(x_scalar, top, x_scalar + width, top + height); canvas_skia_->drawRect(r, flags_); } StyleIterator::StyleIterator(const BreakList* colors, const BreakList* baselines, const BreakList* font_size_overrides, const BreakList* weights, const StyleArray* styles) : colors_(colors), baselines_(baselines), font_size_overrides_(font_size_overrides), weights_(weights), styles_(styles) { color_ = colors_->breaks().begin(); baseline_ = baselines_->breaks().begin(); font_size_override_ = font_size_overrides_->breaks().begin(); weight_ = weights_->breaks().begin(); for (size_t i = 0; i < styles_->size(); ++i) style_[i] = (*styles_)[i].breaks().begin(); } StyleIterator::StyleIterator(const StyleIterator& style) = default; StyleIterator::~StyleIterator() = default; StyleIterator& StyleIterator::operator=(const StyleIterator& style) = default; Range StyleIterator::GetRange() const { return GetTextBreakingRange().Intersect(colors_->GetRange(color_)); } Range StyleIterator::GetTextBreakingRange() const { Range range = baselines_->GetRange(baseline_); range = range.Intersect(font_size_overrides_->GetRange(font_size_override_)); range = range.Intersect(weights_->GetRange(weight_)); for (size_t i = 0; i < styles_->size(); ++i) range = range.Intersect((*styles_)[i].GetRange(style_[i])); return range; } void StyleIterator::IncrementToPosition(size_t position) { color_ = IncrementBreakListIteratorToPosition(*colors_, color_, position); baseline_ = IncrementBreakListIteratorToPosition(*baselines_, baseline_, position); font_size_override_ = IncrementBreakListIteratorToPosition( *font_size_overrides_, font_size_override_, position); weight_ = IncrementBreakListIteratorToPosition(*weights_, weight_, position); for (size_t i = 0; i < styles_->size(); ++i) { style_[i] = IncrementBreakListIteratorToPosition((*styles_)[i], style_[i], position); } } LineSegment::LineSegment() : run(0) {} LineSegment::~LineSegment() {} Line::Line() : preceding_heights(0), baseline(0) {} Line::Line(const Line& other) = default; Line::~Line() {} ShapedText::ShapedText(std::vector lines) : lines_(std::move(lines)) {} ShapedText::~ShapedText() = default; void ApplyRenderParams(const FontRenderParams& params, bool subpixel_rendering_suppressed, SkFont* font) { if (!params.antialiasing) { font->setEdging(SkFont::Edging::kAlias); } else if (subpixel_rendering_suppressed || params.subpixel_rendering == FontRenderParams::SUBPIXEL_RENDERING_NONE) { font->setEdging(SkFont::Edging::kAntiAlias); } else { font->setEdging(SkFont::Edging::kSubpixelAntiAlias); } font->setSubpixel(params.subpixel_positioning); font->setForceAutoHinting(params.autohinter); font->setHinting(FontRenderParamsHintingToSkFontHinting(params.hinting)); } } // namespace internal // static constexpr char16_t RenderText::kPasswordReplacementChar; constexpr bool RenderText::kDragToEndIfOutsideVerticalBounds; constexpr int RenderText::kInvalidBaseline; constexpr SkScalar RenderText::kLineThicknessFactor; RenderText::~RenderText() = default; // static std::unique_ptr RenderText::CreateRenderText() { return std::make_unique(); } std::unique_ptr RenderText::CreateInstanceOfSameStyle( const std::u16string& text) const { std::unique_ptr render_text = CreateRenderText(); // |SetText()| must be called before styles are set. render_text->SetText(text); render_text->SetFontList(font_list_); render_text->SetDirectionalityMode(directionality_mode_); render_text->SetCursorEnabled(cursor_enabled_); render_text->set_truncate_length(truncate_length_); render_text->styles_ = styles_; render_text->baselines_ = baselines_; render_text->font_size_overrides_ = font_size_overrides_; render_text->colors_ = colors_; render_text->weights_ = weights_; render_text->glyph_width_for_test_ = glyph_width_for_test_; return render_text; } void RenderText::SetText(const std::u16string& text) { DCHECK(!composition_range_.IsValid()); if (text_ == text) return; text_ = text; UpdateStyleLengths(); // Clear style ranges as they might break new text graphemes and apply // the first style to the whole text instead. colors_.SetValue(colors_.breaks().front().second); baselines_.SetValue(baselines_.breaks().front().second); font_size_overrides_.SetValue(font_size_overrides_.breaks().front().second); weights_.SetValue(weights_.breaks().front().second); for (auto& style : styles_) style.SetValue(style.breaks().front().second); cached_bounds_and_offset_valid_ = false; // Reset selection model. SetText should always followed by SetSelectionModel // or SetCursorPosition in upper layer. SetSelectionModel(SelectionModel()); // Invalidate the cached text direction if it depends on the text contents. if (directionality_mode_ == DIRECTIONALITY_FROM_TEXT) text_direction_ = base::i18n::UNKNOWN_DIRECTION; obscured_reveal_index_ = -1; OnTextAttributeChanged(); } void RenderText::AppendText(const std::u16string& text) { text_ += text; UpdateStyleLengths(); cached_bounds_and_offset_valid_ = false; obscured_reveal_index_ = -1; // Invalidate the cached text direction if it depends on the text contents. if (directionality_mode_ == DIRECTIONALITY_FROM_TEXT) text_direction_ = base::i18n::UNKNOWN_DIRECTION; OnTextAttributeChanged(); } void RenderText::SetHorizontalAlignment(HorizontalAlignment alignment) { if (horizontal_alignment_ != alignment) { horizontal_alignment_ = alignment; display_offset_ = Vector2d(); cached_bounds_and_offset_valid_ = false; } } void RenderText::SetVerticalAlignment(VerticalAlignment alignment) { if (vertical_alignment_ != alignment) { vertical_alignment_ = alignment; display_offset_ = Vector2d(); cached_bounds_and_offset_valid_ = false; } } void RenderText::SetFontList(const FontList& font_list) { font_list_ = font_list; const int font_style = font_list.GetFontStyle(); weights_.SetValue(font_list.GetFontWeight()); styles_[TEXT_STYLE_ITALIC].SetValue((font_style & Font::ITALIC) != 0); styles_[TEXT_STYLE_UNDERLINE].SetValue((font_style & Font::UNDERLINE) != 0); styles_[TEXT_STYLE_HEAVY_UNDERLINE].SetValue(false); baseline_ = kInvalidBaseline; cached_bounds_and_offset_valid_ = false; OnLayoutTextAttributeChanged(false); } void RenderText::SetCursorEnabled(bool cursor_enabled) { cursor_enabled_ = cursor_enabled; cached_bounds_and_offset_valid_ = false; } void RenderText::SetObscured(bool obscured) { if (obscured != obscured_) { obscured_ = obscured; obscured_reveal_index_ = -1; cached_bounds_and_offset_valid_ = false; OnTextAttributeChanged(); } } void RenderText::SetObscuredRevealIndex(int index) { if (obscured_reveal_index_ != index) { obscured_reveal_index_ = index; cached_bounds_and_offset_valid_ = false; OnTextAttributeChanged(); } } void RenderText::SetObscuredGlyphSpacing(int spacing) { if (obscured_glyph_spacing_ != spacing) { obscured_glyph_spacing_ = spacing; OnLayoutTextAttributeChanged(true); } } void RenderText::SetMultiline(bool multiline) { if (multiline != multiline_) { multiline_ = multiline; cached_bounds_and_offset_valid_ = false; OnTextAttributeChanged(); } } void RenderText::SetMaxLines(size_t max_lines) { max_lines_ = max_lines; OnDisplayTextAttributeChanged(); } size_t RenderText::GetNumLines() { return GetShapedText()->lines().size(); } size_t RenderText::GetTextIndexOfLine(size_t line) { const std::vector& lines = GetShapedText()->lines(); if (line >= lines.size()) return text_.size(); return DisplayIndexToTextIndex(lines[line].display_text_index); } void RenderText::SetWordWrapBehavior(WordWrapBehavior behavior) { // TODO(1150235): ELIDE_LONG_WORDS is not supported. DCHECK_NE(behavior, ELIDE_LONG_WORDS); if (word_wrap_behavior_ != behavior) { word_wrap_behavior_ = behavior; if (multiline_) { cached_bounds_and_offset_valid_ = false; OnTextAttributeChanged(); } } } void RenderText::SetMinLineHeight(int line_height) { if (min_line_height_ != line_height) { min_line_height_ = line_height; cached_bounds_and_offset_valid_ = false; OnDisplayTextAttributeChanged(); } } void RenderText::SetElideBehavior(ElideBehavior elide_behavior) { if (elide_behavior_ != elide_behavior) { elide_behavior_ = elide_behavior; OnDisplayTextAttributeChanged(); } } void RenderText::SetWhitespaceElision(absl::optional whitespace_elision) { if (whitespace_elision_ != whitespace_elision) { whitespace_elision_ = whitespace_elision; OnDisplayTextAttributeChanged(); } } void RenderText::SetDisplayRect(const Rect& r) { if (r != display_rect_) { display_rect_ = r; baseline_ = kInvalidBaseline; cached_bounds_and_offset_valid_ = false; OnDisplayTextAttributeChanged(); } } const std::vector RenderText::GetAllSelections() const { return selection_model_.GetAllSelections(); } void