// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/third_party/quiche/src/quic/core/quic_framer.h" #include #include #include #include #include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" #include "net/third_party/quiche/src/quic/core/quic_constants.h" #include "net/third_party/quiche/src/quic/core/quic_data_reader.h" #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" #include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h" #include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h" #include "net/third_party/quiche/src/quic/core/quic_types.h" #include "net/third_party/quiche/src/quic/core/quic_utils.h" #include "net/third_party/quiche/src/quic/core/quic_versions.h" #include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h" #include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h" #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" #include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h" #include "net/third_party/quiche/src/quic/platform/api/quic_endian.h" #include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h" #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" #include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h" #include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h" #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" #include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h" namespace quic { namespace { #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") // How much to shift the timestamp in the IETF Ack frame. // TODO(fkastenholz) when we get real IETF QUIC, need to get // the currect shift from the transport parameters. const int kIetfAckTimestampShift = 3; // Number of bits the packet number length bits are shifted from the right // edge of the header. const uint8_t kPublicHeaderSequenceNumberShift = 4; // There are two interpretations for the Frame Type byte in the QUIC protocol, // resulting in two Frame Types: Special Frame Types and Regular Frame Types. // // Regular Frame Types use the Frame Type byte simply. Currently defined // Regular Frame Types are: // Padding : 0b 00000000 (0x00) // ResetStream : 0b 00000001 (0x01) // ConnectionClose : 0b 00000010 (0x02) // GoAway : 0b 00000011 (0x03) // WindowUpdate : 0b 00000100 (0x04) // Blocked : 0b 00000101 (0x05) // // Special Frame Types encode both a Frame Type and corresponding flags // all in the Frame Type byte. Currently defined Special Frame Types // are: // Stream : 0b 1xxxxxxx // Ack : 0b 01xxxxxx // // Semantics of the flag bits above (the x bits) depends on the frame type. // Masks to determine if the frame type is a special use // and for specific special frame types. const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000 const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000 const uint8_t kQuicFrameTypeStreamMask = 0x80; const uint8_t kQuicFrameTypeAckMask = 0x40; static_assert(kQuicFrameTypeSpecialMask == (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), "Invalid kQuicFrameTypeSpecialMask"); // The stream type format is 1FDOOOSS, where // F is the fin bit. // D is the data length bit (0 or 2 bytes). // OO/OOO are the size of the offset. // SS is the size of the stream ID. // Note that the stream encoding can not be determined by inspection. It can // be determined only by knowing the QUIC Version. // Stream frame relative shifts and masks for interpreting the stream flags. // StreamID may be 1, 2, 3, or 4 bytes. const uint8_t kQuicStreamIdShift = 2; const uint8_t kQuicStreamIDLengthMask = 0x03; // Offset may be 0, 2, 4, or 8 bytes. const uint8_t kQuicStreamShift = 3; const uint8_t kQuicStreamOffsetMask = 0x07; // Data length may be 0 or 2 bytes. const uint8_t kQuicStreamDataLengthShift = 1; const uint8_t kQuicStreamDataLengthMask = 0x01; // Fin bit may be set or not. const uint8_t kQuicStreamFinShift = 1; const uint8_t kQuicStreamFinMask = 0x01; // The format is 01M0LLOO, where // M if set, there are multiple ack blocks in the frame. // LL is the size of the largest ack field. // OO is the size of the ack blocks offset field. // packet number size shift used in AckFrames. const uint8_t kQuicSequenceNumberLengthNumBits = 2; const uint8_t kActBlockLengthOffset = 0; const uint8_t kLargestAckedOffset = 2; // Acks may have only one ack block. const uint8_t kQuicHasMultipleAckBlocksOffset = 5; // Timestamps are 4 bytes followed by 2 bytes. const uint8_t kQuicNumTimestampsLength = 1; const uint8_t kQuicFirstTimestampLength = 4; const uint8_t kQuicTimestampLength = 2; // Gaps