// Copyright (c) 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "quiche/quic/core/quic_stream_sequencer_buffer.h" #include #include #include #include #include #include #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_stream_sequencer_buffer_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { absl::string_view IovecToStringPiece(iovec iov) { return absl::string_view(reinterpret_cast(iov.iov_base), iov.iov_len); } char GetCharFromIOVecs(size_t offset, iovec iov[], size_t count) { size_t start_offset = 0; for (size_t i = 0; i < count; i++) { if (iov[i].iov_len == 0) { continue; } size_t end_offset = start_offset + iov[i].iov_len - 1; if (offset >= start_offset && offset <= end_offset) { const char* buf = reinterpret_cast(iov[i].iov_base); return buf[offset - start_offset]; } start_offset += iov[i].iov_len; } QUIC_LOG(ERROR) << "Could not locate char at offset " << offset << " in " << count << " iovecs"; for (size_t i = 0; i < count; ++i) { QUIC_LOG(ERROR) << " iov[" << i << "].iov_len = " << iov[i].iov_len; } return '\0'; } const size_t kMaxNumGapsAllowed = 2 * kMaxPacketGap; static const size_t kBlockSizeBytes = QuicStreamSequencerBuffer::kBlockSizeBytes; using BufferBlock = QuicStreamSequencerBuffer::BufferBlock; namespace { class QuicStreamSequencerBufferTest : public QuicTest { public: void SetUp() override { Initialize(); } void ResetMaxCapacityBytes(size_t max_capacity_bytes) { max_capacity_bytes_ = max_capacity_bytes; Initialize(); } protected: void Initialize() { buffer_ = std::make_unique((max_capacity_bytes_)); helper_ = std::make_unique((buffer_.get())); } // Use 8.5 here to make sure that the buffer has more than // QuicStreamSequencerBuffer::kInitialBlockCount block and its end doesn't // align with the end of a block in order to test all the offset calculation. size_t max_capacity_bytes_ = 8.5 * kBlockSizeBytes; std::unique_ptr buffer_; std::unique_ptr helper_; size_t written_ = 0; std::string error_details_; }; TEST_F(QuicStreamSequencerBufferTest, InitializeWithMaxRecvWindowSize) { ResetMaxCapacityBytes(16 * 1024 * 1024); // 16MB EXPECT_EQ(2 * 1024u, // 16MB / 8KB = 2K helper_->max_blocks_count()); EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity()); EXPECT_TRUE(helper_->CheckInitialState()); } TEST_F(QuicStreamSequencerBufferTest, InitializationWithDifferentSizes) { const size_t kCapacity = 16 * QuicStreamSequencerBuffer::kBlockSizeBytes; ResetMaxCapacityBytes(kCapacity); EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity()); EXPECT_TRUE(helper_->CheckInitialState()); const size_t kCapacity1 = 32 * QuicStreamSequencerBuffer::kBlockSizeBytes; ResetMaxCapacityBytes(kCapacity1); EXPECT_EQ(kCapacity1, helper_->max_buffer_capacity()); EXPECT_TRUE(helper_->CheckInitialState()); } TEST_F(QuicStreamSequencerBufferTest, ClearOnEmpty) { buffer_->Clear(); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamData0length) { QuicErrorCode error = buffer_->OnStreamData(800, "", &written_, &error_details_); EXPECT_THAT(error, IsError(QUIC_EMPTY_STREAM_FRAME_NO_FIN)); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithinBlock) { EXPECT_FALSE(helper_->IsBufferAllocated()); std::string source(1024, 'a'); EXPECT_THAT(buffer_->OnStreamData(800, source, &written_, &error_details_), IsQuicNoError()); BufferBlock* block_ptr = helper_->GetBlock(0); for (size_t i = 0; i < source.size(); ++i) { ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]); } EXPECT_EQ(2, helper_->IntervalSize()); EXPECT_EQ(0u, helper_->ReadableBytes()); EXPECT_EQ(1u, helper_->bytes_received().Size()); EXPECT_EQ(800u, helper_->bytes_received().begin()->min()); EXPECT_EQ(1824u, helper_->bytes_received().begin()->max()); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_TRUE(helper_->IsBufferAllocated()); } TEST_F(QuicStreamSequencerBufferTest, Move) { EXPECT_FALSE(helper_->IsBufferAllocated()); std::string source(1024, 'a'); EXPECT_THAT(buffer_->OnStreamData(800, source, &written_, &error_details_), IsQuicNoError()); BufferBlock* block_ptr = helper_->GetBlock(0); for (size_t i = 0; i < source.size(); ++i) { ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]); } QuicStreamSequencerBuffer buffer2(std::move(*buffer_)); QuicStreamSequencerBufferPeer helper2(&buffer2); EXPECT_FALSE(helper_->IsBufferAllocated()); EXPECT_EQ(2, helper2.IntervalSize()); EXPECT_EQ(0u, helper2.ReadableBytes()); EXPECT_EQ(1u, helper2.bytes_received().Size()); EXPECT_EQ(800u, helper2.bytes_received().begin()->min()); EXPECT_EQ(1824u, helper2.bytes_received().begin()->max()); EXPECT_TRUE(helper2.CheckBufferInvariants()); EXPECT_TRUE(helper2.IsBufferAllocated()); } TEST_F(QuicStreamSequencerBufferTest, DISABLED_OnStreamDataInvalidSource) { // Pass