RenderText::SetCursorPosition(size_t position) { size_t cursor = std::min(position, text().length()); if (IsValidCursorIndex(cursor)) { SetSelectionModel(SelectionModel( cursor, (cursor == 0) ? CURSOR_FORWARD : CURSOR_BACKWARD)); } } void RenderText::MoveCursor(BreakType break_type, VisualCursorDirection direction, SelectionBehavior selection_behavior) { SelectionModel cursor(cursor_position(), selection_model_.caret_affinity()); // Ensure |cursor| is at the "end" of the current selection, since this // determines which side should grow or shrink. If the prior change to the // selection wasn't from cursor movement, the selection may be undirected. Or, // the selection may be collapsing. In these cases, pick the "end" using // |direction| (e.g. the arrow key) rather than the current selection range. if ((!has_directed_selection_ || selection_behavior == SELECTION_NONE) && !selection().is_empty()) { SelectionModel selection_start = GetSelectionModelForSelectionStart(); Point start = GetCursorBounds(selection_start, true).origin(); Point end = GetCursorBounds(cursor, true).origin(); // Use the selection start if it is left (when |direction| is CURSOR_LEFT) // or right (when |direction| is CURSOR_RIGHT) of the selection end. // Consider only the y-coordinates if the selection start and end are on // different lines. const bool cursor_is_leading = (start.y() > end.y()) || ((start.y() == end.y()) && (start.x() > end.x())); const bool cursor_should_be_trailing = (direction == CURSOR_RIGHT) || (direction == CURSOR_DOWN); if (cursor_is_leading == cursor_should_be_trailing) { // In this case, a direction has been chosen that doesn't match // |selection_model|, so the range must be reversed to place the cursor at // the other end. Note the affinity won't matter: only the affinity of // |start| (which points "in" to the selection) determines the movement. Range range = selection_model_.selection(); selection_model_ = SelectionModel(Range(range.end(), range.start()), selection_model_.caret_affinity()); cursor = selection_start; } } // Cancelling a selection moves to the edge of the selection. if (break_type != FIELD_BREAK && break_type != LINE_BREAK && !selection().is_empty() && selection_behavior == SELECTION_NONE) { // Use the nearest word boundary in the proper |direction| for word breaks. if (break_type == WORD_BREAK) cursor = GetAdjacentSelectionModel(cursor, break_type, direction); // Use an adjacent selection model if the cursor is not at a valid position. if (!IsValidCursorIndex(cursor.caret_pos())) cursor = GetAdjacentSelectionModel(cursor, CHARACTER_BREAK, direction); } else { cursor = GetAdjacentSelectionModel(cursor, break_type, direction); } // |cursor| corresponds to the tentative end point of the new selection. The // selection direction is reversed iff the current selection is non-empty and // the old selection end point and |cursor| are at the opposite ends of the // old selection start point. uint32_t min_end = std::min(selection().end(), cursor.selection().end()); uint32_t max_end = std::max(selection().end(), cursor.selection().end()); uint32_t current_start = selection().start(); bool selection_reversed = !selection().is_empty() && min_end <= current_start && current_start <= max_end; // Take |selection_behavior| into account. switch (selection_behavior) { case SELECTION_RETAIN: cursor.set_selection_start(current_start); break; case SELECTION_EXTEND: cursor.set_selection_start(selection_reversed ? selection().end() : current_start); break; case SELECTION_CARET: if (selection_reversed) { cursor = SelectionModel(current_start, selection_model_.caret_affinity()); } else { cursor.set_selection_start(current_start); } break; case SELECTION_NONE: // Do nothing. break; } SetSelection(cursor); has_directed_selection_ = true; // |cached_cursor_x| keeps the initial x-coordinates where CURSOR_UP or // CURSOR_DOWN starts. This enables the cursor to keep the same x-coordinates // even when the cursor passes through empty or short lines. The cached // x-coordinates should be reset when the cursor moves in a horizontal // direction. if (direction != CURSOR_UP && direction != CURSOR_DOWN) reset_cached_cursor_x(); } bool RenderText::SetSelection(const SelectionModel& model) { // Enforce valid selection model components. uint32_t text_length = static_cast(text().length()); std::vector ranges = model.GetAllSelections(); for (auto& range : ranges) { range = {std::min(range.start(), text_length), std::min(range.end(), text_length)}; // The current model only supports caret positions at valid cursor indices. if (!IsValidCursorIndex(range.start()) || !IsValidCursorIndex(range.end())) return false; } SelectionModel sel = SelectionModel(ranges, model.caret_affinity()); bool changed = sel != selection_model_; SetSelectionModel(sel); return changed; } bool RenderText::MoveCursorToPoint(const Point& point, bool select, const Point& drag_origin) { reset_cached_cursor_x(); SelectionModel model = FindCursorPosition(point, drag_origin); if (select) model.set_selection_start(selection().start()); return SetSelection(model); } bool RenderText::SelectRange(const Range& range, bool primary) { uint32_t text_length = static_cast(text().length()); Range sel(std::min(range.start(), text_length), std::min(range.end(), text_length)); // Allow selection bounds at valid indices amid multi-character graphemes. if (!IsValidLogicalIndex(sel.start()) || !IsValidLogicalIndex(sel.end())) return false; if (primary) { LogicalCursorDirection affinity = (sel.is_reversed() || sel.is_empty()) ? CURSOR_FORWARD : CURSOR_BACKWARD; SetSelectionModel(SelectionModel(sel, affinity)); } else { AddSecondarySelection(sel); } return true; } bool RenderText::IsPointInSelection(const Point& point) { if (selection().is_empty()) return false; SelectionModel cursor = FindCursorPosition(point); return RangeContainsCaret( selection(), cursor.caret_pos(), cursor.caret_affinity()); } void RenderText::ClearSelection() { SetSelectionModel( SelectionModel(cursor_position(), selection_model_.caret_affinity())); } void RenderText::SelectAll(bool reversed) { const size_t length = text().length(); const Range all = reversed ? Range(length, 0) : Range(0, length); const bool success = SelectRange(all); DCHECK(success); } void RenderText::SelectWord() { SelectRange(ExpandRangeToWordBoundary(selection())); } void RenderText::SetCompositionRange(const Range& composition_range) { CHECK(!composition_range.IsValid() || Range(0, text_.length()).Contains(composition_range)); composition_range_.set_end(composition_range.end()); composition_range_.set_start(composition_range.start()); OnLayoutTextAttributeChanged(false); } void RenderText::SetColor(SkColor value) { colors_.SetValue(value); OnLayoutTextAttributeChanged(false); } void RenderText::ApplyColor(SkColor value, const Range& range) { colors_.ApplyValue(value, range); OnLayoutTextAttributeChanged(false); } void RenderText::SetBaselineStyle(BaselineStyle value) { baselines_.SetValue(value); OnLayoutTextAttributeChanged(false); } void RenderText::ApplyBaselineStyle(BaselineStyle value, const Range& range) { baselines_.ApplyValue(value, range); OnLayoutTextAttributeChanged(false); } void RenderText::ApplyFontSizeOverride(int font_size_override, const Range& range) { font_size_overrides_.ApplyValue(font_size_override, range); OnLayoutTextAttributeChanged(false); } void RenderText::SetStyle(TextStyle style, bool value) { styles_[style].SetValue(value); cached_bounds_and_offset_valid_ = false; // TODO(oshima|msw): Not all style change requires layout changes. // Consider optimizing based on the type of change. OnLayoutTextAttributeChanged(false); } void RenderText::ApplyStyle(TextStyle style, bool value, const Range& range) { styles_[style].ApplyValue(value, range); cached_bounds_and_offset_valid_ = false; // TODO(oshima|msw): Not all style change requires layout changes. // Consider optimizing based on the type of change. OnLayoutTextAttributeChanged(false); } void RenderText::SetWeight(Font::Weight weight) { weights_.SetValue(weight); cached_bounds_and_offset_valid_ = false; OnLayoutTextAttributeChanged(false); } void RenderText::ApplyWeight(Font::Weight weight, const Range& range) { weights_.ApplyValue(weight, range); cached_bounds_and_offset_valid_ = false; OnLayoutTextAttributeChanged(false); } bool RenderText::GetStyle(TextStyle style) const { return (styles_[style].breaks().size() == 1) && styles_[style].breaks().front().second; } void RenderText::SetDirectionalityMode(DirectionalityMode mode) { if (mode != directionality_mode_) { directionality_mode_ = mode; text_direction_ = base::i18n::UNKNOWN_DIRECTION; cached_bounds_and_offset_valid_ = false; OnLayoutTextAttributeChanged(false); } } base::i18n::TextDirection RenderText::GetTextDirection() const { if (text_direction_ == base::i18n::UNKNOWN_DIRECTION) text_direction_ = GetTextDirectionForGivenText(text_); return text_direction_; } base::i18n::TextDirection RenderText::GetDisplayTextDirection() { EnsureLayout(); if (display_text_direction_ == base::i18n::UNKNOWN_DIRECTION) display_text_direction_ = GetTextDirectionForGivenText(GetDisplayText()); return display_text_direction_; } VisualCursorDirection RenderText::GetVisualDirectionOfLogicalEnd() { return GetDisplayTextDirection() == base::i18n::LEFT_TO_RIGHT ? CURSOR_RIGHT : CURSOR_LEFT; } VisualCursorDirection RenderText::GetVisualDirectionOfLogicalBeginning() { return GetDisplayTextDirection() == base::i18n::RIGHT_TO_LEFT ? CURSOR_RIGHT : CURSOR_LEFT; } Size RenderText::GetStringSize() { const SizeF size_f = GetStringSizeF(); return Size(base::ClampCeil(size_f.width()), base::ClampCeil(size_f.height())); } float RenderText::TotalLineWidth() { float total_width = 0; const internal::ShapedText* shaped_text = GetShapedText(); for (const auto& line : shaped_text->lines()) total_width += line.size.width(); return total_width; } float RenderText::GetContentWidthF() { const float string_size = GetStringSizeF().width(); // The cursor is drawn one pixel beyond the int-enclosed text bounds. return cursor_enabled_ ? std::ceil(string_size) + 1 : string_size; } int RenderText::GetContentWidth() { return base::ClampCeil(GetContentWidthF()); } int RenderText::GetBaseline() { if (baseline_ == kInvalidBaseline) { baseline_ = DetermineBaselineCenteringText(display_rect().height(), font_list()); } DCHECK_NE(kInvalidBaseline, baseline_); return baseline_; } void RenderText::Draw(Canvas* canvas, bool select_all) { EnsureLayout(); if (clip_to_display_rect()) { Rect clip_rect(display_rect()); clip_rect.Inset(ShadowValue::GetMargin(shadows_)); canvas->Save(); canvas->ClipRect(clip_rect); } if (!text().empty()) { std::vector draw_selections; if (select_all) draw_selections = {Range(0, text().length())}; else if (focused()) draw_selections = GetAllSelections(); DrawSelections(canvas, draw_selections); internal::SkiaTextRenderer renderer(canvas); DrawVisualText(&renderer, draw_selections); } if (clip_to_display_rect()) canvas->Restore(); } SelectionModel RenderText::FindCursorPosition(const Point& view_point, const Point& drag_origin) { const internal::ShapedText* shaped_text = GetShapedText(); DCHECK(!shaped_text->lines().empty()); int line_index = GetLineContainingYCoord((view_point - GetLineOffset(0)).y()); // Handle kDragToEndIfOutsideVerticalBounds above or below the text in a // single-line by extending towards the mouse cursor. if (RenderText::kDragToEndIfOutsideVerticalBounds && !multiline() && (line_index < 0 || line_index >= static_cast(shaped_text->lines().size()))) { SelectionModel selection_start = GetSelectionModelForSelectionStart(); int edge = drag_origin.x() == 0 ? GetCursorBounds(selection_start, true).x() : drag_origin.x(); bool left = view_point.x() < edge; return EdgeSelectionModel(left ? CURSOR_LEFT : CURSOR_RIGHT); } // Otherwise, clamp |line_index| to a valid value or drag to logical ends. if (line_index < 0) { if (RenderText::kDragToEndIfOutsideVerticalBounds) return EdgeSelectionModel(GetVisualDirectionOfLogicalBeginning()); line_index = 0; } if (line_index >= static_cast(shaped_text->lines().size())) { if (RenderText::kDragToEndIfOutsideVerticalBounds) return EdgeSelectionModel(GetVisualDirectionOfLogicalEnd()); line_index = shaped_text->lines().size() - 1; } const internal::Line& line = shaped_text->lines()[line_index]; // Newline segment should be ignored in finding segment index with x // coordinate because it's not drawn. Vector2d newline_offset; if (line.segments.size() >= 1 && IsNewlineSegment(line.segments.front())) newline_offset.set_x(line.segments.front().width()); float point_offset_relative_segment = 0; const int segment_index = GetLineSegmentContainingXCoord( line, (view_point - GetLineOffset(line_index) + newline_offset).x(), &point_offset_relative_segment); if (segment_index < 0) return LineSelectionModel(line_index, CURSOR_LEFT); if (segment_index >= static_cast(line.segments.size())) return LineSelectionModel(line_index, CURSOR_RIGHT); const internal::LineSegment& segment = line.segments[segment_index]; const internal::TextRunHarfBuzz& run = *GetRunList()->runs()[segment.run]; const size_t segment_min_glyph_index = run.CharRangeToGlyphRange(segment.char_range).GetMin(); const float segment_offset_relative_run = segment_min_glyph_index != 0 ? SkScalarToFloat(run.shape.positions[segment_min_glyph_index].x()) : 0; const float point_offset_relative_run = point_offset_relative_segment + segment_offset_relative_run; // TODO(crbug.com/676287): Use offset within the glyph to return the correct // grapheme position within a multi-grapheme glyph. for (size_t i = 0; i < run.shape.glyph_count; ++i) { const float end = i + 1 == run.shape.glyph_count ? run.shape.width : SkScalarToFloat(run.shape.positions[i + 1].x()); const float middle = (end + SkScalarToFloat(run.shape.positions[i].x())) / 2; const size_t index = DisplayIndexToTextIndex(run.shape.glyph_to_char[i]); if (point_offset_relative_run < middle) { return run.font_params.is_rtl ? SelectionModel(IndexOfAdjacentGrapheme( index, CURSOR_FORWARD), CURSOR_BACKWARD) : SelectionModel(index, CURSOR_FORWARD); } if (point_offset_relative_run < end) { return run.font_params.is_rtl ? SelectionModel(index, CURSOR_FORWARD) : SelectionModel(IndexOfAdjacentGrapheme( index, CURSOR_FORWARD), CURSOR_BACKWARD); } } return LineSelectionModel(line_index, CURSOR_RIGHT); } bool RenderText::IsValidLogicalIndex(size_t index) const { // Check that the index is at a valid code point (not mid-surrogate-pair) and // that it's not truncated from the display text (its glyph may be shown). // // Indices within truncated text are disallowed so users can easily interact // with the underlying truncated text using the ellipsis as a proxy. This lets // users select all text, select the truncated text, and transition from the // last rendered glyph to the end of the text without getting invisible cursor // positions nor needing unbounded arrow key presses to traverse the ellipsis. return index == 0 || index == text().length() || (index < text().length() && (truncate_length_ == 0 || index < truncate_length_) && IsValidCodePointIndex(text(), index)); } bool RenderText::IsValidCursorIndex(size_t index) const { return index == 0 || index == text().length() || (IsValidLogicalIndex(index) && IsGraphemeBoundary(index)); } Rect RenderText::GetCursorBounds(const SelectionModel& caret, bool insert_mode) { EnsureLayout(); size_t caret_pos = caret.caret_pos(); DCHECK(IsValidLogicalIndex(caret_pos)); // In overtype mode, ignore the affinity and always indicate that we will // overtype the next character. LogicalCursorDirection caret_affinity = insert_mode ? caret.caret_affinity() : CURSOR_FORWARD; float x = 0; int width = 1; // Check whether the caret is attached to a boundary. Always return a 1-dip // width caret at the boundary. Avoid calling IndexOfAdjacentGrapheme(), since // it is slow and can impact browser startup here. // In insert mode, index 0 is always a boundary. The end, however, is not at a // boundary when the string ends in RTL text and there is LTR text around it. const bool at_boundary = (insert_mode && caret_pos == 0) || caret_pos == (caret_affinity == CURSOR_BACKWARD ? 