/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/paced_sender.h" #include #include #include #include #include #include "modules/include/module_common_types.h" #include "modules/pacing/alr_detector.h" #include "modules/pacing/bitrate_prober.h" #include "modules/pacing/interval_budget.h" #include "modules/utility/include/process_thread.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace { // Time limit in milliseconds between packet bursts. const int64_t kMinPacketLimitMs = 5; const int64_t kPausedPacketIntervalMs = 500; // Upper cap on process interval, in case process has not been called in a long // time. const int64_t kMaxIntervalTimeMs = 30; } // namespace namespace webrtc { const int64_t PacedSender::kMaxQueueLengthMs = 2000; const float PacedSender::kDefaultPaceMultiplier = 2.5f; PacedSender::PacedSender(const Clock* clock, PacketSender* packet_sender, RtcEventLog* event_log) : clock_(clock), packet_sender_(packet_sender), alr_detector_(new AlrDetector()), paused_(false), media_budget_(new IntervalBudget(0)), padding_budget_(new IntervalBudget(0)), prober_(new BitrateProber(event_log)), probing_send_failure_(false), estimated_bitrate_bps_(0), min_send_bitrate_kbps_(0u), max_padding_bitrate_kbps_(0u), pacing_bitrate_kbps_(0), time_last_update_us_(clock->TimeInMicroseconds()), first_sent_packet_ms_(-1), packets_(new PacketQueue(clock)), packet_counter_(0), pacing_factor_(kDefaultPaceMultiplier), queue_time_limit(kMaxQueueLengthMs) { UpdateBudgetWithElapsedTime(kMinPacketLimitMs); } PacedSender::~PacedSender() {} void PacedSender::CreateProbeCluster(int bitrate_bps) { rtc::CritScope cs(&critsect_); prober_->CreateProbeCluster(bitrate_bps, clock_->TimeInMilliseconds()); } void PacedSender::Pause() { { rtc::CritScope cs(&critsect_); if (!paused_) LOG(LS_INFO) << "PacedSender paused."; paused_ = true; packets_->SetPauseState(true, clock_->TimeInMilliseconds()); } // Tell the process thread to call our TimeUntilNextProcess() method to get // a new (longer) estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::Resume() { { rtc::CritScope cs(&critsect_); if (paused_) LOG(LS_INFO) << "PacedSender resumed."; paused_ = false; packets_->SetPauseState(false, clock_->TimeInMilliseconds()); } // Tell the process thread to call our TimeUntilNextProcess() method to // refresh the estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::SetProbingEnabled(bool enabled) { RTC_CHECK_EQ(0, packet_counter_); rtc::CritScope cs(&critsect_); prober_->SetEnabled(enabled); } void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) { if (bitrate_bps == 0) LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate."; rtc::CritScope cs(&critsect_); estimated_bitrate_bps_ = bitrate_bps; padding_budget_->set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; alr_detector_->SetEstimatedBitrate(bitrate_bps); } void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps, int padding_bitrate) { rtc::CritScope cs(&critsect_); min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000; pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; max_padding_bitrate_kbps_ = padding_bitrate / 1000; padding_budget_->set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); } void PacedSender::InsertPacket(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, size_t bytes, bool retransmission) { rtc::CritScope cs(&critsect_); RTC_DCHECK(estimated_bitrate_bps_ > 0) << "SetEstimatedBitrate must be called before InsertPacket."; int64_t now_ms = clock_->TimeInMilliseconds(); prober_->OnIncomingPacket(bytes); if (capture_time_ms < 0) capture_time_ms = now_ms; packets_->Push(PacketQueue::Packet(priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes, retransmission, packet_counter_++)); } int64_t PacedSender::ExpectedQueueTimeMs() const { rtc::CritScope cs(&critsect_); RTC_DCHECK_GT(pacing_bitrate_kbps_, 0); return static_cast(packets_->SizeInBytes() * 8 / pacing_bitrate_kbps_); } rtc::Optional PacedSender::GetApplicationLimitedRegionStartTime() const { rtc::CritScope cs(&critsect_); return alr_detector_->GetApplicationLimitedRegionStartTime(); } size_t PacedSender::QueueSizePackets() const { rtc::CritScope cs(&critsect_); return packets_->SizeInPackets(); } int64_t PacedSender::FirstSentPacketTimeMs() const { rtc::CritScope cs(&critsect_); return first_sent_packet_ms_; } int64_t PacedSender::QueueInMs() const { rtc::CritScope cs(&critsect_); int64_t oldest_packet = packets_->OldestEnqueueTimeMs(); if (oldest_packet == 0) return 0; return clock_->TimeInMilliseconds() - oldest_packet; } int64_t PacedSender::AverageQueueTimeMs() { rtc::CritScope cs(&critsect_); packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); return packets_->AverageQueueTimeMs(); } int64_t PacedSender::TimeUntilNextProcess() { rtc::CritScope cs(&critsect_); int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; // When paused we wake up every 500 ms to send a padding packet to ensure // we won't get