in an invalid source, expects to return error. absl::string_view source; source = absl::string_view(nullptr, 1024); EXPECT_THAT(buffer_->OnStreamData(800, source, &written_, &error_details_), IsError(QUIC_STREAM_SEQUENCER_INVALID_STATE)); EXPECT_EQ(0u, error_details_.find(absl::StrCat( "QuicStreamSequencerBuffer error: OnStreamData() " "dest == nullptr: ", false, " source == nullptr: ", true))); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithOverlap) { std::string source(1024, 'a'); // Write something into [800, 1824) EXPECT_THAT(buffer_->OnStreamData(800, source, &written_, &error_details_), IsQuicNoError()); // Try to write to [0, 1024) and [1024, 2048). EXPECT_THAT(buffer_->OnStreamData(0, source, &written_, &error_details_), IsQuicNoError()); EXPECT_THAT(buffer_->OnStreamData(1024, source, &written_, &error_details_), IsQuicNoError()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataOverlapAndDuplicateCornerCases) { std::string source(1024, 'a'); // Write something into [800, 1824) buffer_->OnStreamData(800, source, &written_, &error_details_); source = std::string(800, 'b'); std::string one_byte = "c"; // Write [1, 801). EXPECT_THAT(buffer_->OnStreamData(1, source, &written_, &error_details_), IsQuicNoError()); // Write [0, 800). EXPECT_THAT(buffer_->OnStreamData(0, source, &written_, &error_details_), IsQuicNoError()); // Write [1823, 1824). EXPECT_THAT(buffer_->OnStreamData(1823, one_byte, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(0u, written_); // write one byte to [1824, 1825) EXPECT_THAT(buffer_->OnStreamData(1824, one_byte, &written_, &error_details_), IsQuicNoError()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithoutOverlap) { std::string source(1024, 'a'); // Write something into [800, 1824). EXPECT_THAT(buffer_->OnStreamData(800, source, &written_, &error_details_), IsQuicNoError()); source = std::string(100, 'b'); // Write something into [kBlockSizeBytes * 2 - 20, kBlockSizeBytes * 2 + 80). EXPECT_THAT(buffer_->OnStreamData(kBlockSizeBytes * 2 - 20, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(3, helper_->IntervalSize()); EXPECT_EQ(1024u + 100u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataInLongStreamWithOverlap) { // Assume a stream has already buffered almost 4GB. uint64_t total_bytes_read = pow(2, 32) - 1; helper_->set_total_bytes_read(total_bytes_read); helper_->AddBytesReceived(0, total_bytes_read); // Three new out of order frames arrive. const size_t kBytesToWrite = 100; std::string source(kBytesToWrite, 'a'); // Frame [2^32 + 500, 2^32 + 600). QuicStreamOffset offset = pow(2, 32) + 500; EXPECT_THAT(buffer_->OnStreamData(offset, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(2, helper_->IntervalSize()); // Frame [2^32 + 700, 2^32 + 800). offset = pow(2, 32) + 700; EXPECT_THAT(buffer_->OnStreamData(offset, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(3, helper_->IntervalSize()); // Another frame [2^32 + 300, 2^32 + 400). offset = pow(2, 32) + 300; EXPECT_THAT(buffer_->OnStreamData(offset, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(4, helper_->IntervalSize()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEnd) { // Write 50 bytes to the end. const size_t kBytesToWrite = 50; std::string source(kBytesToWrite, 'a'); EXPECT_THAT(buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(50u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEndCorner) { // Write 1 byte to the end. const size_t kBytesToWrite = 1; std::string source(kBytesToWrite, 'a'); EXPECT_THAT(buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(1u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataBeyondCapacity) { std::string source(60, 'a'); EXPECT_THAT(buffer_->OnStreamData(max_capacity_bytes_ - 50, source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); source = "b"; EXPECT_THAT(buffer_->OnStreamData(max_capacity_bytes_, source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_THAT(buffer_->OnStreamData(max_capacity_bytes_ * 1000, source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); // Disallow current_gap != gaps_.end() EXPECT_THAT(buffer_->OnStreamData(static_cast(-1), source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); // Disallow offset + size overflow source = "bbb"; EXPECT_THAT(buffer_->OnStreamData(static_cast(-2), source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_EQ(0u, buffer_->BytesBuffered()); } TEST_F(QuicStreamSequencerBufferTest, Readv100Bytes) { std::string