// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/win/src/win_utils.h" #include #include #include #include #include #include #include #include "base/cxx17_backports.h" #include "base/numerics/safe_math.h" #include "base/strings/string_util.h" #include "base/win/pe_image.h" #include "sandbox/win/src/internal_types.h" #include "sandbox/win/src/nt_internals.h" #include "sandbox/win/src/sandbox_nt_util.h" namespace { const size_t kDriveLetterLen = 3; constexpr wchar_t kNTDotPrefix[] = L"\\\\.\\"; const size_t kNTDotPrefixLen = base::size(kNTDotPrefix) - 1; // Holds the information about a known registry key. struct KnownReservedKey { const wchar_t* name; HKEY key; }; // Contains all the known registry key by name and by handle. const KnownReservedKey kKnownKey[] = { {L"HKEY_CLASSES_ROOT", HKEY_CLASSES_ROOT}, {L"HKEY_CURRENT_USER", HKEY_CURRENT_USER}, {L"HKEY_LOCAL_MACHINE", HKEY_LOCAL_MACHINE}, {L"HKEY_USERS", HKEY_USERS}, {L"HKEY_PERFORMANCE_DATA", HKEY_PERFORMANCE_DATA}, {L"HKEY_PERFORMANCE_TEXT", HKEY_PERFORMANCE_TEXT}, {L"HKEY_PERFORMANCE_NLSTEXT", HKEY_PERFORMANCE_NLSTEXT}, {L"HKEY_CURRENT_CONFIG", HKEY_CURRENT_CONFIG}, {L"HKEY_DYN_DATA", HKEY_DYN_DATA}}; // These functions perform case independent path comparisons. bool EqualPath(const std::wstring& first, const std::wstring& second) { return _wcsicmp(first.c_str(), second.c_str()) == 0; } bool EqualPath(const std::wstring& first, size_t first_offset, const std::wstring& second, size_t second_offset) { return _wcsicmp(first.c_str() + first_offset, second.c_str() + second_offset) == 0; } bool EqualPath(const std::wstring& first, const wchar_t* second, size_t second_len) { return _wcsnicmp(first.c_str(), second, second_len) == 0; } bool EqualPath(const std::wstring& first, size_t first_offset, const wchar_t* second, size_t second_len) { return _wcsnicmp(first.c_str() + first_offset, second, second_len) == 0; } // Returns true if |path| starts with "\??\" and returns a path without that // component. bool IsNTPath(const std::wstring& path, std::wstring* trimmed_path) { if ((path.size() < sandbox::kNTPrefixLen) || !EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen)) { *trimmed_path = path; return false; } *trimmed_path = path.substr(sandbox::kNTPrefixLen); return true; } // Returns true if |path| starts with "\Device\" and returns a path without that // component. bool IsDevicePath(const std::wstring& path, std::wstring* trimmed_path) { if ((path.size() < sandbox::kNTDevicePrefixLen) || (!EqualPath(path, sandbox::kNTDevicePrefix, sandbox::kNTDevicePrefixLen))) { *trimmed_path = path; return false; } *trimmed_path = path.substr(sandbox::kNTDevicePrefixLen); return true; } // Returns the offset to the path seperator following // "\Device\HarddiskVolumeX" in |path|. size_t PassHarddiskVolume(const std::wstring& path) { static constexpr wchar_t pattern[] = L"\\Device\\HarddiskVolume"; const size_t patternLen = base::size(pattern) - 1; // First, check for |pattern|. if ((path.size() < patternLen) || (!EqualPath(path, pattern, patternLen))) return std::wstring::npos; // Find the next path separator, after the pattern match. return path.find_first_of(L'\\', patternLen - 1); } // Returns true if |path| starts with "\Device\HarddiskVolumeX\" and returns a // path without that component. |removed| will hold the prefix removed. bool IsDeviceHarddiskPath(const std::wstring& path, std::wstring* trimmed_path, std::wstring* removed) { size_t offset = PassHarddiskVolume(path); if (offset == std::wstring::npos) return false; // Remove up to and including the path separator. *removed = path.substr(0, offset + 1); // Remaining path starts after the path separator. *trimmed_path = path.substr(offset + 1); return true; } bool StartsWithDriveLetter(const std::wstring& path) { if (path.size() < kDriveLetterLen) return false; if (path[1] != L':' || path[2] != L'\\') return false; return base::IsAsciiAlpha(path[0]); } // Removes "\\\\.