0 : text().length()); if (at_boundary) { const bool rtl = GetDisplayTextDirection() == base::i18n::RIGHT_TO_LEFT; if (rtl == (caret_pos == 0)) x = TotalLineWidth(); } else { // Find the next grapheme continuing in the current direction. This // determines the substring range that should be highlighted. size_t caret_end = IndexOfAdjacentGrapheme(caret_pos, caret_affinity); if (caret_end < caret_pos) std::swap(caret_end, caret_pos); const RangeF xspan = GetCursorSpan(Range(caret_pos, caret_end)); if (insert_mode) { x = (caret_affinity == CURSOR_BACKWARD) ? xspan.end() : xspan.start(); } else { // overtype mode x = xspan.GetMin(); // Ceil the start and end of the |xspan| because the cursor x-coordinates // are always ceiled. width = base::ClampCeil(Clamp(xspan.GetMax())) - base::ClampCeil(Clamp(xspan.GetMin())); } } Size line_size = gfx::ToCeiledSize(GetLineSizeF(caret)); return Rect(ToViewPoint(PointF(x, 0), caret_affinity), Size(width, line_size.height())); } const Rect& RenderText::GetUpdatedCursorBounds() { UpdateCachedBoundsAndOffset(); return cursor_bounds_; } internal::GraphemeIterator RenderText::GetGraphemeIteratorAtTextIndex( size_t index) const { EnsureLayoutTextUpdated(); return GetGraphemeIteratorAtIndex( text_, &internal::TextToDisplayIndex::text_index, index); } internal::GraphemeIterator RenderText::GetGraphemeIteratorAtDisplayTextIndex( size_t index) const { EnsureLayoutTextUpdated(); return GetGraphemeIteratorAtIndex( layout_text_, &internal::TextToDisplayIndex::display_index, index); } size_t RenderText::GetTextIndex(internal::GraphemeIterator iter) const { DCHECK(layout_text_up_to_date_); return iter == text_to_display_indices_.end() ? text_.length() : iter->text_index; } size_t RenderText::GetDisplayTextIndex(internal::GraphemeIterator iter) const { DCHECK(layout_text_up_to_date_); return iter == text_to_display_indices_.end() ? layout_text_.length() : iter->display_index; } bool RenderText::IsGraphemeBoundary(size_t index) const { return index >= text_.length() || GetTextIndex(GetGraphemeIteratorAtTextIndex(index)) == index; } size_t RenderText::IndexOfAdjacentGrapheme( size_t index, LogicalCursorDirection direction) const { // The input is clamped if it is out of that range. if (text_.empty()) return 0; if (index > text_.length()) return text_.length(); EnsureLayoutTextUpdated(); internal::GraphemeIterator iter = index == text_.length() ? text_to_display_indices_.end() : GetGraphemeIteratorAtTextIndex(index); if (direction == CURSOR_FORWARD) { if (iter != text_to_display_indices_.end()) ++iter; } else { DCHECK_EQ(direction, CURSOR_BACKWARD); // If the index was not at the beginning of the grapheme, it will have been // moved back to the grapheme start. if (iter != text_to_display_indices_.begin() && GetTextIndex(iter) == index) --iter; } return GetTextIndex(iter); } SelectionModel RenderText::GetSelectionModelForSelectionStart() const { const Range& sel = selection(); if (sel.is_empty()) return selection_model_; return SelectionModel(sel.start(), sel.is_reversed() ? CURSOR_BACKWARD : CURSOR_FORWARD); } const Vector2d& RenderText::GetUpdatedDisplayOffset() { UpdateCachedBoundsAndOffset(); return display_offset_; } void RenderText::SetDisplayOffset(int horizontal_offset) { SetDisplayOffset({horizontal_offset, display_offset_.y()}); } void RenderText::SetDisplayOffset(Vector2d offset) { const int extra_content = GetContentWidth() - display_rect_.width(); const int cursor_width = cursor_enabled_ ? 1 : 0; int min_offset = 0; int max_offset = 0; if (extra_content > 0) { switch (GetCurrentHorizontalAlignment()) { case ALIGN_LEFT: min_offset = -extra_content; break; case ALIGN_RIGHT: max_offset = extra_content; break; case ALIGN_CENTER: // The extra space reserved for cursor at the end of the text is ignored // when centering text. So, to calculate the valid range for offset, we // exclude that extra space, calculate the range, and add it back to the // range (if cursor is enabled). min_offset = -(extra_content - cursor_width + 1) / 2 - cursor_width; max_offset = (extra_content - cursor_width) / 2; break; default: break; } } const int horizontal_offset = base::clamp(offset.x(), min_offset, max_offset); // y-offset is set only when the vertical alignment is ALIGN_TOP. // TODO(jongkown.lee): Support other vertical alignments. DCHECK(vertical_alignment_ == ALIGN_TOP || offset.y() == 0); const int vertical_offset = base::clamp( offset.y(), std::min(display_rect_.height() - GetStringSize().height(), 0), 0); cached_bounds_and_offset_valid_ = true; display_offset_ = {horizontal_offset, vertical_offset}; cursor_bounds_ = GetCursorBounds(selection_model_, true); } Vector2d RenderText::GetLineOffset(size_t line_number) { const internal::ShapedText* shaped_text = GetShapedText(); Vector2d offset = display_rect().OffsetFromOrigin(); if (!multiline()) { offset.Add(GetUpdatedDisplayOffset()); } else { DCHECK_LT(line_number, shaped_text->lines().size()); offset.Add(GetUpdatedDisplayOffset()); offset.Add( Vector2d(0, shaped_text->lines()[line_number].preceding_heights)); } offset.Add(GetAlignmentOffset(line_number)); return offset; } bool RenderText::GetWordLookupDataAtPoint(const Point& point, DecoratedText* decorated_word, Point* baseline_point) { if (obscured()) return false; EnsureLayout(); const SelectionModel model_at_point = FindCursorPosition(point); const size_t word_index = GetNearestWordStartBoundary(model_at_point.caret_pos()); if (word_index >= text().length()) return false; const Range word_range = ExpandRangeToWordBoundary(Range(word_index)); DCHECK(!word_range.is_reversed()); DCHECK(!word_range.is_empty()); return GetLookupDataForRange(word_range, decorated_word, baseline_point); } bool RenderText::GetLookupDataForRange(const Range& range, DecoratedText* decorated_text, Point* baseline_point) { const internal::ShapedText* shaped_text = GetShapedText(); const std::vector word_bounds = GetSubstringBounds(range); if (word_bounds.empty() || !GetDecoratedTextForRange(range, decorated_text)) { return false; } // Retrieve the baseline origin of the left-most glyph. const auto left_rect = std::min_element( word_bounds.begin(), word_bounds.end(), [](const Rect& lhs, const Rect& rhs) { return lhs.x() < rhs.x(); }); const int line_index = GetLineContainingYCoord(left_rect->CenterPoint().y() - GetLineOffset(0).y()); if (line_index < 0 || line_index >= static_cast(shaped_text->lines().size())) return false; *baseline_point = left_rect->origin() + Vector2d(0, shaped_text->lines()[line_index].baseline); return true; } std::u16string RenderText::GetTextFromRange(const Range& range) const { if (range.IsValid() && range.GetMin() < text().length()) return text().substr(range.GetMin(), range.length()); return std::u16string(); } Range RenderText::ExpandRangeToGraphemeBoundary(const Range& range) const { const auto snap_to_grapheme = [this](auto index, auto direction) { return IsValidCursorIndex(index) ? index : IndexOfAdjacentGrapheme(index, direction); }; const size_t min_index = snap_to_grapheme(range.GetMin(), CURSOR_BACKWARD); const size_t max_index = snap_to_grapheme(range.GetMax(), CURSOR_FORWARD); return range.is_reversed() ? Range(max_index, min_index) : Range(min_index, max_index); } bool RenderText::IsNewlineSegment(const internal::LineSegment& segment) const { return IsNewlineSegment(text_, segment); } bool RenderText::IsNewlineSegment(const std::u16string& text, const internal::LineSegment& segment) const { const size_t offset = segment.char_range.start(); const size_t length = segment.char_range.length(); DCHECK_LT(offset + length - 1, text.length()); return (length == 1 && (text[offset] == '\r' || text[offset] == '\n')) || (length == 2 && text[offset] == '\r' && text[offset + 1] == '\n'); } Range RenderText::GetLineRange(const std::u16string& text, const internal::Line& line) const { // This will find the logical start and end indices of the given line. size_t max_index = 0; size_t min_index = text.length(); for (const auto& segment : line.segments) { min_index = std::min(min_index, segment.char_range.GetMin()); max_index = std::max(max_index, segment.char_range.GetMax()); } // Do not include the newline character, as that could be considered leading // into the next line. Note that the newline character is always the last // character of the line regardless of the text direction, so decrease the // |max_index|. if (!line.segments.empty() && (IsNewlineSegment(text, line.segments.back()) || IsNewlineSegment(text, line.segments.front()))) { --max_index; } return Range(min_index, max_index); } RenderText::RenderText() = default; internal::StyleIterator RenderText::GetTextStyleIterator() const { return internal::StyleIterator(&colors_, &baselines_, &font_size_overrides_, &weights_, &styles_); } internal::StyleIterator RenderText::GetLayoutTextStyleIterator() const { EnsureLayoutTextUpdated(); return internal::StyleIterator(&layout_colors_, &layout_baselines_, &layout_font_size_overrides_, &layout_weights_, &layout_styles_); } bool RenderText::IsHomogeneous() const { if (colors().breaks().size() > 1 || baselines().breaks().size() > 1 || font_size_overrides().breaks().size() > 1 || weights().breaks().size() > 1) { return false; } return std::none_of( styles().cbegin(), styles().cend(), [](const auto& style) { return style.breaks().size() > 1; }); } internal::ShapedText* RenderText::GetShapedText() { EnsureLayout(); DCHECK(shaped_text_); return shaped_text_.get(); } int RenderText::GetDisplayTextBaseline() { DCHECK(!GetShapedText()->lines().empty()); return