// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/display/unified_desktop_utils.h" #include #include #include "base/containers/stack.h" #include "base/logging.h" #include "base/stl_util.h" #include "ui/display/types/display_constants.h" namespace display { namespace { // Defines a row and column indices of a cell in the layout matrix. struct Cell { int row; int column; Cell(int r, int c) : row(r), column(c) {} }; // Validates that the display placements defines a graph where there is a path // from each display to the primary display (root) and there are no cycles or // unparented displays. using DisplayChildToParentMap = std::map; bool ValidateDisplayGraph(const DisplayChildToParentMap& child_to_parent, int64_t primary_id) { for (const auto& iter : child_to_parent) { int64_t current_id = iter.first; if (current_id == primary_id) { // The primary display should not have a parent, and shouldn't exist in // the map as a key. That's a potential cycle. LOG(ERROR) << "Primary display must not have a parent."; return false; } std::set visited_ids; while (current_id != primary_id) { if (!visited_ids.emplace(current_id).second) { LOG(ERROR) << "A cycle exists at display ID: " << current_id; return false; } const auto parent_iter = child_to_parent.find(current_id); if (parent_iter == child_to_parent.end()) { LOG(ERROR) << "Display ID: " << current_id << " has no parent."; return false; } current_id = parent_iter->second; } } return true; } // Builds and returns the Unified Desktop layout matrix given the display // |layout|. This function must only be called on an already-validated |layout|. // Returns an empty matrix if an error occurs. UnifiedDesktopLayoutMatrix BuildDisplayMatrix(const DisplayLayout& layout) { // Maps a display ID to its Cell position in the matrix. std::map displays_cells; // The root primary display is at (0, 0). displays_cells.emplace(layout.primary_id, Cell(0, 0)); // After we finish building the Cells, we might have some displays // positioned at negative cell coordinates (relative to the root primary // display). We need to normalize our Cells so that the least row and column // indices are zeros. // Calculate the min/max row and column indices. int max_row = 0; int max_column = 0; int min_row = 0; int min_column = 0; // Calculate the Cell positions of all displays in the placement list. for (const auto& placement : layout.placement_list) { int64_t current_display_id = placement.display_id; base::stack unhandled_displays; while (displays_cells.count(current_display_id) == 0) { auto placement_iter = std::find_if( layout.placement_list.begin(), layout.placement_list.end(), [current_display_id](const DisplayPlacement& p) { return p.display_id == current_display_id; }); DCHECK(placement_iter != layout.placement_list.end()); unhandled_displays.emplace(*placement_iter); current_display_id = placement_iter->parent_display_id; } // For each unhandled display, find its parent's cell, and use it to deduce // its own cell. while (!unhandled_displays.empty()) { const DisplayPlacement current_placement = unhandled_displays.top(); unhandled_displays.pop(); const Cell& parent_cell = displays_cells.at(current_placement.parent_display_id); std::map::iterator new_cell_itr; switch (current_placement.position) { case DisplayPlacement::TOP: // Top of its parent. Go up a row (row - 1). new_cell_itr = displays_cells .emplace(current_placement.display_id, Cell(parent_cell.row - 1, parent_cell.column)) .first; break; case DisplayPlacement::RIGHT: // Right of its parent. Go right a column (column + 1). new_cell_itr = displays_cells .emplace(current_placement.display_id, Cell(parent_cell.row, parent_cell.column + 1)) .first; break; case DisplayPlacement::BOTTOM: // Bottom of its parent. Go down a row (row + 1). new_cell_itr = displays_cells .emplace(current_placement.display_id, Cell(parent_cell.row + 1, parent_cell.column)) .first; break; case DisplayPlacement::LEFT: // Left of its parent. Go left a column (column - 1). new_cell_itr = displays_cells .emplace(current_placement.display_id, Cell(parent_cell.row, parent_cell.column - 1)) .first; break; } const Cell& cell = new_cell_itr->second; max_row = std::max(max_row, cell.row); max_column = std::max(max_column, cell.column); min_row = std::min(min_row, cell.row); min_column = std::min(min_column, cell.column); } } // Now build the