\\" from the path. void RemoveImpliedDevice(std::wstring* path) { if (EqualPath(*path, kNTDotPrefix, kNTDotPrefixLen)) *path = path->substr(kNTDotPrefixLen); } } // namespace namespace sandbox { // Returns true if the provided path points to a pipe. bool IsPipe(const std::wstring& path) { size_t start = 0; if (EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen)) start = sandbox::kNTPrefixLen; const wchar_t kPipe[] = L"pipe\\"; if (path.size() < start + base::size(kPipe) - 1) return false; return EqualPath(path, start, kPipe, base::size(kPipe) - 1); } HKEY GetReservedKeyFromName(const std::wstring& name) { for (size_t i = 0; i < base::size(kKnownKey); ++i) { if (name == kKnownKey[i].name) return kKnownKey[i].key; } return nullptr; } bool ResolveRegistryName(std::wstring name, std::wstring* resolved_name) { for (size_t i = 0; i < base::size(kKnownKey); ++i) { if (name.find(kKnownKey[i].name) == 0) { HKEY key; DWORD disposition; if (ERROR_SUCCESS != ::RegCreateKeyEx(kKnownKey[i].key, L"", 0, nullptr, 0, MAXIMUM_ALLOWED, nullptr, &key, &disposition)) return false; bool result = GetPathFromHandle(key, resolved_name); ::RegCloseKey(key); if (!result) return false; *resolved_name += name.substr(wcslen(kKnownKey[i].name)); return true; } } return false; } // |full_path| can have any of the following forms: // \??\c:\some\foo\bar // \Device\HarddiskVolume0\some\foo\bar // \??\HarddiskVolume0\some\foo\bar DWORD IsReparsePoint(const std::wstring& full_path) { // Check if it's a pipe. We can't query the attributes of a pipe. if (IsPipe(full_path)) return ERROR_NOT_A_REPARSE_POINT; std::wstring path; bool nt_path = IsNTPath(full_path, &path); bool has_drive = StartsWithDriveLetter(path); bool is_device_path = IsDevicePath(path, &path); if (!has_drive && !is_device_path && !nt_path) return ERROR_INVALID_NAME; bool added_implied_device = false; if (!has_drive) { path = std::wstring(kNTDotPrefix) + path; added_implied_device = true; } std::wstring::size_type last_pos = std::wstring::npos; bool passed_once = false; do { path = path.substr(0, last_pos); DWORD attributes = ::GetFileAttributes(path.c_str()); if (INVALID_FILE_ATTRIBUTES == attributes) { DWORD error = ::GetLastError(); if (error != ERROR_FILE_NOT_FOUND && error != ERROR_PATH_NOT_FOUND && error != ERROR_INVALID_NAME) { // Unexpected error. if (passed_once && added_implied_device && (path.rfind(L'\\') == kNTDotPrefixLen - 1)) { break; } return error; } } else if (FILE_ATTRIBUTE_REPARSE_POINT & attributes) { // This is a reparse point. return ERROR_SUCCESS; } passed_once = true; last_pos = path.rfind(L'\\'); } while (last_pos > 2); // Skip root dir. return ERROR_NOT_A_REPARSE_POINT; } // We get a |full_path| of the forms accepted by IsReparsePoint(), and the name // we'll get from |handle| will be \device\harddiskvolume1\some\foo\bar. bool SameObject(HANDLE handle, const wchar_t* full_path) { // Check if it's a pipe. if (IsPipe(full_path)) return true; std::wstring actual_path; if (!GetPathFromHandle(handle, &actual_path)) return false; std::wstring path(full_path); DCHECK_NT(!path.empty()); // This may end with a backslash. const wchar_t kBackslash = '\\'; if (path.back() == kBackslash) path = path.substr(0, path.length() - 1); // Perfect match (case-insesitive check). if (EqualPath(actual_path, path)) return true; bool nt_path = IsNTPath(path, &path); bool has_drive = StartsWithDriveLetter(path); if (!has_drive && nt_path) { std::wstring simple_actual_path; if (!IsDevicePath(actual_path, &simple_actual_path)) return false; // Perfect match (case-insesitive check). return (EqualPath(simple_actual_path, path)); } if (!has_drive) return false; // We only need 3 chars, but let's alloc a buffer for four. wchar_t drive[4] = {0}; wchar_t vol_name[MAX_PATH]; memcpy(drive, &path[0], 2 * sizeof(*drive)); // We'll get a double null terminated string. DWORD vol_length = ::QueryDosDeviceW(drive, vol_name, MAX_PATH); if (vol_length < 2 || vol_length == MAX_PATH) return false; // Ignore the nulls at the end. vol_length = static_cast(wcslen(vol_name)); // The two paths should be the same length. if (vol_length + path.size() - 2 != actual_path.size()) return false; // Check up to the drive letter. if (!EqualPath(actual_path, vol_name, vol_length)) return false; // Check the path after the drive letter. if (!EqualPath(actual_path, vol_length, path, 2)) return false; return true; } // Just make a best effort here. There are lots of corner cases that we're // not expecting - and will fail to make long. bool ConvertToLongPath(std::wstring* native_path, const std::wstring* drive_letter) { if (IsPipe(*native_path)) return true; bool is_device_harddisk_path = false; bool is_nt_path = false; bool added_implied_device = false; std::wstring temp_path; std::wstring to_restore; // Process a few prefix types. if (IsNTPath(*native_path, &temp_path)) { // "\??\" if (!StartsWithDriveLetter(temp_path)) { // Prepend with "\\.\". temp_path = std::wstring(kNTDotPrefix) + temp_path; added_implied_device = true; } is_nt_path = true; } else if (IsDeviceHarddiskPath(*native_path, &temp_path, &to_restore)) { // "\Device\HarddiskVolumeX\" - hacky attempt making ::GetLongPathName // work for native device paths. Remove "\Device\HarddiskVolumeX\" and // replace with drive letter. // Nothing we can do if we don't have a drive letter. Leave |native_path| // as is. if (!drive_letter || drive_letter->empty()) return false; temp_path = *drive_letter + temp_path; is_device_harddisk_path = true; } else if (IsDevicePath(*native_path, &temp_path)) { // "\Device\" - there's nothing we can do to convert to long here. return false; } DWORD size = MAX_PATH; std::unique_ptr long_path_buf(new wchar_t[size]); DWORD return_value = ::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size); while (return_value >= size) { size *= 2; long_path_buf.reset(new wchar_t[size]); return_value = ::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size); } DWORD last_error = ::GetLastError(); if (0 == return_value && (ERROR_FILE_NOT_FOUND == last_error || ERROR_PATH_NOT_FOUND == last_error || ERROR_INVALID_NAME == last_error)) { // The file does not exist, but maybe a sub path needs to be expanded. std::wstring::size_type last_slash = temp_path.rfind(L'\\'); if (std::wstring::npos == last_slash) return false; std::wstring begin = temp_path.substr(0, last_slash); std::wstring end = temp_path.substr(last_slash); if (!ConvertToLongPath(&begin)) return false; // Ok, it worked. Let's reset the return value. temp_path = begin + end; return_value = 1; } else if (0 != return_value) { temp_path = long_path_buf.get(); } // If successful, re-apply original namespace prefix before returning. if (return_value != 0) { if (added_implied_device) RemoveImpliedDevice(&temp_path); if (is_nt_path) { *native_path = kNTPrefix; *native_path += temp_path; } else if (is_device_harddisk_path) { // Remove the added drive letter. temp_path = temp_path.substr(kDriveLetterLen); *native_path = to_restore; *native_path += temp_path; } else { *native_path = temp_path; } return true; } return false; } bool GetPathFromHandle(HANDLE handle, std::wstring* path) { NtQueryObjectFunction NtQueryObject = nullptr; ResolveNTFunctionPtr("NtQueryObject", &NtQueryObject); OBJECT_NAME_INFORMATION initial_buffer; OBJECT_NAME_INFORMATION* name = &initial_buffer; ULONG size = sizeof(initial_buffer); // Query the name information a first time to get the size of the name. // Windows XP requires that the size of the buffer passed in here be != 0. NTSTATUS status = NtQueryObject(handle, ObjectNameInformation, name, size, &size); std::unique_ptr name_ptr; if (size) { name_ptr.reset(new BYTE[size]); name = reinterpret_cast(name_ptr.get()); // Query the name information a second time to get the name of the // object referenced by the handle. status = NtQueryObject(handle, ObjectNameInformation, name, size, &size); } if (STATUS_SUCCESS != status) return false; path->assign(name->ObjectName.Buffer, name->ObjectName.Length / sizeof(name->ObjectName.Buffer[0])); return