/* * libjingle * Copyright 2004--2008, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if HAVE_OPENSSL_SSL_H #include "talk/base/opensslidentity.h" // Must be included first before openssl headers. #include "talk/base/win32.h" // NOLINT #include #include #include #include #include #include #include #include "talk/base/helpers.h" #include "talk/base/logging.h" #include "talk/base/openssldigest.h" namespace talk_base { // We could have exposed a myriad of parameters for the crypto stuff, // but keeping it simple seems best. // Strength of generated keys. Those are RSA. static const int KEY_LENGTH = 1024; // Random bits for certificate serial number static const int SERIAL_RAND_BITS = 64; // Certificate validity lifetime static const int CERTIFICATE_LIFETIME = 60*60*24*365; // one year, arbitrarily // Certificate validity window. // This is to compensate for slightly incorrect system clocks. static const int CERTIFICATE_WINDOW = -60*60*24; // Generate a key pair. Caller is responsible for freeing the returned object. static EVP_PKEY* MakeKey() { LOG(LS_INFO) << "Making key pair"; EVP_PKEY* pkey = EVP_PKEY_new(); #if OPENSSL_VERSION_NUMBER < 0x00908000l // Only RSA_generate_key is available. Use that. RSA* rsa = RSA_generate_key(KEY_LENGTH, 0x10001, NULL, NULL); if (!EVP_PKEY_assign_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); RSA_free(rsa); return NULL; } #else // RSA_generate_key is deprecated. Use _ex version. BIGNUM* exponent = BN_new(); RSA* rsa = RSA_new(); if (!pkey || !exponent || !rsa || !BN_set_word(exponent, 0x10001) || // 65537 RSA exponent !RSA_generate_key_ex(rsa, KEY_LENGTH, exponent, NULL) || !EVP_PKEY_assign_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); BN_free(exponent); RSA_free(rsa); return NULL; } // ownership of rsa struct was assigned, don't free it. BN_free(exponent); #endif LOG(LS_INFO) << "Returning key pair"; return pkey; } // Generate a self-signed certificate, with the public key from the // given key pair. Caller is responsible for freeing the returned object. static X509* MakeCertificate(EVP_PKEY* pkey, const char* common_name) { LOG(LS_INFO) << "Making certificate for " << common_name; X509* x509 = NULL; BIGNUM* serial_number = NULL; X509_NAME* name = NULL; if ((x509=X509_new()) == NULL) goto error; if (!X509_set_pubkey(x509, pkey)) goto error; // serial number // temporary reference to serial number inside x509 struct ASN1_INTEGER* asn1_serial_number; if ((serial_number = BN_new()) == NULL || !BN_pseudo_rand(serial_number, SERIAL_RAND_BITS, 0, 0) || (asn1_serial_number = X509_get_serialNumber(x509)) == NULL || !BN_to_ASN1_INTEGER(serial_number, asn1_serial_number)) goto error; if (!X509_set_version(x509, 0L)) // version 1 goto error; // There are a lot of possible components for the name entries. In // our P2P SSL mode however, the certificates are pre-exchanged // (through the secure XMPP channel), and so the certificate // identification is arbitrary. It can't be empty, so we set some // arbitrary common_name. Note that this certificate goes out in // clear during SSL negotiation, so there may be a privacy issue in // putting anything recognizable here. if ((name = X509_NAME_new()) == NULL || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_UTF8, (unsigned char*)common_name, -1, -1, 0) || !X509_set_subject_name(x509, name) || !X509_set_issuer_name(x509, name)) goto error; if (!X509_gmtime_adj(X509_get_notBefore(x509), CERTIFICATE_WINDOW) || !X509_gmtime_adj(X509_get_notAfter(x509), CERTIFICATE_LIFETIME)) goto error; if (!X509_sign(x509, pkey, EVP_sha1())) goto error; BN_free(serial_number); X509_NAME_free(name); LOG(LS_INFO) << "Returning certificate"; return x509; error: BN_free(serial_number); X509_NAME_free(name); X509_free(x509); return NULL; } // This dumps the SSL error stack to the log. static void LogSSLErrors(const std::string& prefix) { char error_buf[200]; unsigned long err; while ((err = ERR_get_error()) != 0) { ERR_error_string_n(err, error_buf, sizeof(error_buf)); LOG(LS_ERROR) << prefix << ": " << error_buf << "\n"; } } OpenSSLKeyPair* OpenSSLKeyPair::Generate() { EVP_PKEY* pkey = MakeKey(); if (!pkey) { LogSSLErrors("Generating key pair"); return NULL; } return new OpenSSLKeyPair(pkey); } OpenSSLKeyPair::~OpenSSLKeyPair() { EVP_PKEY_free(pkey_); } void OpenSSLKeyPair::AddReference() { CRYPTO_add(&pkey_->references, 1, CRYPTO_LOCK_EVP_PKEY); } #ifdef _DEBUG // Print a certificate to the log, for debugging. static void PrintCert(X509* x509) { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; return; } X509_print_ex(temp_memory_bio, x509, XN_FLAG_SEP_CPLUS_SPC, 0); BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); LOG(LS_VERBOSE) << buffer; BIO_free(temp_memory_bio); } #endif OpenSSLCertificate* OpenSSLCertificate::Generate( OpenSSLKeyPair* key_pair, const std::string& common_name) { std::string actual_common_name = common_name; if (actual_common_name.empty()) // Use a random string, arbitrarily 8chars long. actual_common_name = CreateRandomString(8); X509* x509 = MakeCertificate(key_pair->pkey(), actual_common_name.c_str()); if (!x509) { LogSSLErrors("Generating certificate"); return NULL; } #ifdef _DEBUG PrintCert(x509); #endif return new OpenSSLCertificate(x509); } OpenSSLCertificate* OpenSSLCertificate::FromPEMString( const std::string& pem_string) { BIO* bio = BIO_new_mem_buf(const_cast(pem_string.c_str()), -1); if (!bio) return NULL; (void)BIO_set_close(bio, BIO_NOCLOSE); BIO_set_mem_eof_return(bio, 0); X509 *x509 = PEM_read_bio_X509(bio, NULL, NULL, const_cast("\0")); BIO_free(bio); if (x509) return new OpenSSLCertificate(x509); else return NULL; } bool OpenSSLCertificate::ComputeDigest(const std::string &algorithm, unsigned char *digest, std::size_t size, std::size_t *length) const { return ComputeDigest(x509_, algorithm, digest, size, length); } bool OpenSSLCertificate::ComputeDigest(const X509 *x509, const std::string &algorithm, unsigned char *digest, std::size_t size, std::size_t *length) { const EVP_MD *md; unsigned int n; if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) return false; if (size < static_cast(EVP_MD_size(md))) return false; X509_digest(x509, md, digest, &n); *length = n; return true; } OpenSSLCertificate::~OpenSSLCertificate() { X509_free(x509_); } std::string OpenSSLCertificate::ToPEMString() const { BIO* bio = BIO_new(BIO_s_mem()); if (!bio) return NULL; if (!PEM_write_bio_X509(bio, x509_)) { BIO_free(bio); return NULL; } BIO_write(bio, "\0", 1); char* buffer; BIO_get_mem_data(bio, &buffer); std::string ret(buffer); BIO_free(bio); return ret; } void OpenSSLCertificate::AddReference() const { CRYPTO_add(&x509_->references, 1, CRYPTO_LOCK_X509); } OpenSSLIdentity* OpenSSLIdentity::Generate(const std::string& common_name) { OpenSSLKeyPair *key_pair = OpenSSLKeyPair::Generate(); if (key_pair) { OpenSSLCertificate *certificate = OpenSSLCertificate::Generate(key_pair, common_name); if (certificate) return new OpenSSLIdentity(key_pair, certificate); delete key_pair; } LOG(LS_INFO) << "Identity generation failed"; return NULL; } SSLIdentity* OpenSSLIdentity::FromPEMStrings( const std::string& private_key, const std::string& certificate) { scoped_ptr cert( OpenSSLCertificate::FromPEMString(certificate)); if (!cert) { LOG(LS_ERROR) << "Failed to create OpenSSLCertificate from PEM string."; return NULL; } BIO* bio = BIO_new_mem_buf(const_cast(private_key.c_str()), -1); if (!bio) { LOG(LS_ERROR) << "Failed to create a new BIO buffer."; return NULL; } (void)BIO_set_close(bio, BIO_NOCLOSE); BIO_set_mem_eof_return(bio, 0); EVP_PKEY *pkey = PEM_read_bio_PrivateKey(bio, NULL, NULL, const_cast("\0")); BIO_free(bio); if (!pkey) { LOG(LS_ERROR) << "Failed to create the private key from PEM string."; return NULL; } return new OpenSSLIdentity(new OpenSSLKeyPair(pkey), cert.release()); } bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) { // 1 is the documented success return code. if (SSL_CTX_use_certificate(ctx, certificate_->x509()) != 1 || SSL_CTX_use_PrivateKey(ctx, key_pair_->pkey()) != 1) { LogSSLErrors("Configuring key and certificate"); return false; } return true; } } // namespace talk_base #endif // HAVE_OPENSSL_SSL_H