stuck in the paused state due to no feedback being received. if (paused_) return std::max(kPausedPacketIntervalMs - elapsed_time_ms, 0); if (prober_->IsProbing()) { int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); if (ret > 0 || (ret == 0 && !probing_send_failure_)) return ret; } return std::max(kMinPacketLimitMs - elapsed_time_ms, 0); } void PacedSender::Process() { int64_t now_us = clock_->TimeInMicroseconds(); rtc::CritScope cs(&critsect_); int64_t elapsed_time_ms = std::min( kMaxIntervalTimeMs, (now_us - time_last_update_us_ + 500) / 1000); int target_bitrate_kbps = pacing_bitrate_kbps_; if (paused_) { PacedPacketInfo pacing_info; time_last_update_us_ = now_us; // We can not send padding unless a normal packet has first been sent. If we // do, timestamps get messed up. if (packet_counter_ == 0) return; size_t bytes_sent = SendPadding(1, pacing_info); alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms); return; } if (elapsed_time_ms > 0) { size_t queue_size_bytes = packets_->SizeInBytes(); if (queue_size_bytes > 0) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); int64_t avg_time_left_ms = std::max( 1, queue_time_limit - packets_->AverageQueueTimeMs()); int min_bitrate_needed_kbps = static_cast(queue_size_bytes * 8 / avg_time_left_ms); if (min_bitrate_needed_kbps > target_bitrate_kbps) target_bitrate_kbps = min_bitrate_needed_kbps; } media_budget_->set_target_rate_kbps(target_bitrate_kbps); UpdateBudgetWithElapsedTime(elapsed_time_ms); } time_last_update_us_ = now_us; bool is_probing = prober_->IsProbing(); PacedPacketInfo pacing_info; size_t bytes_sent = 0; size_t recommended_probe_size = 0; if (is_probing) { pacing_info = prober_->CurrentCluster(); recommended_probe_size = prober_->RecommendedMinProbeSize(); } while (!packets_->Empty()) { // Since we need to release the lock in order to send, we first pop the // element from the priority queue but keep it in storage, so that we can // reinsert it if send fails. const PacketQueue::Packet& packet = packets_->BeginPop(); if (SendPacket(packet, pacing_info)) { // Send succeeded, remove it from the queue. if (first_sent_packet_ms_ == -1) first_sent_packet_ms_ = clock_->TimeInMilliseconds(); bytes_sent += packet.bytes; packets_->FinalizePop(packet); if (is_probing && bytes_sent > recommended_probe_size) break; } else { // Send failed, put it back into the queue. packets_->CancelPop(packet); break; } } if (packets_->Empty()) { // We can not send padding unless a normal packet has first been sent. If we // do, timestamps get messed up. if (packet_counter_ > 0) { int padding_needed = static_cast(is_probing ? (recommended_probe_size - bytes_sent) : padding_budget_->bytes_remaining()); if (padding_needed > 0) bytes_sent += SendPadding(padding_needed, pacing_info); } } if (is_probing) { probing_send_failure_ = bytes_sent == 0; if (!probing_send_failure_) prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent); } alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms); } void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread; process_thread_ = process_thread; } bool PacedSender::SendPacket(const PacketQueue::Packet& packet, const PacedPacketInfo& pacing_info) { RTC_DCHECK(!paused_); if (media_budget_->bytes_remaining() == 0 && pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe) { return false; } critsect_.Leave(); const bool success = packet_sender_->TimeToSendPacket( packet.ssrc, packet.sequence_number, packet.capture_time_ms, packet.retransmission, pacing_info); critsect_.Enter(); if (success) { // TODO(holmer): High priority packets should only be accounted for if we // are allocating bandwidth for audio. if (packet.priority != kHighPriority) { // Update media bytes sent. // TODO(eladalon): TimeToSendPacket() can also return |true| in some // situations where nothing actually ended up being sent to the network, // and we probably don't want to update the budget in such cases. // https://bugs.chromium.org/p/webrtc/issues/detail?id=8052 UpdateBudgetWithBytesSent(packet.bytes); } } return success; } size_t PacedSender::SendPadding(size_t padding_needed, const PacedPacketInfo& pacing_info) { RTC_DCHECK_GT(packet_counter_, 0); critsect_.Leave(); size_t bytes_sent = packet_sender_->TimeToSendPadding(padding_needed, pacing_info); critsect_.Enter(); if (bytes_sent > 0) { UpdateBudgetWithBytesSent(bytes_sent); } return bytes_sent; } void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) { media_budget_->IncreaseBudget(delta_time_ms); padding_budget_->IncreaseBudget(delta_time_ms); } void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) { media_budget_->UseBudget(bytes_sent); padding_budget_->UseBudget(bytes_sent); } void PacedSender::SetPacingFactor(float pacing_factor) { rtc::CritScope cs(&critsect_); pacing_factor_ = pacing_factor; } void PacedSender::SetQueueTimeLimit(int limit_ms) { rtc::CritScope cs(&critsect_); queue_time_limit = limit_ms; } } // namespace webrtc