true; } bool GetNtPathFromWin32Path(const std::wstring& path, std::wstring* nt_path) { HANDLE file = ::CreateFileW( path.c_str(), 0, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, nullptr, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, nullptr); if (file == INVALID_HANDLE_VALUE) return false; bool rv = GetPathFromHandle(file, nt_path); ::CloseHandle(file); return rv; } bool WriteProtectedChildMemory(HANDLE child_process, void* address, const void* buffer, size_t length) { // First, remove the protections. DWORD old_protection; if (!::VirtualProtectEx(child_process, address, length, PAGE_WRITECOPY, &old_protection)) return false; SIZE_T written; bool ok = ::WriteProcessMemory(child_process, address, buffer, length, &written) && (length == written); // Always attempt to restore the original protection. if (!::VirtualProtectEx(child_process, address, length, old_protection, &old_protection)) return false; return ok; } bool CopyToChildMemory(HANDLE child, const void* local_buffer, size_t buffer_bytes, void** remote_buffer) { DCHECK(remote_buffer); if (0 == buffer_bytes) { *remote_buffer = nullptr; return true; } // Allocate memory in the target process without specifying the address void* remote_data = ::VirtualAllocEx(child, nullptr, buffer_bytes, MEM_COMMIT, PAGE_READWRITE); if (!remote_data) return false; SIZE_T bytes_written; bool success = ::WriteProcessMemory(child, remote_data, local_buffer, buffer_bytes, &bytes_written); if (!success || bytes_written != buffer_bytes) { ::VirtualFreeEx(child, remote_data, 0, MEM_RELEASE); return false; } *remote_buffer = remote_data; return true; } DWORD GetLastErrorFromNtStatus(NTSTATUS status) { RtlNtStatusToDosErrorFunction NtStatusToDosError = nullptr; ResolveNTFunctionPtr("RtlNtStatusToDosError", &NtStatusToDosError); return NtStatusToDosError(status); } // This function uses the undocumented PEB ImageBaseAddress field to extract // the base address of the new process. void* GetProcessBaseAddress(HANDLE process) { NtQueryInformationProcessFunction query_information_process = nullptr; ResolveNTFunctionPtr("NtQueryInformationProcess", &query_information_process); if (!query_information_process) return nullptr; PROCESS_BASIC_INFORMATION process_basic_info = {}; NTSTATUS status = query_information_process( process, ProcessBasicInformation, &process_basic_info, sizeof(process_basic_info), nullptr); if (STATUS_SUCCESS != status) return nullptr; PEB peb = {}; SIZE_T bytes_read = 0; if (!::ReadProcessMemory(process, process_basic_info.PebBaseAddress, &peb, sizeof(peb), &bytes_read) || (sizeof(peb) != bytes_read)) { return nullptr; } void* base_address = peb.ImageBaseAddress; char magic[2] = {}; if (!::ReadProcessMemory(process, base_address, magic, sizeof(magic), &bytes_read) || (sizeof(magic) != bytes_read)) { return nullptr; } if (magic[0] != 'M' || magic[1] != 'Z') return nullptr; return base_address; } DWORD GetTokenInformation(HANDLE token, TOKEN_INFORMATION_CLASS info_class, std::unique_ptr* buffer) { // Get the required buffer size. DWORD size = 0; ::GetTokenInformation(token, info_class, nullptr, 0, &size); if (!size) { return ::GetLastError(); } auto temp_buffer = std::make_unique(size); if (!::GetTokenInformation(token, info_class, temp_buffer.get(), size, &size)) { return ::GetLastError(); } *buffer = std::move(temp_buffer); return ERROR_SUCCESS; } } // namespace sandbox void ResolveNTFunctionPtr(const char* name, void* ptr) { static volatile HMODULE ntdll = nullptr; if (!ntdll) { HMODULE ntdll_local = ::GetModuleHandle(sandbox::kNtdllName); // Use PEImage to sanity-check that we have a valid ntdll handle. base::win::PEImage ntdll_peimage(ntdll_local); CHECK_NT(ntdll_peimage.VerifyMagic()); // Race-safe way to set static ntdll. ::InterlockedCompareExchangePointer( reinterpret_cast(&ntdll), ntdll_local, nullptr); } CHECK_NT(ntdll); FARPROC* function_ptr = reinterpret_cast(ptr); *function_ptr = ::GetProcAddress(ntdll, name); CHECK_NT(*function_ptr); }