source(1024, 'a'); // Write something into [kBlockSizeBytes, kBlockSizeBytes + 1024). buffer_->OnStreamData(kBlockSizeBytes, source, &written_, &error_details_); EXPECT_FALSE(buffer_->HasBytesToRead()); source = std::string(100, 'b'); // Write something into [0, 100). buffer_->OnStreamData(0, source, &written_, &error_details_); EXPECT_TRUE(buffer_->HasBytesToRead()); // Read into a iovec array with total capacity of 120 bytes. char dest[120]; iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}}; size_t read; EXPECT_THAT(buffer_->Readv(iovecs, 3, &read, &error_details_), IsQuicNoError()); QUIC_LOG(ERROR) << error_details_; EXPECT_EQ(100u, read); EXPECT_EQ(100u, buffer_->BytesConsumed()); EXPECT_EQ(source, absl::string_view(dest, read)); // The first block should be released as its data has been read out. EXPECT_EQ(nullptr, helper_->GetBlock(0)); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossBlocks) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full and extand 50 bytes to next block. buffer_->OnStreamData(0, source, &written_, &error_details_); EXPECT_EQ(source.size(), helper_->ReadableBytes()); // Iteratively read 512 bytes from buffer_-> Overwrite dest[] each time. char dest[512]; while (helper_->ReadableBytes()) { std::fill(dest, dest + 512, 0); iovec iovecs[2]{iovec{dest, 256}, iovec{dest + 256, 256}}; size_t read; EXPECT_THAT(buffer_->Readv(iovecs, 2, &read, &error_details_), IsQuicNoError()); } // The last read only reads the rest 50 bytes in 2nd block. EXPECT_EQ(std::string(50, 'a'), std::string(dest, 50)); EXPECT_EQ(0, dest[50]) << "Dest[50] shouln't be filled."; EXPECT_EQ(source.size(), buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ClearAfterRead) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full with 'a'. buffer_->OnStreamData(0, source, &written_, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; size_t read; EXPECT_THAT(buffer_->Readv(&iov, 1, &read, &error_details_), IsQuicNoError()); // Clear() should make buffer empty while preserving BytesConsumed() buffer_->Clear(); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataAcrossLastBlockAndFillCapacity) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full with 'a'. buffer_->OnStreamData(0, source, &written_, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; size_t read; EXPECT_THAT(buffer_->Readv(&iov, 1, &read, &error_details_), IsQuicNoError()); EXPECT_EQ(source.size(), written_); // Write more than half block size of bytes in the last block with 'b', which // will wrap to the beginning and reaches the full capacity. source = std::string(0.5 * kBlockSizeBytes + 512, 'b'); EXPECT_THAT(buffer_->OnStreamData(2 * kBlockSizeBytes, source, &written_, &error_details_), IsQuicNoError()); EXPECT_EQ(source.size(), written_); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataAcrossLastBlockAndExceedCapacity) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full. buffer_->OnStreamData(0, source, &written_, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; size_t read; EXPECT_THAT(buffer_->Readv(&iov, 1, &read, &error_details_), IsQuicNoError()); // Try to write from [max_capacity_bytes_ - 0.5 * kBlockSizeBytes, // max_capacity_bytes_ + 512 + 1). But last bytes exceeds current capacity. source = std::string(0.5 * kBlockSizeBytes + 512 + 1, 'b'); EXPECT_THAT(buffer_->OnStreamData(8 * kBlockSizeBytes, source, &written_, &error_details_), IsError(QUIC_INTERNAL_ERROR)); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossLastBlock) { // Write to full capacity and read out 512 bytes at beginning and continue // appending 256 bytes. std::string source(max_capacity_bytes_, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[512]{0}; const iovec iov{dest, 512}; size_t read; EXPECT_THAT(buffer_->Readv(&iov, 1, &read, &error_details_), IsQuicNoError()); source = std::string(256, 'b'); buffer_->OnStreamData(max_capacity_bytes_, source, &written_, &error_details_); EXPECT_TRUE(helper_->CheckBufferInvariants()); // Read all data out. std::unique_ptr dest1{new char[max_capacity_bytes_]}; dest1[0] = 0; const iovec iov1{dest1.get(), max_capacity_bytes_}; EXPECT_THAT(buffer_->Readv(&iov1, 1, &read, &error_details_), IsQuicNoError()); EXPECT_EQ(max_capacity_bytes_ - 512 + 256, read); EXPECT_EQ(max_capacity_bytes_ + 256, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ReadvEmpty) { char dest[512]{0}; iovec iov{dest, 512}; size_t read; EXPECT_THAT(buffer_->Readv(&iov, 