/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/test/fake_encoder.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/video_coding/include/video_codec_interface.h" #include "webrtc/system_wrappers/include/sleep.h" namespace webrtc { namespace test { FakeEncoder::FakeEncoder(Clock* clock) : clock_(clock), callback_(NULL), target_bitrate_kbps_(0), max_target_bitrate_kbps_(-1), last_encode_time_ms_(0) { // Generate some arbitrary not-all-zero data for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) { encoded_buffer_[i] = static_cast(i); } } FakeEncoder::~FakeEncoder() {} void FakeEncoder::SetMaxBitrate(int max_kbps) { assert(max_kbps >= -1); // max_kbps == -1 disables it. max_target_bitrate_kbps_ = max_kbps; } int32_t FakeEncoder::InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) { config_ = *config; target_bitrate_kbps_ = config_.startBitrate; return 0; } int32_t FakeEncoder::Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { assert(config_.maxFramerate > 0); int64_t time_since_last_encode_ms = 1000 / config_.maxFramerate; int64_t time_now_ms = clock_->TimeInMilliseconds(); const bool first_encode = last_encode_time_ms_ == 0; if (!first_encode) { // For all frames but the first we can estimate the display time by looking // at the display time of the previous frame. time_since_last_encode_ms = time_now_ms - last_encode_time_ms_; } if (time_since_last_encode_ms > 3 * 1000 / config_.maxFramerate) { // Rudimentary check to make sure we don't widely overshoot bitrate target // when resuming encoding after a suspension. time_since_last_encode_ms = 3 * 1000 / config_.maxFramerate; } size_t bits_available = static_cast(target_bitrate_kbps_ * time_since_last_encode_ms); size_t min_bits = static_cast( config_.simulcastStream[0].minBitrate * time_since_last_encode_ms); if (bits_available < min_bits) bits_available = min_bits; size_t max_bits = static_cast(max_target_bitrate_kbps_ * time_since_last_encode_ms); if (max_bits > 0 && max_bits < bits_available) bits_available = max_bits; last_encode_time_ms_ = time_now_ms; assert(config_.numberOfSimulcastStreams > 0); for (unsigned char i = 0; i < config_.numberOfSimulcastStreams; ++i) { CodecSpecificInfo specifics; memset(&specifics, 0, sizeof(specifics)); specifics.codecType = kVideoCodecGeneric; specifics.codecSpecific.generic.simulcast_idx = i; size_t min_stream_bits = static_cast( config_.simulcastStream[i].minBitrate * time_since_last_encode_ms); size_t max_stream_bits = static_cast( config_.simulcastStream[i].maxBitrate * time_since_last_encode_ms); size_t stream_bits = (bits_available > max_stream_bits) ? max_stream_bits : bits_available; size_t stream_bytes = (stream_bits + 7) / 8; if (first_encode) { // The first frame is a key frame and should be larger. // TODO(holmer): The FakeEncoder should store the bits_available between // encodes so that it can compensate for oversized frames. stream_bytes *= 10; } if (stream_bytes > sizeof(encoded_buffer_)) stream_bytes = sizeof(encoded_buffer_); EncodedImage encoded( encoded_buffer_, stream_bytes, sizeof(encoded_buffer_)); encoded._timeStamp = input_image.timestamp(); encoded.capture_time_ms_ = input_image.render_time_ms(); encoded._frameType = (*frame_types)[i]; encoded._encodedWidth = config_.simulcastStream[i].width; encoded._encodedHeight = config_.simulcastStream[i].height; // Always encode something on the first frame. if (min_stream_bits > bits_available && i > 0) continue; assert(callback_ != NULL); if (callback_->Encoded(encoded, &specifics, NULL) != 0) return -1; bits_available -= std::min(encoded._length * 8, bits_available); } return 0; } int32_t FakeEncoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { callback_ = callback; return 0; } int32_t FakeEncoder::Release() { return 0; } int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int64_t rtt) { return 0; } int32_t FakeEncoder::SetRates(uint32_t new_target_bitrate, uint32_t framerate) { target_bitrate_kbps_ = new_target_bitrate; return 0; } const char* FakeEncoder::kImplementationName = "fake_encoder"; const char* FakeEncoder::ImplementationName() const { return kImplementationName; } FakeH264Encoder::FakeH264Encoder(Clock* clock) : FakeEncoder(clock), callback_(NULL), idr_counter_(0) { FakeEncoder::RegisterEncodeCompleteCallback(this); } int32_t FakeH264Encoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { callback_ = callback; return 0; } int32_t FakeH264Encoder::Encoded(const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragments) { const size_t kSpsSize = 8; const size_t kPpsSize = 11; const int kIdrFrequency = 10; RTPFragmentationHeader fragmentation; if (idr_counter_++ % kIdrFrequency == 0 && encoded_image._length > kSpsSize + kPpsSize + 1) { const size_t kNumSlices = 3; fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation.fragmentationOffset[0] = 0; fragmentation.fragmentationLength[0] = kSpsSize; fragmentation.fragmentationOffset[1] = kSpsSize; fragmentation.fragmentationLength[1] = kPpsSize; fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize; fragmentation.fragmentationLength[2] = encoded_image._length - (kSpsSize + kPpsSize); const size_t kSpsNalHeader = 0x67; const size_t kPpsNalHeader = 0x68; const size_t kIdrNalHeader = 0x65; encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader; encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader; encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader; } else { const size_t kNumSlices = 1; fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation.fragmentationOffset[0] = 0; fragmentation.fragmentationLength[0] = encoded_image._length; const size_t kNalHeader = 0x41; encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader; } uint8_t value = 0; int fragment_counter = 0; for (size_t i = 0; i < encoded_image._length; ++i) { if (fragment_counter == fragmentation.fragmentationVectorSize || i != fragmentation.fragmentationOffset[fragment_counter]) { encoded_image._buffer[i] = value++; } else { ++fragment_counter; } } return callback_->Encoded(encoded_image, NULL, &fragmentation); } DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) : test::FakeEncoder(clock), delay_ms_(delay_ms) {} int32_t DelayedEncoder::Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { SleepMs(delay_ms_); return FakeEncoder::Encode(input_image, codec_specific_info, frame_types); } } // namespace test } // namespace webrtc