GetShapedText()->lines()[0].baseline; } SelectionModel RenderText::GetAdjacentSelectionModel( const SelectionModel& current, BreakType break_type, VisualCursorDirection direction) { EnsureLayout(); if (direction == CURSOR_UP || direction == CURSOR_DOWN) return AdjacentLineSelectionModel(current, direction); if (break_type == FIELD_BREAK || text().empty()) return EdgeSelectionModel(direction); if (break_type == LINE_BREAK) return LineSelectionModel(GetLineContainingCaret(current), direction); if (break_type == CHARACTER_BREAK) return AdjacentCharSelectionModel(current, direction); DCHECK(break_type == WORD_BREAK); return AdjacentWordSelectionModel(current, direction); } SelectionModel RenderText::EdgeSelectionModel( VisualCursorDirection direction) { if (direction == GetVisualDirectionOfLogicalEnd()) return SelectionModel(text().length(), CURSOR_FORWARD); return SelectionModel(0, CURSOR_BACKWARD); } SelectionModel RenderText::LineSelectionModel(size_t line_index, VisualCursorDirection direction) { DCHECK(direction == CURSOR_LEFT || direction == CURSOR_RIGHT); DCHECK_LT(line_index, GetShapedText()->lines().size()); const internal::Line& line = GetShapedText()->lines()[line_index]; if (line.segments.empty()) { // Only the last line can be empty. DCHECK_EQ(GetShapedText()->lines().size() - 1, line_index); return EdgeSelectionModel(GetVisualDirectionOfLogicalEnd()); } if (line_index == (direction == GetVisualDirectionOfLogicalEnd() ? GetNumLines() - 1 : 0)) { return EdgeSelectionModel(direction); } DCHECK_GT(GetNumLines(), 1U); Range line_range = GetLineRange(text(), line); // Cursor affinity should be the opposite of visual direction to preserve the // line number of the cursor in multiline text. return direction == GetVisualDirectionOfLogicalEnd() ? SelectionModel(DisplayIndexToTextIndex(line_range.end()), CURSOR_BACKWARD) : SelectionModel(DisplayIndexToTextIndex(line_range.start()), CURSOR_FORWARD); } void RenderText::SetSelectionModel(const SelectionModel& model) { DCHECK_LE(model.selection().GetMax(), text().length()); selection_model_ = model; cached_bounds_and_offset_valid_ = false; has_directed_selection_ = kSelectionIsAlwaysDirected; } void RenderText::AddSecondarySelection(const Range selection) { DCHECK_LE(selection.GetMax(), text().length()); selection_model_.AddSecondarySelection(selection); } size_t RenderText::TextIndexToDisplayIndex(size_t index) const { return GetDisplayTextIndex(GetGraphemeIteratorAtTextIndex(index)); } size_t RenderText::DisplayIndexToTextIndex(size_t index) const { return GetTextIndex(GetGraphemeIteratorAtDisplayTextIndex(index)); } void RenderText::OnLayoutTextAttributeChanged(bool text_changed) { layout_text_up_to_date_ = false; } void RenderText::EnsureLayoutTextUpdated() const { if (layout_text_up_to_date_) return; layout_text_.clear(); text_to_display_indices_.clear(); display_text_direction_ = base::i18n::UNKNOWN_DIRECTION; // Reset the previous layout text attributes. Allocate enough space for // layout text attributes (upper limit to 2x characters per codepoint). The // actual size will be updated at the end of the function. UpdateLayoutStyleLengths(2 * text_.length()); // Create an grapheme iterator to ensure layout BreakLists don't break // graphemes. base::i18n::BreakIterator grapheme_iter( text_, base::i18n::BreakIterator::BREAK_CHARACTER); bool success = grapheme_iter.Init(); DCHECK(success); // Ensures the reveal index is at a codepoint boundary (e.g. not in a middle // of a surrogate pairs). size_t reveal_index = text_.size(); if (obscured_reveal_index_ != -1) { reveal_index = base::checked_cast(obscured_reveal_index_); // Move |reveal_index| to the beginning of the surrogate pair, if needed. if (reveal_index < text_.size()) U16_SET_CP_START(text_.data(), 0, reveal_index); } // Iterates through graphemes from |text_| and rewrite its codepoints to // |layout_text_|. base::i18n::UTF16CharIterator text_iter(text_); internal::StyleIterator styles = GetTextStyleIterator(); bool text_truncated = false; while (!text_iter.end() && !text_truncated) { std::vector grapheme_codepoints; const size_t text_grapheme_start_position = text_iter.array_pos(); const size_t layout_grapheme_start_position = layout_text_.size(); // Retrieve codepoints of the current grapheme. do { grapheme_codepoints.push_back(text_iter.get()); text_iter.Advance(); } while (!grapheme_iter.IsGraphemeBoundary(text_iter.array_pos()) && !text_iter.end()); const size_t text_grapheme_end_position = text_iter.array_pos(); // Keep track of the mapping between |text_| and |layout_text_| indices. internal::TextToDisplayIndex mapping = {text_grapheme_start_position, layout_grapheme_start_position}; text_to_display_indices_.push_back(mapping); // Flag telling if the current grapheme is a newline control sequence. const bool is_newline_grapheme = (grapheme_codepoints.size() == 1 && (grapheme_codepoints[0] == '\r' || grapheme_codepoints[0] == '\n')) || (grapheme_codepoints.size() == 2 && grapheme_codepoints[0] == '\r' && grapheme_codepoints[1] == '\n'); // Obscure the layout text by replacing the grapheme by a bullet. if (obscured_ && (reveal_index < text_grapheme_start_position || reveal_index >= text_grapheme_end_position) && (!is_newline_grapheme || !multiline_)) { grapheme_codepoints.clear(); grapheme_codepoints.push_back(RenderText::kPasswordReplacementChar); } // Rewrite each codepoint of the grapheme. for (uint32_t codepoint : grapheme_codepoints) { // Handle unicode control characters ISO 6429 (block C0). Range from 0 to // 0x1F and 0x7F. The newline character should be kept as-is when // rendertext is multiline. if (!multiline_ || !is_newline_grapheme) codepoint = ReplaceControlCharacter(codepoint); // Truncate the remaining codepoints if appending the codepoint to // |layout_text_| is making the text larger than |truncate_length_|. size_t codepoint_length = U16_LENGTH(codepoint); text_truncated = (truncate_length_ != 0 && ((layout_text_.size() + codepoint_length > truncate_length_) || (!text_iter.end() && (layout_text_.size() + codepoint_length == truncate_length_)))); if (text_truncated) { codepoint = kEllipsisCodepoint; codepoint_length = U16_LENGTH(codepoint); // On truncate, remove the whole current grapheme. layout_text_.resize(layout_grapheme_start_position); } // Append the codepoint to the layout text. const size_t current_layout_text_position = layout_text_.size(); if (codepoint_length == 1) { layout_text_ += codepoint; } else { layout_text_ += U16_LEAD(codepoint); layout_text_ += U16_TRAIL(codepoint); } // Apply the style at current grapheme position to the layout text. styles.IncrementToPosition(text_grapheme_start_position); Range range(current_layout_text_position, layout_text_.size()); layout_colors_.ApplyValue(styles.color(), range); layout_baselines_.ApplyValue(styles.baseline(), range); layout_font_size_overrides_.ApplyValue(styles.font_size_override(), range); layout_weights_.ApplyValue(styles.weight(), range); for (size_t i = 0; i < layout_styles_.size(); ++i) { layout_styles_[i].ApplyValue(styles.style(static_cast(i)), range); } // Apply an underline to the composition range in |underlines|. const Range grapheme_start_range(text_grapheme_start_position, text_grapheme_start_position + 1); if (composition_range_.Contains(grapheme_start_range)) layout_styles_[TEXT_STYLE_HEAVY_UNDERLINE].ApplyValue(true, range); // Stop appending characters if the text is truncated. if (text_truncated) break; } } // Resize the layout text attributes to the actual layout text length. UpdateLayoutStyleLengths(layout_text_.length()); // Ensures that the text got truncated correctly, when needed. DCHECK(truncate_length_ == 0 || layout_text_.size() <= truncate_length_); // Wait to reset |layout_text_up_to_date_| until the end, to ensure this // function's implementation doesn't indirectly rely on it being up to date // anywhere. layout_text_up_to_date_ = true; } const std::u16string& RenderText::GetLayoutText() const { EnsureLayoutTextUpdated(); return layout_text_; } void RenderText::UpdateDisplayText(float text_width) { EnsureLayoutTextUpdated(); // TODO(krb): Consider other elision modes for multiline. if ((multiline_ && (!max_lines_ || elide_behavior() != ELIDE_TAIL)) || elide_behavior() == NO_ELIDE || elide_behavior() == FADE_TAIL || (text_width > 0 && text_width < display_rect_.width()) || layout_text_.empty()) { text_elided_ = false; display_text_.clear(); return; } if (!multiline_) { // This doesn't trim styles so ellipsis may get rendered as a different // style than the preceding