1, &read, &error_details_), IsQuicNoError()); EXPECT_EQ(0u, read); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsEmpty) { iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(0, iov_count); EXPECT_EQ(nullptr, iovs[iov_count].iov_base); EXPECT_EQ(0u, iovs[iov_count].iov_len); } TEST_F(QuicStreamSequencerBufferTest, ReleaseWholeBuffer) { // Tests that buffer is not deallocated unless ReleaseWholeBuffer() is called. std::string source(100, 'b'); // Write something into [0, 100). buffer_->OnStreamData(0, source, &written_, &error_details_); EXPECT_TRUE(buffer_->HasBytesToRead()); char dest[120]; iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}}; size_t read; EXPECT_THAT(buffer_->Readv(iovecs, 3, &read, &error_details_), IsQuicNoError()); EXPECT_EQ(100u, read); EXPECT_EQ(100u, buffer_->BytesConsumed()); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_TRUE(helper_->IsBufferAllocated()); buffer_->ReleaseWholeBuffer(); EXPECT_FALSE(helper_->IsBufferAllocated()); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsBlockedByGap) { // Write into [1, 1024). std::string source(1023, 'a'); buffer_->OnStreamData(1, source, &written_, &error_details_); // Try to get readable regions, but none is there. iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(0, iov_count); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsTillEndOfBlock) { // Write first block to full with [0, 256) 'a' and the rest 'b' then read out // [0, 256) std::string source(kBlockSizeBytes, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(1, iov_count); EXPECT_EQ(std::string(kBlockSizeBytes - 256, 'a'), IovecToStringPiece(iovs[0])); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithinOneBlock) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(1, iov_count); EXPECT_EQ(std::string(1024 - 256, 'a'), IovecToStringPiece(iovs[0])); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsAcrossBlockWithLongIOV) { // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024) std::string source(2 * kBlockSizeBytes + 1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[1024]; helper_->Read(dest, 1024); iovec iovs[4]; int iov_count = buffer_->GetReadableRegions(iovs, 4); EXPECT_EQ(3, iov_count); EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len); EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len); EXPECT_EQ(1024u, iovs[2].iov_len); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithMultipleIOVsAcrossEnd) { // Write into [0, 8.5 * kBlockSizeBytes - 1024) and then read out [0, 1024) // and then append 1024 + 512 bytes. std::string source(8.5 * kBlockSizeBytes - 1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[1024]; helper_->Read(dest, 1024); // Write across the end. source = std::string(1024 + 512, 'b'); buffer_->OnStreamData(8.5 * kBlockSizeBytes - 1024, source, &written_, &error_details_); // Use short iovec's. iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(2, iov_count); EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len); EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len); // Use long iovec's and wrap the end of buffer. iovec iovs1[11]; EXPECT_EQ(10, buffer_->GetReadableRegions(iovs1, 11)); EXPECT_EQ(0.5 * kBlockSizeBytes, iovs1[8].iov_len); EXPECT_EQ(512u, iovs1[9].iov_len); EXPECT_EQ(std::string(512, 'b'), IovecToStringPiece(iovs1[9])); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionEmpty) { iovec iov; EXPECT_FALSE(buffer_->GetReadableRegion(&iov)); EXPECT_EQ(nullptr, iov.iov_base); EXPECT_EQ(0u, iov.iov_len); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionBeforeGap) { // Write into [1, 1024). std::string source(1023, 'a'); buffer_->OnStreamData(1, source, &written_, &error_details_); // GetReadableRegion should return false because range [0,1) hasn't been // filled yet. iovec iov; EXPECT_FALSE(buffer_->GetReadableRegion(&iov)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillEndOfBlock) { // Write into [0, kBlockSizeBytes + 1) and then read out [0, 256) std::string source(kBlockSizeBytes + 1, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iov; EXPECT_TRUE(buffer_->GetReadableRegion(&iov)); EXPECT_EQ(std::string(kBlockSizeBytes - 256, 'a'), IovecToStringPiece(iov)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillGap) { // Write into [0, kBlockSizeBytes - 1) and then read out [0, 256) std::string source(kBlockSizeBytes - 1, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1023) iovec iov; EXPECT_TRUE(buffer_->GetReadableRegion(&iov)); EXPECT_EQ(std::string(kBlockSizeBytes - 1 - 256, 'a'), IovecToStringPiece(iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekEmptyBuffer) { iovec