between packet numbers are 1 byte. const uint8_t kQuicTimestampPacketNumberGapLength = 1; // Maximum length of encoded error strings. const int kMaxErrorStringLength = 256; const uint8_t kConnectionIdLengthAdjustment = 3; const uint8_t kDestinationConnectionIdLengthMask = 0xF0; const uint8_t kSourceConnectionIdLengthMask = 0x0F; // Returns the absolute value of the difference between |a| and |b|. uint64_t Delta(uint64_t a, uint64_t b) { // Since these are unsigned numbers, we can't just return abs(a - b) if (a < b) { return b - a; } return a - b; } uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { return (Delta(target, a) < Delta(target, b)) ? a : b; } uint64_t PacketNumberIntervalLength( const QuicInterval& interval) { if (interval.Empty()) { return 0u; } return interval.max() - interval.min(); } QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return PACKET_6BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version, uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return PACKET_6BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } uint8_t PacketNumberLengthToOnWireValue( QuicTransportVersion version, QuicPacketNumberLength packet_number_length) { if (version > QUIC_VERSION_44) { return packet_number_length - 1; } switch (packet_number_length) { case PACKET_1BYTE_PACKET_NUMBER: return 0; case PACKET_2BYTE_PACKET_NUMBER: return 1; case PACKET_4BYTE_PACKET_NUMBER: return 2; default: QUIC_BUG << "Invalid packet number length."; return 0; } } bool GetShortHeaderPacketNumberLength( QuicTransportVersion version, uint8_t type, bool infer_packet_header_type_from_version, QuicPacketNumberLength* packet_number_length) { DCHECK(!(type & FLAGS_LONG_HEADER)); const bool two_bits_packet_number_length = infer_packet_header_type_from_version ? version > QUIC_VERSION_44 : (type & FLAGS_FIXED_BIT); if (two_bits_packet_number_length) { *packet_number_length = static_cast((type & 0x03) + 1); return true; } switch (type & 0x07) { case 0: *packet_number_length = PACKET_1BYTE_PACKET_NUMBER; break; case 1: *packet_number_length = PACKET_2BYTE_PACKET_NUMBER; break; case 2: *packet_number_length = PACKET_4BYTE_PACKET_NUMBER; break; default: *packet_number_length = PACKET_6BYTE_PACKET_NUMBER; return false; } return true; } uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version, QuicLongHeaderType type) { switch (type) { case INITIAL: return version > QUIC_VERSION_44 ? 0 : 0x7F; case ZERO_RTT_PROTECTED: return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C; case HANDSHAKE: return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D; case RETRY: return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E; case VERSION_NEGOTIATION: return 0xF0; // Value does not matter default: QUIC_BUG << "Invalid long header type: " << type; return 0xFF; } } bool GetLongHeaderType(QuicTransportVersion version, uint8_t type, QuicLongHeaderType* long_header_type) { DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED); if (version > QUIC_VERSION_44) { switch ((type & 0x30) >> 4) { case 0: *long_header_type = INITIAL; break; case 1: *long_header_type = ZERO_RTT_PROTECTED; break; case 2: *long_header_type = HANDSHAKE; break; case 3: *long_header_type = RETRY; break; default: QUIC_BUG << "Unreachable statement"; *long_header_type = VERSION_NEGOTIATION; return false; } return true; } switch (type & 0x7F) { case 0x7F: *long_header_type = INITIAL; break; case 0x7C: *long_header_type = ZERO_RTT_PROTECTED; break; case 0x7D: *long_header_type = HANDSHAKE; break; case 0x7E: *long_header_type = RETRY; break; default: // Invalid packet header type. Whether a packet is version negotiation is // determined by the version field. *long_header_type = INVALID_PACKET_TYPE; return false; } return true; } QuicPacketNumberLength GetLongHeaderPacketNumberLength( QuicTransportVersion version, uint8_t type) { if (version > QUIC_VERSION_44) { return static_cast((type & 0x03) + 1); } return PACKET_4BYTE_PACKET_NUMBER; } // Used to get packet number space before packet gets decrypted. PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) { switch (header.form) { case GOOGLE_QUIC_PACKET: QUIC_BUG << "Try to get packet number space of Google QUIC packet"; break; case IETF_QUIC_SHORT_HEADER_PACKET: return APPLICATION_DATA; case IETF_QUIC_LONG_HEADER_PACKET: switch (header.long_packet_type) { case INITIAL: return INITIAL_DATA; case HANDSHAKE: return HANDSHAKE_DATA; case ZERO_RTT_PROTECTED: return APPLICATION_DATA; case VERSION_NEGOTIATION: case RETRY: case INVALID_PACKET_TYPE: QUIC_BUG << "Try to get packet number space of long header type: " << QuicUtils::QuicLongHeaderTypetoString( header.long_packet_type); break; } } return NUM_PACKET_NUMBER_SPACES; } EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) { switch (header.form) { case GOOGLE_QUIC_PACKET: QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header"; break; case IETF_QUIC_SHORT_HEADER_PACKET: return ENCRYPTION_FORWARD_SECURE; case IETF_QUIC_LONG_HEADER_PACKET: switch (header.long_packet_type) { case INITIAL: return ENCRYPTION_INITIAL; case HANDSHAKE: return ENCRYPTION_HANDSHAKE; case ZERO_RTT_PROTECTED: return ENCRYPTION_ZERO_RTT; case VERSION_NEGOTIATION: case RETRY: case INVALID_PACKET_TYPE: QUIC_BUG << "No encryption used with type " << QuicUtils::QuicLongHeaderTypetoString( header.long_packet_type); } } return NUM_ENCRYPTION_LEVELS; } QuicStringPiece TruncateErrorString(QuicStringPiece error) { if (error.length() <= kMaxErrorStringLength) { return error; } return QuicStringPiece(error.data(), kMaxErrorStringLength); } size_t TruncatedErrorStringSize(const QuicStringPiece& error) { if (error.length() < kMaxErrorStringLength) { return error.length(); } return kMaxErrorStringLength; } uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { if (length == 0) { return 0; } return static_cast(length - kConnectionIdLengthAdjustment); } bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { size_t length = packet_number_length; return length == 1 || length == 2 || length == 4 || length == 6 || length == 8; } bool IsValidFullPacketNumber(uint64_t full_packet_number, QuicTransportVersion version) { return full_packet_number > 0 || version == QUIC_VERSION_99; } // Convert a stream ID to a count of streams, for IETF QUIC/Version 99 only. // There is no need to take into account whether the ID is for uni- or // bi-directional streams, or whether it's server- or client- initiated. It // always returns a valid count. QuicStreamId StreamIdToCount(QuicTransportVersion version, QuicStreamId stream_id) { DCHECK_EQ(QUIC_VERSION_99, version); if ((stream_id & 0x3) == 0) { return (stream_id / QuicUtils::StreamIdDelta(version)); } return (stream_id / QuicUtils::StreamIdDelta(version)) + 1; } // Returns the maximum value that a stream count may have, taking into account // the fact that bidirectional, client initiated, streams have one fewer stream // available than the others. This is because the old crypto streams, with ID == // 0 are not included in the count. // The version is not included in the call, nor does the method take the version // into account, because this is called only from code used for IETF QUIC. // TODO(fkastenholz): Remove this method and replace calls to it with direct // references to kMaxQuicStreamIdCount when streamid 0 becomes a normal stream // id. QuicStreamId GetMaxStreamCount(bool unidirectional, Perspective perspective) { if (!unidirectional && perspective == Perspective::IS_CLIENT) { return kMaxQuicStreamId >> 2; } return (kMaxQuicStreamId >> 2) + 1; } // Convert a stream count to the maximum stream ID for that count. // Needs to know whether the resulting stream ID should be uni-directional, // bi-directional, server-initiated, or client-initiated. // Returns true if it works, false if not. The only error condition is that // the stream_count is too big and it would generate a stream id that is larger // than the implementation's maximum stream id value. bool StreamCountToId(QuicStreamId stream_count, bool unidirectional, Perspective perspective, QuicTransportVersion version, QuicStreamId* generated_stream_id) { DCHECK_EQ(QUIC_VERSION_99, version); // TODO(fkastenholz): when the MAX_STREAMS and STREAMS_BLOCKED frames // are connected all the way up to the stream_id_manager, handle count==0 // properly (interpret it as "can open 0 streams") and the count being too // large (close the connection). if ((stream_count == 0) || (stream_count > GetMaxStreamCount(unidirectional, perspective))) { return false; } *generated_stream_id = ((unidirectional) ? QuicUtils::GetFirstUnidirectionalStreamId(version, perspective) : QuicUtils::GetFirstBidirectionalStreamId(version, perspective)) + ((stream_count - 1) * QuicUtils::StreamIdDelta(version)); return true; } bool AppendIetfConnectionIdsNew(bool version_flag, QuicConnectionId destination_connection_id, QuicConnectionId source_connection_id, QuicDataWriter* writer) { if (!version_flag) { return writer->WriteConnectionId(destination_connection_id); } // Compute connection ID length byte. uint8_t dcil = GetConnectionIdLengthValue( static_cast(destination_connection_id.length())); uint8_t scil = GetConnectionIdLengthValue( static_cast(source_connection_id.length())); uint8_t connection_id_length = dcil << 4 | scil; return writer->WriteUInt8(connection_id_length) && writer->WriteConnectionId(destination_connection_id) && writer->WriteConnectionId(source_connection_id); } enum class DroppedPacketReason { // General errors INVALID_PUBLIC_HEADER, VERSION_MISMATCH, // Version negotiation packet errors INVALID_VERSION_NEGOTIATION_PACKET, // Public reset packet errors, pre-v44 INVALID_PUBLIC_RESET_PACKET, // Data packet errors INVALID_PACKET_NUMBER, INVALID_DIVERSIFICATION_NONCE, DECRYPTION_FAILURE, NUM_REASONS, }; void RecordDroppedPacketReason(DroppedPacketReason reason) { QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, DroppedPacketReason::NUM_REASONS, "The reason a packet was not processed. Recorded " "each time such a packet is dropped"); } } // namespace QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, QuicTime creation_time, Perspective perspective, uint8_t expected_connection_id_length) : visitor_(nullptr), error_(QUIC_NO_ERROR), last_serialized_connection_id_(EmptyQuicConnectionId()), last_version_label_(0), version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED), supported_versions_(supported_versions), decrypter_level_(ENCRYPTION_INITIAL), alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS), alternative_decrypter_latch_(false), perspective_(perspective), validate_flags_(true), process_timestamps_(false), creation_time_(creation_time), last_timestamp_(QuicTime::Delta::Zero()), first_sending_packet_number_(FirstSendingPacketNumber()), data_producer_(nullptr), infer_packet_header_type_from_version_(perspective == Perspective::IS_CLIENT), expected_connection_id_length_(expected_connection_id_length), should_update_expected_connection_id_length_(false), supports_multiple_packet_number_spaces_(false) { DCHECK(!supported_versions.empty()); version_ = supported_versions_[0]; decrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique(perspective); encrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique(perspective); } QuicFramer::~QuicFramer() {} // static size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, QuicStreamId stream_id, QuicStreamOffset offset, bool last_frame_in_packet, QuicPacketLength data_length) { if (version == QUIC_VERSION_99) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(data_length)) + (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); } return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + GetStreamOffsetSize(version, offset) + (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); } // static size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, QuicPacketLength data_length) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + QuicDataWriter::GetVarInt62Len(data_length); } // static size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, bool last_frame_in_packet, QuicByteCount length) { QUIC_BUG_IF(version <= QUIC_VERSION_44) << "Try to serialize MESSAGE frame in " << version; return kQuicFrameTypeSize + (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + length; } // static size_t QuicFramer::GetMinAckFrameSize( QuicTransportVersion version, QuicPacketNumberLength largest_observed_length) { if (version == QUIC_VERSION_99) { // The minimal ack frame consists of the following four fields: Largest // Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum // size of each is 1 byte. return kQuicFrameTypeSize + 4; } size_t min_size = kQuicFrameTypeSize + largest_observed_length + kQuicDeltaTimeLargestObservedSize; return min_size + kQuicNumTimestampsSize; } // static size_t QuicFramer::GetStopWaitingFrameSize( QuicTransportVersion version, QuicPacketNumberLength packet_number_length) { size_t min_size = kQuicFrameTypeSize + packet_number_length; return min_size; } // static size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, const QuicRstStreamFrame& frame) { if (version == QUIC_VERSION_99) { return QuicDataWriter::GetVarInt62Len(frame.stream_id) + QuicDataWriter::GetVarInt62Len(frame.byte_offset) + kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; } return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + kQuicErrorCodeSize; } // static size_t QuicFramer::GetMinConnectionCloseFrameSize( QuicTransportVersion version, const QuicConnectionCloseFrame& frame) { if (version == QUIC_VERSION_99) { // TODO(fkastenholz): For complete support of IETF QUIC