text. See crbug.com/327850. display_text_.assign(Elide(layout_text_, text_width, static_cast(display_rect_.width()), elide_behavior_)); } else { bool was_elided = text_elided_; text_elided_ = false; display_text_.clear(); std::unique_ptr render_text( CreateInstanceOfSameStyle(layout_text_)); render_text->SetMultiline(true); render_text->SetWordWrapBehavior(word_wrap_behavior_); render_text->SetDisplayRect(display_rect_); // Have it arrange words on |lines_|. render_text->EnsureLayout(); if (render_text->GetShapedText()->lines().size() > max_lines_) { // Find the start and end index of the line to be elided. Range line_range = GetLineRange( layout_text_, render_text->GetShapedText()->lines()[max_lines_ - 1]); // Add an ellipsis character in case the last line is short enough to fit // on a single line. Otherwise that character will be elided anyway. std::u16string text_to_elide = layout_text_.substr(line_range.start(), line_range.length()) + std::u16string(kEllipsisUTF16); display_text_.assign(layout_text_.substr(0, line_range.start()) + Elide(text_to_elide, 0, static_cast(display_rect_.width()), ELIDE_TAIL)); // Have GetLineBreaks() re-calculate. line_breaks_.SetMax(0); } else { // If elision changed, re-calculate. if (was_elided) line_breaks_.SetMax(0); // Initial state above is fine. return; } } text_elided_ = display_text_ != layout_text_; if (!text_elided_) display_text_.clear(); } const BreakList& RenderText::GetLineBreaks() { if (line_breaks_.max() != 0) return line_breaks_; const std::u16string& layout_text = GetDisplayText(); const size_t text_length = layout_text.length(); line_breaks_.SetValue(0); line_breaks_.SetMax(text_length); base::i18n::BreakIterator iter(layout_text, base::i18n::BreakIterator::BREAK_LINE); const bool success = iter.Init(); DCHECK(success); if (success) { do { line_breaks_.ApplyValue(iter.pos(), Range(iter.pos(), text_length)); } while (iter.Advance()); } return line_breaks_; } Point RenderText::ToViewPoint(const PointF& point, LogicalCursorDirection caret_affinity) { const auto float_eq = [](float a, float b) { return std::fabs(a - b) <= kFloatComparisonEpsilon; }; const auto float_ge = [](float a, float b) { return a > b || std::fabs(a - b) <= kFloatComparisonEpsilon; }; const auto float_gt = [](float a, float b) { return a - b > kFloatComparisonEpsilon; }; const size_t num_lines = GetNumLines(); if (num_lines == 1) { return Point(base::ClampCeil(Clamp(point.x())), base::ClampRound(point.y())) + GetLineOffset(0); } const internal::ShapedText* shaped_text = GetShapedText(); float x = point.x(); size_t line; if (GetDisplayTextDirection() == base::i18n::RIGHT_TO_LEFT) { // |xspan| returned from |GetCursorSpan| in |GetCursorBounds| starts to grow // from the last character in RTL. On the other hand, the last character is // positioned in the last line in RTL. So, traverse from the last line. for (line = num_lines - 1; line > 0 && float_ge(x, shaped_text->lines()[line].size.width()); --line) { x -= shaped_text->lines()[line].size.width(); } // Increment the |line| when |x| is at the newline character. The line is // broken by word wrapping if the front edge of the line is not a newline // character. In that case, the same caret position where the line is broken // can be on both lines depending on the caret affinity. if (line < num_lines - 1 && (IsNewlineSegment(shaped_text->lines()[line].segments.front()) || caret_affinity == CURSOR_FORWARD)) { if (float_eq(x, 0)) x = shaped_text->lines()[++line].size.width(); // In RTL, the newline character is at the front of the line. Because the // newline character is not drawn at the front of the line, |x| should be // decreased by the width of the newline character. Check for a newline // again because the line may have changed. if (!shaped_text->lines()[line].segments.empty() && IsNewlineSegment(shaped_text->lines()[line].segments.front())) { x -= shaped_text->lines()[line].segments.front().width(); } } } else { for (line = 0; line < num_lines && float_gt(x, shaped_text->lines()[line].size.width()); ++line) { x -= shaped_text->lines()[line].size.width(); } if (line == num_lines) { x = shaped_text->lines()[--line].size.width(); } else if (line < num_lines - 1 && float_eq(shaped_text->lines()[line].size.width(), x) && (IsNewlineSegment(shaped_text->lines()[line].segments.back()) || caret_affinity == CURSOR_FORWARD)) { // If |x| is at the edge of the line end, move the cursor to the start of // the next line. ++line; x = 0; } } return Point(base::ClampCeil(Clamp(x)), base::ClampRound(point.y())) + GetLineOffset(line); } HorizontalAlignment RenderText::GetCurrentHorizontalAlignment() { if (horizontal_alignment_ != ALIGN_TO_HEAD) return horizontal_alignment_; return GetDisplayTextDirection() == base::i18n::RIGHT_TO_LEFT ? ALIGN_RIGHT : ALIGN_LEFT; } Vector2d RenderText::GetAlignmentOffset(size_t line_number) { DCHECK(!multiline_ || (line_number < GetShapedText()->lines().size())); Vector2d offset; HorizontalAlignment horizontal_alignment = GetCurrentHorizontalAlignment(); if (horizontal_alignment != ALIGN_LEFT) { const int width = multiline_ ? std::ceil(GetShapedText()->lines()[line_number].size.width()) + (cursor_enabled_ ? 1 : 0) : GetContentWidth(); offset.set_x(display_rect().width() - width); // Put any extra margin pixel on the left to match legacy behavior. if (horizontal_alignment == ALIGN_CENTER) offset.set_x((offset.x() + 1) / 2); } switch (vertical_alignment_) { case ALIGN_TOP: offset.set_y(0); break; case ALIGN_MIDDLE: if (multiline_) offset.set_y((display_rect_.height() - GetStringSize().height()) / 2); else offset.set_y(GetBaseline() - GetDisplayTextBaseline()); break; case ALIGN_BOTTOM: offset.set_y(display_rect_.height() - GetStringSize().height()); break; } return offset; } void RenderText::ApplyFadeEffects(internal::SkiaTextRenderer* renderer) { const int width = display_rect().width(); if (multiline() || elide_behavior_ != FADE_TAIL || GetContentWidth() <= width) return; const int gradient_width = CalculateFadeGradientWidth(font_list(), width); if (gradient_width == 0) return; HorizontalAlignment horizontal_alignment = GetCurrentHorizontalAlignment(); Rect solid_part = display_rect(); Rect left_part; Rect right_part; if (horizontal_alignment != ALIGN_LEFT) { left_part = solid_part; left_part.Inset(0, 0, solid_part.width() - gradient_width, 0); solid_part.Inset(gradient_width, 0, 0, 0); } if (horizontal_alignment != ALIGN_RIGHT) { right_part = solid_part; right_part.Inset(solid_part.width() - gradient_width, 0, 0, 0); solid_part.Inset(0, 0, gradient_width, 0); } // CreateFadeShader() expects at least one part to not be empty. // See https://crbug.com/706835. if (left_part.IsEmpty() && right_part.IsEmpty()) return; Rect text_rect = display_rect(); text_rect.Inset(GetAlignmentOffset(0).x(), 0, 0, 0); // TODO(msw): Use the actual text colors corresponding to each faded part. renderer->SetShader( CreateFadeShader(font_list(), text_rect, left_part, right_part, SkColorSetA(colors_.breaks().front().second, 0xff))); } void RenderText::ApplyTextShadows(internal::SkiaTextRenderer* renderer) { renderer->SetDrawLooper(CreateShadowDrawLooper(shadows_)); } base::i18n::TextDirection RenderText::GetTextDirectionForGivenText( const std::u16string& text) const { switch (directionality_mode_) { case DIRECTIONALITY_FROM_TEXT: // Derive the direction from the display text, which differs from text() // in the case of obscured (password) textfields. return base::i18n::GetFirstStrongCharacterDirection(text); case DIRECTIONALITY_FROM_UI: return base::i18n::IsRTL() ? base::i18n::RIGHT_TO_LEFT : base::i18n::LEFT_TO_RIGHT; case DIRECTIONALITY_FORCE_LTR: return base::i18n::LEFT_TO_RIGHT; case DIRECTIONALITY_FORCE_RTL: return base::i18n::RIGHT_TO_LEFT; case DIRECTIONALITY_AS_URL: // Rendering as a URL implies left-to-right paragraph direction. // URL Standard specifies that a URL "should be rendered as if it were // in a left-to-right embedding". // https://url.spec.whatwg.org/#url-rendering // // Consider logical string for domain "ABC.com/hello" (where ABC are // Hebrew (RTL) characters). The normal Bidi algorithm renders this as // "com/hello.CBA"; by forcing LTR, it is rendered as "CBA.com/hello". // // Note that this only applies a LTR embedding at the top level; it // doesn't change the Bidi algorithm, so there are still some URLs that // will render in a confusing order. Consider the logical string // "abc.COM/HELLO/world", which will render as "abc.OLLEH/MOC/world". // See https://crbug.com/351639. // // Note that the LeftToRightUrls feature flag