iov; EXPECT_FALSE(buffer_->PeekRegion(0, &iov)); EXPECT_FALSE(buffer_->PeekRegion(1, &iov)); EXPECT_FALSE(buffer_->PeekRegion(100, &iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekSingleBlock) { std::string source(kBlockSizeBytes, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); iovec iov; EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source, IovecToStringPiece(iov)); // Peeking again gives the same result. EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source, IovecToStringPiece(iov)); // Peek at a different offset. EXPECT_TRUE(buffer_->PeekRegion(100, &iov)); EXPECT_EQ(absl::string_view(source).substr(100), IovecToStringPiece(iov)); // Peeking at or after FirstMissingByte() returns false. EXPECT_FALSE(buffer_->PeekRegion(kBlockSizeBytes, &iov)); EXPECT_FALSE(buffer_->PeekRegion(kBlockSizeBytes + 1, &iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekTwoWritesInSingleBlock) { const size_t length1 = 1024; std::string source1(length1, 'a'); buffer_->OnStreamData(0, source1, &written_, &error_details_); iovec iov; EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source1, IovecToStringPiece(iov)); // The second frame goes into the same block. const size_t length2 = 800; std::string source2(length2, 'b'); buffer_->OnStreamData(length1, source2, &written_, &error_details_); EXPECT_TRUE(buffer_->PeekRegion(length1, &iov)); EXPECT_EQ(source2, IovecToStringPiece(iov)); // Peek with an offset inside the first write. const QuicStreamOffset offset1 = 500; EXPECT_TRUE(buffer_->PeekRegion(offset1, &iov)); EXPECT_EQ(absl::string_view(source1).substr(offset1), IovecToStringPiece(iov).substr(0, length1 - offset1)); EXPECT_EQ(absl::string_view(source2), IovecToStringPiece(iov).substr(length1 - offset1)); // Peek with an offset inside the second write. const QuicStreamOffset offset2 = 1500; EXPECT_TRUE(buffer_->PeekRegion(offset2, &iov)); EXPECT_EQ(absl::string_view(source2).substr(offset2 - length1), IovecToStringPiece(iov)); // Peeking at or after FirstMissingByte() returns false. EXPECT_FALSE(buffer_->PeekRegion(length1 + length2, &iov)); EXPECT_FALSE(buffer_->PeekRegion(length1 + length2 + 1, &iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekBufferWithMultipleBlocks) { const size_t length1 = 1024; std::string source1(length1, 'a'); buffer_->OnStreamData(0, source1, &written_, &error_details_); iovec iov; EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source1, IovecToStringPiece(iov)); const size_t length2 = kBlockSizeBytes + 2; std::string source2(length2, 'b'); buffer_->OnStreamData(length1, source2, &written_, &error_details_); // Peek with offset 0 returns the entire block. EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(kBlockSizeBytes, iov.iov_len); EXPECT_EQ(source1, IovecToStringPiece(iov).substr(0, length1)); EXPECT_EQ(absl::string_view(source2).substr(0, kBlockSizeBytes - length1), IovecToStringPiece(iov).substr(length1)); EXPECT_TRUE(buffer_->PeekRegion(length1, &iov)); EXPECT_EQ(absl::string_view(source2).substr(0, kBlockSizeBytes - length1), IovecToStringPiece(iov)); EXPECT_TRUE(buffer_->PeekRegion(kBlockSizeBytes, &iov)); EXPECT_EQ(absl::string_view(source2).substr(kBlockSizeBytes - length1), IovecToStringPiece(iov)); // Peeking at or after FirstMissingByte() returns false. EXPECT_FALSE(buffer_->PeekRegion(length1 + length2, &iov)); EXPECT_FALSE(buffer_->PeekRegion(length1 + length2 + 1, &iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekAfterConsumed) { std::string source1(kBlockSizeBytes, 'a'); buffer_->OnStreamData(0, source1, &written_, &error_details_); iovec iov; EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source1, IovecToStringPiece(iov)); // Consume some data. EXPECT_TRUE(buffer_->MarkConsumed(1024)); // Peeking into consumed data fails. EXPECT_FALSE(buffer_->PeekRegion(0, &iov)); EXPECT_FALSE(buffer_->PeekRegion(512, &iov)); EXPECT_TRUE(buffer_->PeekRegion(1024, &iov)); EXPECT_EQ(absl::string_view(source1).substr(1024), IovecToStringPiece(iov)); EXPECT_TRUE(buffer_->PeekRegion(1500, &iov)); EXPECT_EQ(absl::string_view(source1).substr(1500), IovecToStringPiece(iov)); // Consume rest of block. EXPECT_TRUE(buffer_->MarkConsumed(kBlockSizeBytes - 1024)); // Read new data. std::string source2(300, 'b'); buffer_->OnStreamData(kBlockSizeBytes, source2, &written_, &error_details_); // Peek into new data. EXPECT_TRUE(buffer_->PeekRegion(kBlockSizeBytes, &iov)); EXPECT_EQ(source2, IovecToStringPiece(iov)); EXPECT_TRUE(buffer_->PeekRegion(kBlockSizeBytes + 