matrix. UnifiedDesktopLayoutMatrix matrix; const size_t num_rows = max_row - min_row + 1; const size_t num_columns = max_column - min_column + 1; if (displays_cells.size() != num_rows * num_columns) { LOG(ERROR) << "Unified Desktop layout matrix has wrong dimentions"; // Return an empty matrix, ValidateMatrix() will catch it as invalid. return matrix; } matrix.resize(num_rows); for (auto& matrix_row : matrix) matrix_row.resize(num_columns, display::kInvalidDisplayId); for (const auto& iter : displays_cells) { const Cell& cell = iter.second; const int row_index = cell.row - min_row; const int column_index = cell.column - min_column; matrix[row_index][column_index] = iter.first; } return matrix; } } // namespace bool ValidateMatrix(const UnifiedDesktopLayoutMatrix& matrix) { if (matrix.empty()) return false; const size_t column_count = matrix[0].size(); if (column_count == 0) return false; for (const auto& row : matrix) { if (row.size() != column_count) { LOG(ERROR) << "Wrong matrix dimensions. Unequal rows sizes."; return false; } // No holes or repeated IDs are allowed. for (const auto& id : row) { if (id == display::kInvalidDisplayId) { LOG(ERROR) << "Unified Desktop layout matrix has an empty cell in it."; return false; } } } return true; } bool BuildUnifiedDesktopMatrix(const DisplayIdList& ids_list, const DisplayLayout& layout, UnifiedDesktopLayoutMatrix* out_matrix) { // The primary display should be in the IDs list. if (!base::Contains(ids_list, layout.primary_id)) { LOG(ERROR) << "The primary ID: " << layout.primary_id << " is not in the IDs list."; return false; } // Each ID in |ids_list| must have a placement in the layout except the // primary display. for (const auto& id : ids_list) { if (id == layout.primary_id) continue; const auto iter = std::find_if(layout.placement_list.begin(), layout.placement_list.end(), [id](const DisplayPlacement& placement) { return placement.display_id == id; }); if (iter == layout.placement_list.end()) { LOG(ERROR) << "Display with ID: " << id << " has no placement."; return false; } } if (layout.placement_list.empty()) { LOG(ERROR) << "Placement list is empty."; return false; } // This map is used to validate that each display has no more than one child // on eithr of its sides. std::map> displays_filled_sides; // This map is used to validate that all displays has a path to the primary // (root) display with no cycles. DisplayChildToParentMap child_to_parent; bool has_primary_as_parent = false; for (const auto& placement : layout.placement_list) { // Unified mode placements are not allowed to have offsets. if (placement.offset != 0) { LOG(ERROR) << "Unified mode placements are not allowed to have offsets."; return false; } if (placement.display_id == kInvalidDisplayId) { LOG(ERROR) << "display_id is not initialized"; return false; } if (placement.parent_display_id == kInvalidDisplayId) { LOG(ERROR) << "parent_display_id is not initialized"; return false; } if (placement.display_id == placement.parent_display_id) { LOG(ERROR) << "display_id must not be the same as parent_display_id"; return false; } if (!base::Contains(ids_list, placement.display_id)) { LOG(ERROR) << "display_id: " << placement.display_id << " is not in the id list: " << placement.ToString(); return false; } if (!base::Contains(ids_list, placement.parent_display_id)) { LOG(ERROR) << "parent_display_id: " << placement.parent_display_id << " is not in the id list: " << placement.ToString(); return false; } if (!displays_filled_sides[placement.parent_display_id] .emplace(placement.position) .second) { LOG(ERROR) << "Parent display with ID: " << placement.parent_display_id << " has more than one display on the same side: " << placement.position; return false; } if (!child_to_parent .emplace(placement.display_id, placement.parent_display_id) .second) { LOG(ERROR) << "Display ID: " << placement.display_id << " appears more " << "than once in the placement list."; return false; } has_primary_as_parent |= layout.primary_id == placement.parent_display_id; } if (!has_primary_as_parent) { LOG(ERROR) << "At least, one placement must have the primary as a parent."; return false; } if (!ValidateDisplayGraph(child_to_parent, layout.primary_id)) return false; UnifiedDesktopLayoutMatrix matrix = BuildDisplayMatrix(layout); if (!ValidateMatrix(matrix)) return false; *out_matrix = matrix; return true; } } // namespace display