enables additional // behaviour for DIRECTIONALITY_AS_URL, but the left-to-right embedding // behaviour is always enabled, regardless of the flag. return base::i18n::LEFT_TO_RIGHT; default: NOTREACHED(); return base::i18n::UNKNOWN_DIRECTION; } } void RenderText::UpdateStyleLengths() { const size_t text_length = text_.length(); colors_.SetMax(text_length); baselines_.SetMax(text_length); font_size_overrides_.SetMax(text_length); weights_.SetMax(text_length); for (auto& style : styles_) style.SetMax(text_length); } void RenderText::UpdateLayoutStyleLengths(size_t max_length) const { layout_colors_.SetMax(max_length); layout_baselines_.SetMax(max_length); layout_font_size_overrides_.SetMax(max_length); layout_weights_.SetMax(max_length); for (auto& layout_style : layout_styles_) layout_style.SetMax(max_length); } int RenderText::GetLineContainingYCoord(float text_y) { if (text_y < 0) return -1; internal::ShapedText* shaper_text = GetShapedText(); for (size_t i = 0; i < shaper_text->lines().size(); i++) { const internal::Line& line = shaper_text->lines()[i]; if (text_y <= line.size.height()) return i; text_y -= line.size.height(); } return shaper_text->lines().size(); } // static bool RenderText::RangeContainsCaret(const Range& range, size_t caret_pos, LogicalCursorDirection caret_affinity) { // NB: exploits unsigned wraparound (WG14/N1124 section 6.2.5 paragraph 9). size_t adjacent = (caret_affinity == CURSOR_BACKWARD) ? caret_pos - 1 : caret_pos + 1; return range.Contains(Range(caret_pos, adjacent)); } // static int RenderText::DetermineBaselineCenteringText(const int display_height, const FontList& font_list) { const int font_height = font_list.GetHeight(); // Lower and upper bound of baseline shift as we try to show as much area of // text as possible. In particular case of |display_height| == |font_height|, // we do not want to shift the baseline. const int min_shift = std::min(0, display_height - font_height); const int max_shift = std::abs(display_height - font_height); const int baseline = font_list.GetBaseline(); const int cap_height = font_list.GetCapHeight(); const int internal_leading = baseline - cap_height; // Some platforms don't support getting the cap height, and simply return // the entire font ascent from GetCapHeight(). Centering the ascent makes // the font look too low, so if GetCapHeight() returns the ascent, center // the entire font height instead. const int space = display_height - ((internal_leading != 0) ? cap_height : font_height); const int baseline_shift = space / 2 - internal_leading; return baseline + base::clamp(baseline_shift, min_shift, max_shift); } // static Rect RenderText::ExpandToBeVerticallySymmetric(const Rect& rect, const Rect& display_rect) { // Mirror |rect| across the horizontal line dividing |display_rect| in half. Rect result = rect; int mid_y = display_rect.CenterPoint().y(); // The top of the mirror rect must be equidistant with the bottom of the // original rect from the mid-line. result.set_y(mid_y + (mid_y - rect.bottom())); // Now make a union with the original rect to ensure we are encompassing both. result.Union(rect); return result; } // static void RenderText::MergeIntersectingRects(std::vector& rects) { if (rects.size() < 2) return; std::sort(rects.begin(), rects.end(), [](const Rect& a, const Rect& b) { return a.x() < b.x(); }); size_t merge_candidate = 0; for (size_t i = 1; i < rects.size(); i++) { if (rects[i].Intersects(rects[merge_candidate]) || rects[i].SharesEdgeWith(rects[merge_candidate])) { DCHECK_EQ(rects[i].y(), rects[merge_candidate].y()); DCHECK_EQ(rects[i].height(), rects[merge_candidate].height()); rects[merge_candidate].Union(rects[i]); } else { merge_candidate++; if (merge_candidate != i) rects[merge_candidate] = rects[i]; } } rects.resize(merge_candidate + 1); } void RenderText::OnTextAttributeChanged() { layout_text_.clear(); display_text_.clear(); text_elided_ = false; line_breaks_.SetMax(0); layout_text_up_to_date_ = false; OnLayoutTextAttributeChanged(true); } std::u16string RenderText::Elide(const std::u16string& text, float text_width, float available_width, ElideBehavior behavior) { if (available_width <= 0 || text.empty()) return std::u16string(); if (behavior == ELIDE_EMAIL) return ElideEmail(text, available_width); if (text_width > 0 && text_width <= available_width) return text; TRACE_EVENT0("ui", "RenderText::Elide"); // Create a RenderText copy with attributes that affect the rendering width. std::unique_ptr render_text = CreateInstanceOfSameStyle(text); render_text->UpdateStyleLengths(); if (text_width == 0) text_width = render_text->GetContentWidthF(); if (text_width <= available_width) return text; const std::u16string ellipsis = std::u16string(kEllipsisUTF16); const bool insert_ellipsis = (behavior != TRUNCATE); const bool elide_in_middle = (behavior == ELIDE_MIDDLE); const bool elide_at_beginning = (behavior == ELIDE_HEAD); if (insert_ellipsis) { render_text->SetText(ellipsis); const float ellipsis_width = render_text->GetContentWidthF(); if (ellipsis_width > available_width) return std::u16string(); } StringSlicer slicer(text, ellipsis, elide_in_middle, elide_at_beginning, whitespace_elision_); // Use binary(-like) search to compute the elided text. In particular, do // an interpolation search, which is a binary search in which each guess // is an attempt to smartly calculate the right point rather than blindly // guessing midway between the endpoints. size_t lo = 0; size_t hi = text.length() - 1; size_t guess = std::string::npos; // These two widths are not exactly right but they're good enough to provide // some guidance to the search. For example, |text_width| is actually the // length of text.length(), not text.length()-1. float lo_width = 0; float hi_width = text_width; const base::i18n::TextDirection text_direction = GetTextDirection(); while (lo <= hi) { // Linearly interpolate between |lo| and |hi|, which correspond to widths // of |lo_width| and |hi_width| to estimate at what position // |available_width| would be at. Because |lo_width| and |hi_width| are // both estimates (may be off by a little because, for example, |lo_width| // may have been calculated from |lo| minus one, not |lo|), we clamp to the // the valid range. // |last_guess| is merely used to verify that we're not repeating guesses. const size_t last_guess = guess; if (hi_width != lo_width) { guess = lo + base::ClampRound((available_width - lo_width) * (hi - lo) / (hi_width - lo_width)); } guess = base::clamp(guess, lo, hi); DCHECK_NE(last_guess, guess); // Restore colors. They will be truncated to size by SetText. render_text->colors_ = colors_; std::u16string new_text = slicer.CutString(guess, insert_ellipsis && behavior != ELIDE_TAIL); // This has to be an additional step so that the ellipsis is rendered with // same style as trailing part of the text. if (insert_ellipsis && behavior == ELIDE_TAIL) { // When ellipsis follows text whose directionality is not the same as that // of the whole text, it will be rendered with the directionality of the // whole text. Since we want ellipsis to indicate continuation of the // preceding text, we force the directionality of ellipsis to be same as // the preceding text using LTR or RTL markers. base::i18n::TextDirection trailing_text_direction = base::i18n::GetLastStrongCharacterDirection(new_text); // Ensures that the |new_text| will always be smaller or equal to the // original text. There is a corner case when only one character is elided // and two characters are added back (ellipsis and directional marker). if (trailing_text_direction != text_direction && new_text.length() + 2 > text.length() && guess >= 1) { new_text = slicer.CutString(guess - 1, false); trailing_text_direction = base::i18n::GetLastStrongCharacterDirection(new_text); } // Append the ellipsis and the optional directional marker characters. // Do not append the BiDi marker if the only codepoint in the text is // an ellipsis. new_text.append(ellipsis); if (new_text.size() != 1 && trailing_text_direction != text_direction) { if (trailing_text_direction == base::i18n::LEFT_TO_RIGHT) new_text += base::i18n::kLeftToRightMark; else new_text += base::i18n::kRightToLeftMark; } } // The elided text must be smaller in bytes. Otherwise, break-lists are not // consistent and the characters after the last range are not styled. DCHECK_LE(new_text.size(), text.size()); render_text->SetText(new_text); // Restore styles and baselines without breaking multi-character graphemes. render_text->styles_ = styles_; for (auto& style : render_text->styles_) RestoreBreakList(render_text.get(), &style); RestoreBreakList(render_text.get(), &render_text->baselines_); RestoreBreakList(render_text.get(), &render_text->font_size_overrides_); render_text->weights_ = weights_; RestoreBreakList(render_text.get(), &render_text->weights_); // We check the width of the whole desired string at once to ensure we // handle kerning/ligatures/etc. correctly. const float guess_width = render_text->GetContentWidthF(); if (guess_width == available_width) break; if (guess_width > available_width) { hi = guess - 1; hi_width = guess_width; // Move back on the loop terminating condition when the guess is too wide. if (hi < lo) { lo = hi; lo_width = guess_width; } } else { lo = guess + 1; lo_width = guess_width; } } return render_text->text(); } std::u16string RenderText::ElideEmail(const std::u16string& email, float available_width) { // The returned string will have at least one character besides the ellipsis // on either side of '@'; if that's impossible, a single ellipsis is returned. // If possible, only the username is elided. Otherwise, the domain is elided // in the middle, splitting available width equally with the elided username. // If the username is short enough that it doesn't need half the available // width, the elided domain will occupy that extra width. // Split the email into its local-part (username) and domain-part. The email // spec allows for @ symbols in the username under some special requirements, // but not in the domain part, so splitting at the last @ symbol is safe. const size_t split_index = email.find_last_of('@'); if (split_index == std::u16string::npos) return Elide(email, 0, available_width, ELIDE_TAIL); std::u16string username = email.substr(0, split_index); std::u16string domain = email.substr(split_index + 1); // TODO(http://crbug.com/1085014): Fix eliding of text with styles. DCHECK(IsHomogeneous()) << "ElideEmail(...) doesn't work with non homogeneous styles."; auto render_text = CreateInstanceOfSameStyle(std::u16string()); auto get_string_width = [&](const std::u16string& text) { render_text->SetText(text); return render_text->GetStringSizeF().width(); }; // Subtract the @ symbol from the available width as it is mandatory. const std::u16string kAtSignUTF16 = u"@"; float at_width = get_string_width(kAtSignUTF16); if (available_width < at_width) return Elide(kEllipsisUTF16, 0, available_width, ELIDE_TAIL); const float remaining_width = available_width - at_width; // Handle corner cases where one of username or domain is empty. if (username.empty() && domain.empty()) { return Elide(email, 0, available_width, ELIDE_TAIL); } else if (username.empty()) { domain = Elide(domain, 0, remaining_width, ELIDE_MIDDLE); if (domain.empty() || domain == kEllipsisUTF16) return Elide(kEllipsisUTF16, 0, available_width, ELIDE_TAIL); return kAtSignUTF16 + domain; } else if (domain.empty()) { username = Elide(username, 0, remaining_width, ELIDE_TAIL); if (username.empty() || username == kEllipsisUTF16) return Elide(kEllipsisUTF16, 0, available_width, ELIDE_TAIL); return username + kAtSignUTF16; } // Check whether eliding the domain is necessary: if eliding the username // is sufficient, the domain will not be elided. const float full_username_width = get_string_width(username); const float available_domain_width = remaining_width - std::min(full_username_width, get_string_width(username.substr(0, 1) + kEllipsisUTF16)); if (get_string_width(domain) > available_domain_width) { // Elide the domain so that it only takes half of the available width. // Should the username not need all the width available in its half, the // domain will occupy the leftover width. // If |desired_domain_width| is greater than |available_domain_width|: the // minimal username elision allowed by the specifications will not fit; thus // |desired_domain_width| must be <= |available_domain_width| at all cost. const float desired_domain_width = std::min(available_domain_width, std::max(remaining_width - full_username_width, remaining_width / 2)); domain = Elide(domain, 0, desired_domain_width, ELIDE_MIDDLE); // Failing to elide the domain such that at least one character remains // (other than the ellipsis itself) remains: return a single ellipsis. if (domain.empty() || domain == kEllipsisUTF16) return Elide(kEllipsisUTF16, 0, available_width, ELIDE_TAIL); } // Fit the username in the remaining width (at this point the elided username // is guaranteed to fit with at least one character remaining given all the // precautions taken earlier). const float domain_width = get_string_width(domain); const float available_username_width = remaining_width - domain_width; username = Elide(username, 0, available_username_width, ELIDE_TAIL); return username + kAtSignUTF16 + domain; } void RenderText::UpdateCachedBoundsAndOffset() { if (cached_bounds_and_offset_valid_) return; int delta_x = 0; int delta_y = 0; if (cursor_enabled()) { // When cursor is enabled, ensure it is visible. For this, set the valid // flag true and calculate the current cursor bounds using the stale // |display_offset_|. Then calculate the change in offset needed to move the // cursor into the visible area. cached_bounds_and_offset_valid_ = true; cursor_bounds_ = GetCursorBounds(selection_model_, true); // TODO(bidi): Show RTL glyphs at the cursor position for ALIGN_LEFT, etc. if (cursor_bounds_.right() > display_rect_.right()) delta_x = display_rect_.right() - cursor_bounds_.right(); else if (cursor_bounds_.x() < display_rect_.x()) delta_x = display_rect_.x() - cursor_bounds_.x(); if (vertical_alignment_ == ALIGN_TOP) { if (cursor_bounds_.bottom() > display_rect_.bottom()) delta_y = display_rect_.bottom() - cursor_bounds_.bottom(); else if (cursor_bounds_.y() < display_rect_.y()) delta_y = display_rect_.y() - cursor_bounds_.y(); } } SetDisplayOffset(display_offset_ + Vector2d(delta_x, delta_y)); } internal::GraphemeIterator RenderText::GetGraphemeIteratorAtIndex( const std::u16string& text, const size_t internal::TextToDisplayIndex::*field, size_t index) const { DCHECK_LE(index, text.length()); if (index == text.length()) return text_to_display_indices_.end(); DCHECK(layout_text_up_to_date_); DCHECK(!text_to_display_indices_.empty()); // The function std::lower_bound(...) finds the first not less than |index|. internal::GraphemeIterator iter = std::lower_bound( text_to_display_indices_.begin(), text_to_display_indices_.end(), index, [field](const internal::TextToDisplayIndex& lhs, size_t rhs) { return lhs.*field < rhs; }); if (iter == text_to_display_indices_.end() || *iter.*field != index) { DCHECK(iter != text_to_display_indices_.begin()); --iter; } return iter; } void RenderText::DrawSelections(Canvas* canvas, const std::vector& selections) { for (auto selection : selections) { if (!selection.is_empty()) { for (Rect s : GetSubstringBounds(selection)) { if (symmetric_selection_visual_bounds() && !multiline()) s = ExpandToBeVerticallySymmetric(s, display_rect()); canvas->FillRect(s, selection_background_focused_color_); } } } } size_t RenderText::GetNearestWordStartBoundary(size_t index) const { const size_t length = text().length(); if (obscured() || length == 0) return length; base::i18n::BreakIterator iter(text(), base::i18n::BreakIterator::BREAK_WORD); const bool success = iter.Init(); DCHECK(success); if (!success) return length; // First search for the word start boundary in the CURSOR_BACKWARD direction, // then in the CURSOR_FORWARD direction. for (int i = static_cast(std::min(index, length - 1)); i >= 0; i--) if (iter.IsStartOfWord(i)) return i; for (size_t i = index + 1; i < length; i++) if (iter.IsStartOfWord(i)) return i; return length; } Range RenderText::ExpandRangeToWordBoundary(const Range& range) const { const size_t length = text().length(); DCHECK_LE(range.GetMax(), length); if (obscured()) return range.is_reversed() ? Range(length, 0) : Range(0, length); base::i18n::BreakIterator iter(text(), base::i18n::BreakIterator::BREAK_WORD); const bool success = iter.Init(); DCHECK(success); if (!success) return range; size_t range_min = range.GetMin(); if (range_min == length && range_min != 0) --range_min; for (; range_min != 0; --range_min) if (iter.IsStartOfWord(range_min) || iter.IsEndOfWord(range_min)) break; size_t range_max = range.GetMax(); if (range_min == range_max && range_max != length) ++range_max; for (; range_max < length; ++range_max) if (iter.IsEndOfWord(range_max) || iter.IsStartOfWord(range_max)) break; return range.is_reversed() ? Range(range_max, range_min) : Range(range_min, range_max); } } // namespace gfx