128, &iov)); EXPECT_EQ(absl::string_view(source2).substr(128), IovecToStringPiece(iov)); // Peeking into consumed data still fails. EXPECT_FALSE(buffer_->PeekRegion(0, &iov)); EXPECT_FALSE(buffer_->PeekRegion(512, &iov)); EXPECT_FALSE(buffer_->PeekRegion(1024, &iov)); EXPECT_FALSE(buffer_->PeekRegion(1500, &iov)); } TEST_F(QuicStreamSequencerBufferTest, PeekContinously) { std::string source1(kBlockSizeBytes, 'a'); buffer_->OnStreamData(0, source1, &written_, &error_details_); iovec iov; EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source1, IovecToStringPiece(iov)); std::string source2(kBlockSizeBytes, 'b'); buffer_->OnStreamData(kBlockSizeBytes, source2, &written_, &error_details_); EXPECT_TRUE(buffer_->PeekRegion(kBlockSizeBytes, &iov)); EXPECT_EQ(source2, IovecToStringPiece(iov)); // First block is still there. EXPECT_TRUE(buffer_->PeekRegion(0, &iov)); EXPECT_EQ(source1, IovecToStringPiece(iov)); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedInOneBlock) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); EXPECT_TRUE(buffer_->MarkConsumed(512)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); EXPECT_EQ(256u, helper_->ReadableBytes()); buffer_->MarkConsumed(256); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedNotEnoughBytes) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[256]; helper_->Read(dest, 256); // Consume 1st 512 bytes EXPECT_TRUE(buffer_->MarkConsumed(512)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); EXPECT_EQ(256u, helper_->ReadableBytes()); // Try to consume one bytes more than available. Should return false. EXPECT_FALSE(buffer_->MarkConsumed(257)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); iovec iov; EXPECT_TRUE(buffer_->GetReadableRegion(&iov)); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossBlock) { // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024) std::string source(2 * kBlockSizeBytes + 1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[1024]; helper_->Read(dest, 1024); buffer_->MarkConsumed(2 * kBlockSizeBytes); EXPECT_EQ(source.size(), buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossEnd) { // Write into [0, 8.5 * kBlockSizeBytes - 1024) and then read out [0, 1024) // and then append 1024 + 512 bytes. std::string source(8.5 * kBlockSizeBytes - 1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[1024]; helper_->Read(dest, 1024); source = std::string(1024 + 512, 'b'); buffer_->OnStreamData(8.5 * kBlockSizeBytes - 1024, source, &written_, &error_details_); EXPECT_EQ(1024u, buffer_->BytesConsumed()); // Consume to the end of 8th block. buffer_->MarkConsumed(8 * kBlockSizeBytes - 1024); EXPECT_EQ(8 * kBlockSizeBytes, buffer_->BytesConsumed()); // Consume across the physical end of buffer buffer_->MarkConsumed(0.5 * kBlockSizeBytes + 500); EXPECT_EQ(max_capacity_bytes_ + 500, buffer_->BytesConsumed()); EXPECT_EQ(12u, helper_->ReadableBytes()); // Consume to the logical end of buffer buffer_->MarkConsumed(12); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, FlushBufferedFrames) { // Write into [0, 8.5 * kBlockSizeBytes - 1024) and then read out [0, 1024). std::string source(max_capacity_bytes_ - 1024, 'a'); buffer_->OnStreamData(0, source, &written_, &error_details_); char dest[1024]; helper_->Read(dest, 1024); EXPECT_EQ(1024u, buffer_->BytesConsumed()); // Write [1024, 512) to the physical beginning. source = std::string(512, 'b'); buffer_->OnStreamData(max_capacity_bytes_, source, &written_, &error_details_); EXPECT_EQ(512u, written_); EXPECT_EQ(max_capacity_bytes_ - 1024 + 512, buffer_->FlushBufferedFrames()); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); // Clear buffer at this point should still preserve BytesConsumed(). buffer_->Clear(); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, TooManyGaps) { // Make sure max capacity is large enough that it is possible to have more // than |kMaxNumGapsAllowed| number of gaps. max_capacity_bytes_ = 3 * kBlockSizeBytes; // Feed buffer with 1-byte discontiguous frames. e.g. [1,2), [3,4), [5,6)... for (QuicStreamOffset begin = 1; begin <= max_capacity_bytes_; begin += 2) { QuicErrorCode rs = buffer_->OnStreamData(begin, "a", &written_, &error_details_); QuicStreamOffset last_straw = 2 * kMaxNumGapsAllowed - 1; if (begin == last_straw) { EXPECT_THAT(rs, IsError(QUIC_TOO_MANY_STREAM_DATA_INTERVALS)); EXPECT_EQ("Too many data intervals received for this stream.", error_details_); break; } } } class QuicStreamSequencerBufferRandomIOTest : public QuicStreamSequencerBufferTest { public: using OffsetSizePair = std::pair; void SetUp() override { // Test