CONNECTION_CLOSE, // check if the frame is a Transport close and if the frame's // extracted_error_code is not QUIC_IETF_GQUIC_ERROR_MISSING. If so, // extend the error string to include " QuicErrorCode: #" if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { // Application close variant does not include the transport close frame // type field. return QuicDataWriter::GetVarInt62Len( TruncatedErrorStringSize(frame.error_details)) + kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; } QUIC_BUG_IF(frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) << "IETF QUIC Connection close and QuicConnectionCloseFrame type is " "not IETF ConnectionClose"; return QuicDataWriter::GetVarInt62Len( TruncatedErrorStringSize(frame.error_details)) + QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type) + kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; } // Not version 99/IETF QUIC, return Google QUIC CONNECTION CLOSE frame size. return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize; } // static size_t QuicFramer::GetMinGoAwayFrameSize() { return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + kQuicMaxStreamIdSize; } // static size_t QuicFramer::GetWindowUpdateFrameSize( QuicTransportVersion version, const QuicWindowUpdateFrame& frame) { if (version != QUIC_VERSION_99) { return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; } if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { // Frame would be a MAX DATA frame, which has only a Maximum Data field. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.byte_offset); } // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID // fields. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.byte_offset) + QuicDataWriter::GetVarInt62Len(frame.stream_id); } // static size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, const QuicMaxStreamIdFrame& frame) { if (version != QUIC_VERSION_99) { QUIC_BUG << "In version " << version << " - not 99 - and tried to serialize MaxStreamId Frame."; } // Convert from the stream id on which the connection is blocked to a count QuicStreamId stream_count = StreamIdToCount(version, frame.max_stream_id); return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_count); } // static size_t QuicFramer::GetStreamsBlockedFrameSize( QuicTransportVersion version, const QuicStreamIdBlockedFrame& frame) { if (version != QUIC_VERSION_99) { QUIC_BUG << "In version " << version << " - not 99 - and tried to serialize StreamIdBlocked Frame."; } // Convert from the stream id on which the connection is blocked to a count QuicStreamId stream_count = StreamIdToCount(version, frame.stream_id); return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_count); } // static size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, const QuicBlockedFrame& frame) { if (version != QUIC_VERSION_99) { return kQuicFrameTypeSize + kQuicMaxStreamIdSize; } if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { // return size of IETF QUIC Blocked frame return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); } // return size of IETF QUIC Stream Blocked frame. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + QuicDataWriter::GetVarInt62Len(frame.stream_id); } // static size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + sizeof(QuicApplicationErrorCode); } // static size_t QuicFramer::GetPathChallengeFrameSize( const QuicPathChallengeFrame& frame) { return kQuicFrameTypeSize + sizeof(frame.data_buffer); } // static size_t QuicFramer::GetPathResponseFrameSize( const QuicPathResponseFrame& frame) { return kQuicFrameTypeSize + sizeof(frame.data_buffer); } // static size_t QuicFramer::GetRetransmittableControlFrameSize( QuicTransportVersion version, const QuicFrame& frame) { switch (frame.type) { case PING_FRAME: // Ping has no payload. return kQuicFrameTypeSize; case RST_STREAM_FRAME: return GetRstStreamFrameSize(version, *frame.rst_stream_frame); case CONNECTION_CLOSE_FRAME: return GetMinConnectionCloseFrameSize(version, *frame.connection_close_frame) + TruncatedErrorStringSize( frame.connection_close_frame->error_details); case GOAWAY_FRAME: return GetMinGoAwayFrameSize() + TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); case WINDOW_UPDATE_FRAME: // For version 99, this could be either a MAX DATA or MAX STREAM DATA. // GetWindowUpdateFrameSize figures this out and returns the correct // length. return GetWindowUpdateFrameSize(version, *frame.window_update_frame); case BLOCKED_FRAME: return GetBlockedFrameSize(version, *frame.blocked_frame); case