against a larger capacity then above tests. Also make sure the last // block is partially available to use. max_capacity_bytes_ = 8.25 * kBlockSizeBytes; // Stream to be buffered should be larger than the capacity to test wrap // around. bytes_to_buffer_ = 2 * max_capacity_bytes_; Initialize(); uint64_t seed = QuicRandom::GetInstance()->RandUint64(); QUIC_LOG(INFO) << "**** The current seed is " << seed << " ****"; rng_.set_seed(seed); } // Create an out-of-order source stream with given size to populate // shuffled_buf_. void CreateSourceAndShuffle(size_t max_chunk_size_bytes) { max_chunk_size_bytes_ = max_chunk_size_bytes; std::unique_ptr chopped_stream( new OffsetSizePair[bytes_to_buffer_]); // Split stream into small chunks with random length. chopped_stream will be // populated with segmented stream chunks. size_t start_chopping_offset = 0; size_t iterations = 0; while (start_chopping_offset < bytes_to_buffer_) { size_t max_chunk = std::min( max_chunk_size_bytes_, bytes_to_buffer_ - start_chopping_offset); size_t chunk_size = rng_.RandUint64() % max_chunk + 1; chopped_stream[iterations] = OffsetSizePair(start_chopping_offset, chunk_size); start_chopping_offset += chunk_size; ++iterations; } QUICHE_DCHECK(start_chopping_offset == bytes_to_buffer_); size_t chunk_num = iterations; // Randomly change the sequence of in-ordered OffsetSizePairs to make a // out-of-order array of OffsetSizePairs. for (int i = chunk_num - 1; i >= 0; --i) { size_t random_idx = rng_.RandUint64() % (i + 1); QUIC_DVLOG(1) << "chunk offset " << chopped_stream[random_idx].first << " size " << chopped_stream[random_idx].second; shuffled_buf_.push_front(chopped_stream[random_idx]); chopped_stream[random_idx] = chopped_stream[i]; } } // Write the currently first chunk of data in the out-of-order stream into // QuicStreamSequencerBuffer. If current chuck cannot be written into buffer // because it goes beyond current capacity, move it to the end of // shuffled_buf_ and write it later. void WriteNextChunkToBuffer() { OffsetSizePair& chunk = shuffled_buf_.front(); QuicStreamOffset offset = chunk.first; const size_t num_to_write = chunk.second; std::unique_ptr write_buf{new char[max_chunk_size_bytes_]}; for (size_t i = 0; i < num_to_write; ++i) { write_buf[i] = (offset + i) % 256; } absl::string_view string_piece_w(write_buf.get(), num_to_write); auto result = buffer_->OnStreamData(offset, string_piece_w, &written_, &error_details_); if (result == QUIC_NO_ERROR) { shuffled_buf_.pop_front(); total_bytes_written_ += num_to_write; } else { // This chunk offset exceeds window size. shuffled_buf_.push_back(chunk); shuffled_buf_.pop_front(); } QUIC_DVLOG(1) << " write at offset: " << offset << " len to write: " << num_to_write << " write result: " << result << " left over: " << shuffled_buf_.size(); } protected: std::list shuffled_buf_; size_t max_chunk_size_bytes_; QuicStreamOffset bytes_to_buffer_; size_t total_bytes_written_ = 0; size_t total_bytes_read_ = 0; SimpleRandom rng_; }; TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndReadv) { // Set kMaxReadSize larger than kBlockSizeBytes to test both small and large // read. const size_t kMaxReadSize = kBlockSizeBytes * 2; // kNumReads is larger than 1 to test how multiple read destinations work. const size_t kNumReads = 2; // Since write and read operation have equal possibility to be called. Bytes // to be written into and read out of should roughly the same. const size_t kMaxWriteSize = kNumReads * kMaxReadSize; size_t iterations = 0; CreateSourceAndShuffle(kMaxWriteSize); while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) && iterations <= 2 * bytes_to_buffer_) { uint8_t next_action = shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2; QUIC_DVLOG(1) << "iteration: " << iterations; switch (next_action) { case 0: { // write WriteNextChunkToBuffer(); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } case 1: { // readv std::unique_ptr read_buf{ new char[kNumReads][kMaxReadSize]}; iovec dest_iov[kNumReads]; size_t num_to_read = 0; for (size_t i = 0; i < kNumReads; ++i) { dest_iov[i].iov_base = reinterpret_cast(const_cast(read_buf[i])); dest_iov[i].iov_len = rng_.RandUint64() % kMaxReadSize; num_to_read += dest_iov[i].iov_len; } size_t actually_read; EXPECT_THAT(buffer_->Readv(dest_iov, kNumReads, &actually_read, &error_details_), IsQuicNoError()); ASSERT_LE(actually_read, num_to_read); QUIC_DVLOG(1) << " read from offset: " << total_bytes_read_ << " size: " << num_to_read << " actual read: " << actually_read; for (size_t i = 0; i < actually_read; ++i) { char ch = (i + total_bytes_read_) % 256; ASSERT_EQ(ch, GetCharFromIOVecs(i, dest_iov, kNumReads)) << " at iteration " << iterations; } total_bytes_read_ += actually_read; ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed()); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } } ++iterations; ASSERT_LE(total_bytes_read_, total_bytes_written_); } EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test"; EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: " << iterations; EXPECT_LE(bytes_to_buffer_, total_bytes_written_); } TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndConsumeInPlace) { // The value 4 is chosen such that the max write size is no larger than the // maximum buffer capacity. const size_t kMaxNumReads = 4; // Adjust write amount be roughly equal to that GetReadableRegions() can get. const size_t kMaxWriteSize = kMaxNumReads * kBlockSizeBytes; ASSERT_LE(kMaxWriteSize, max_capacity_bytes_); size_t iterations = 0; CreateSourceAndShuffle(kMaxWriteSize); while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) && iterations <= 2 * bytes_to_buffer_) { uint8_t next_action = shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2; QUIC_DVLOG(1) << "iteration: " << iterations; switch (next_action) { case 0: { // write WriteNextChunkToBuffer(); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } case 1: { // GetReadableRegions and then MarkConsumed size_t num_read = rng_.RandUint64() % kMaxNumReads + 1; iovec dest_iov[kMaxNumReads]; ASSERT_TRUE(helper_->CheckBufferInvariants()); size_t actually_num_read = buffer_->GetReadableRegions(dest_iov, num_read); ASSERT_LE(actually_num_read, num_read); size_t avail_bytes = 0; for (size_t i = 0; i < actually_num_read; ++i) { avail_bytes += dest_iov[i].iov_len; } // process random number of bytes (check the value of each byte). size_t bytes_to_process = rng_.RandUint64() % (avail_bytes + 1); size_t bytes_processed = 0; for (size_t i = 0; i < actually_num_read; ++i) { size_t bytes_in_block = std::min( bytes_to_process - bytes_processed, dest_iov[i].iov_len); if (bytes_in_block == 0) { break; } for (size_t j = 0; j < bytes_in_block; ++j) { ASSERT_LE(bytes_processed, bytes_to_process); char char_expected = (buffer_->BytesConsumed() + bytes_processed) % 256; ASSERT_EQ(char_expected, reinterpret_cast(dest_iov[i].iov_base)[j]) << " at iteration " << iterations; ++bytes_processed; } } buffer_->MarkConsumed(bytes_processed); QUIC_DVLOG(1) << "iteration " << iterations << ": try to get " << num_read << " readable regions, actually get " << actually_num_read << " from offset: " << total_bytes_read_ << "\nprocesse bytes: " << bytes_processed; total_bytes_read_ += bytes_processed; ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed()); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } } ++iterations; ASSERT_LE(total_bytes_read_, total_bytes_written_); } EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test"; EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: " << iterations; EXPECT_LE(bytes_to_buffer_, total_bytes_written_); } TEST_F(QuicStreamSequencerBufferTest, GrowBlockSizeOnDemand) { max_capacity_bytes_ = 1024 * kBlockSizeBytes; std::string source_of_one_block(kBlockSizeBytes, 'a'); Initialize(); ASSERT_EQ(helper_->current_blocks_count(), 0u); // A minimum of 8 blocks are allocated buffer_->OnStreamData(0, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 8u); // Number of blocks doesn't grow if the data is within the capacity. buffer_->OnStreamData(kBlockSizeBytes * 7, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 8u); // Number of blocks grows by a factor of 4 normally. buffer_->OnStreamData(kBlockSizeBytes * 8, "a", &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 32u); // Number of blocks grow to the demanded size of 140 instead of 128 since // that's not enough. buffer_->OnStreamData(kBlockSizeBytes * 139, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 140u); // Number of blocks grows by a factor of 4 normally. buffer_->OnStreamData(kBlockSizeBytes * 140, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 560u); // max_capacity_bytes is reached and number of blocks is capped. buffer_->OnStreamData(kBlockSizeBytes * 560, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 1024u); // max_capacity_bytes is reached and number of blocks is capped. buffer_->OnStreamData(kBlockSizeBytes * 1025, source_of_one_block, &written_, &error_details_); ASSERT_EQ(helper_->current_blocks_count(), 1024u); } } // anonymous namespace } // namespace test } // namespace quic