NEW_CONNECTION_ID_FRAME: return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); case RETIRE_CONNECTION_ID_FRAME: return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); case NEW_TOKEN_FRAME: return GetNewTokenFrameSize(*frame.new_token_frame); case MAX_STREAM_ID_FRAME: return GetMaxStreamsFrameSize(version, frame.max_stream_id_frame); case STREAM_ID_BLOCKED_FRAME: return GetStreamsBlockedFrameSize(version, frame.stream_id_blocked_frame); case PATH_RESPONSE_FRAME: return GetPathResponseFrameSize(*frame.path_response_frame); case PATH_CHALLENGE_FRAME: return GetPathChallengeFrameSize(*frame.path_challenge_frame); case STOP_SENDING_FRAME: return GetStopSendingFrameSize(*frame.stop_sending_frame); case STREAM_FRAME: case ACK_FRAME: case STOP_WAITING_FRAME: case MTU_DISCOVERY_FRAME: case PADDING_FRAME: case MESSAGE_FRAME: case CRYPTO_FRAME: case NUM_FRAME_TYPES: DCHECK(false); return 0; } // Not reachable, but some Chrome compilers can't figure that out. *sigh* DCHECK(false); return 0; } // static size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { // Sizes are 1 through 4 bytes. for (int i = 1; i <= 4; ++i) { stream_id >>= 8; if (stream_id == 0) { return i; } } QUIC_BUG << "Failed to determine StreamIDSize."; return 4; } // static size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version, QuicStreamOffset offset) { // 0 is a special case. if (offset == 0) { return 0; } // 2 through 8 are the remaining sizes. offset >>= 8; for (int i = 2; i <= 8; ++i) { offset >>= 8; if (offset == 0) { return i; } } QUIC_BUG << "Failed to determine StreamOffsetSize."; return 8; } // static size_t QuicFramer::GetNewConnectionIdFrameSize( const QuicNewConnectionIdFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.sequence_number) + kConnectionIdLengthSize + frame.connection_id.length() + sizeof(frame.stateless_reset_token); } // static size_t QuicFramer::GetRetireConnectionIdFrameSize( const QuicRetireConnectionIdFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.sequence_number); } // static size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.token.length()) + frame.token.length(); } // TODO(nharper): Change this method to take a ParsedQuicVersion. bool QuicFramer::IsSupportedTransportVersion( const QuicTransportVersion version) const { for (ParsedQuicVersion supported_version : supported_versions_) { if (version == supported_version.transport_version) { return true; } } return false; } bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { for (const ParsedQuicVersion& supported_version : supported_versions_) { if (version == supported_version) { return true; } } return false; } size_t QuicFramer::GetSerializedFrameLength( const QuicFrame& frame, size_t free_bytes, bool first_frame, bool last_frame, QuicPacketNumberLength packet_number_length) { // Prevent a rare crash reported in b/19458523. if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:" << free_bytes << " first_frame:" << first_frame << " last_frame:" << last_frame << " seq num length:" << packet_number_length; set_error(QUIC_INTERNAL_ERROR); visitor_->OnError(this); return 0; } if (frame.type == PADDING_FRAME) { if (frame.padding_frame.num_padding_bytes == -1) { // Full padding to the end of the packet. return free_bytes; } else { // Lite padding. return free_bytes < static_cast(frame.padding_frame.num_padding_bytes) ? free_bytes : frame.padding_frame.num_padding_bytes; } } size_t frame_len = ComputeFrameLength(frame, last_frame, packet_number_length); if (frame_len <= free_bytes) { // Frame fits within packet. Note that acks may be truncated. return frame_len; } // Only truncate the first frame in a packet, so if subsequent ones go // over, stop including more frames. if (!first_frame) { return 0; } bool can_truncate = frame.type == ACK_FRAME && free_bytes >= GetMinAckFrameSize(version_.transport_version, PACKET_6BYTE_PACKET_NUMBER); if (can_truncate) { // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize. // Note that we may not use every byte of the writer in this case. QUIC_DLOG(INFO) << ENDPOINT << "Truncating large frame, free bytes: " << free_bytes; return free_bytes; } return 0; } QuicFramer::AckFrameInfo::AckFrameInfo() : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; QuicFramer::AckFrameInfo::~AckFrameInfo() {} bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, QuicDataWriter* writer, size_t length_field_offset, EncryptionLevel level) { if (!QuicVersionHasLongHeaderLengths(transport_version()) || !header.version_flag || length_field_offset == 0) { return true; } if (writer->length() < length_field_offset || writer->length() - length_field_offset < kQuicDefaultLongHeaderLengthLength) { set_detailed_error("Invalid length_field_offset."); QUIC_BUG << "Invalid length_field_offset."; return false; } size_t length_to_write = writer->length() - length_field_offset - kQuicDefaultLongHeaderLengthLength; // Add length of auth tag. length_to_write = GetCiphertextSize(level, length_to_write); QuicDataWriter length_writer(writer->length() - length_field_offset, writer->data() + length_field_offset); if (!length_writer.WriteVarInt62(length_to_write, kQuicDefaultLongHeaderLengthLength)) { set_detailed_error("Failed to overwrite long header length."); QUIC_BUG << "Failed to overwrite long header length."; return false; } return true; } size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, const QuicFrames& frames, char* buffer, size_t packet_length, EncryptionLevel level) { QuicDataWriter writer(packet_length, buffer); size_t length_field_offset = 0; if (!AppendPacketHeader(header, &writer, &length_field_offset)) { QUIC_BUG << "AppendPacketHeader failed"; return 0; } if (transport_version() == QUIC_VERSION_99) { if (AppendIetfFrames(frames, &writer) == 0) { return 0; } if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, level)) { return 0; } return writer.length(); } // TODO(dschinazi) if we enable long header lengths before v99, we need to // add support for fixing up lengths in QuicFramer::BuildDataPacket. DCHECK(!QuicVersionHasLongHeaderLengths(transport_version())); size_t i = 0; for (const QuicFrame& frame : frames) { // Determine if we should write stream frame length in header. const bool last_frame_in_packet = i == frames.size() - 1; if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendTypeByte failed"; return 0; } switch (frame.type) { case PADDING_FRAME: if (!AppendPaddingFrame(frame.padding_frame, &writer)) { QUIC_BUG << "AppendPaddingFrame of " << frame.padding_frame.num_padding_bytes << " failed"; return 0; } break; case STREAM_FRAME: if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendStreamFrame failed"; return 0; } break; case ACK_FRAME: if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_; return 0; } break; case STOP_WAITING_FRAME: if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, &writer)) { QUIC_BUG << "AppendStopWaitingFrame failed"; return 0; } break; case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. QUIC_FALLTHROUGH_INTENDED; case PING_FRAME: // Ping has no payload. break; case RST_STREAM_FRAME: if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { QUIC_BUG << "AppendRstStreamFrame failed"; return 0; } break; case CONNECTION_CLOSE_FRAME: if (!AppendConnectionCloseFrame(*frame.connection_close_frame, &writer)) { QUIC_BUG << "AppendConnectionCloseFrame failed"; return 0; } break; case GOAWAY_FRAME: if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { QUIC_BUG << "AppendGoAwayFrame failed"; return 0; } break; case WINDOW_UPDATE_FRAME: if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { QUIC_BUG << "AppendWindowUpdateFrame failed"; return 0; } break; case BLOCKED_FRAME: if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { QUIC_BUG << "AppendBlockedFrame failed"; return 0; } break; case NEW_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case RETIRE_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append RETIRE_CONNECTION_ID frame and not in version " "99."); return RaiseError(QUIC_INTERNAL_ERROR); case NEW_TOKEN_FRAME: set_detailed_error( "Attempt to append NEW_TOKEN_ID frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case MAX_STREAM_ID_FRAME: set_detailed_error( "Attempt to append MAX_STREAM_ID frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case STREAM_ID_BLOCKED_FRAME: set_detailed_error( "Attempt to append STREAM_ID_BLOCKED frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_RESPONSE_FRAME: set_detailed_error( "Attempt to append PATH_RESPONSE frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_CHALLENGE_FRAME: set_detailed_error( "Attempt to append PATH_CHALLENGE frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case STOP_SENDING_FRAME: set_detailed_error( "Attempt to append STOP_SENDING frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case MESSAGE_FRAME: if (!AppendMessageFrameAndTypeByte(*frame.message_frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendMessageFrame failed"; return 0; } break; case CRYPTO_FRAME: if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { set_detailed_error( "Attempt to append CRYPTO frame in version prior to 47."); return RaiseError(QUIC_INTERNAL_ERROR); } if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { QUIC_BUG << "AppendCryptoFrame failed"; return 0; } break; default: RaiseError(QUIC_INVALID_FRAME_DATA); QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; return 0; } ++i; } return writer.length(); } size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, QuicDataWriter* writer) { size_t i = 0; for (const QuicFrame& frame : frames) { // Determine if we should write stream frame length in header. const bool last_frame_in_packet = i == frames.size() - 1; if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error(); return 0; } switch (frame.type) { case PADDING_FRAME: if (!AppendPaddingFrame(frame.padding_frame, writer)) { QUIC_BUG << "AppendPaddingFrame of " << frame.padding_frame.num_padding_bytes << " failed: " << detailed_error(); return 0; } break; case STREAM_FRAME: if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendStreamFrame failed: " << detailed_error(); return 0; } break; case ACK_FRAME: if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: " << detailed_error(); return 0; } break; case STOP_WAITING_FRAME: set_detailed_error( "Attempt to append STOP WAITING frame in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. QUIC_FALLTHROUGH_INTENDED; case PING_FRAME: // Ping has no payload. break; case RST_STREAM_FRAME: if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error(); return 0; } break; case CONNECTION_CLOSE_FRAME: if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame, writer)) { QUIC_BUG << "AppendIetfConnectionCloseFrame failed: " << detailed_error(); return 0; } break; case GOAWAY_FRAME: set_detailed_error("Attempt to append GOAWAY frame in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case WINDOW_UPDATE_FRAME: // Depending on whether there is a stream ID or not, will be either a // MAX STREAM DATA frame or a MAX DATA frame. if (frame.window_update_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) { QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error(); return 0; } } else { if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) { QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error(); return 0; } } break; case BLOCKED_FRAME: if (!AppendBlockedFrame(*frame.blocked_frame, writer)) { QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error(); return 0; } break; case MAX_STREAM_ID_FRAME: if (!AppendMaxStreamsFrame(frame.max_stream_id_frame, writer)) { QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error(); return 0; } break; case STREAM_ID_BLOCKED_FRAME: if (!AppendStreamsBlockedFrame(frame.stream_id_blocked_frame, writer)) { QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error(); return 0; } break; case NEW_CONNECTION_ID_FRAME: if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, writer)) { QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error(); return 0; } break; case RETIRE_CONNECTION_ID_FRAME: if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, writer)) { QUIC_BUG << "AppendRetireConnectionIdFrame failed: " << detailed_error(); return 0; } break; case NEW_TOKEN_FRAME: if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error(); return 0; } break; case STOP_SENDING_FRAME: if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) { QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error(); return 0; } break; case PATH_CHALLENGE_FRAME: if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) { QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error(); return 0; } break; case PATH_RESPONSE_FRAME: if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) { QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error(); return 0; } break; case MESSAGE_FRAME: if (!AppendMessageFrameAndTypeByte(*frame.message_frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendMessageFrame failed: " << detailed_error(); return 0; } break; case CRYPTO_FRAME: if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error(); return 0; } break; default: RaiseError(QUIC_INVALID_FRAME_DATA); set_detailed_error("Tried to append unknown frame type."); QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; return 0; } ++i; } return writer->length(); } size_t QuicFramer::BuildConnectivityProbingPacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, EncryptionLevel level) { QuicFrames frames; // Write a PING frame, which has no data payload. QuicPingFrame ping_frame; frames.push_back(QuicFrame(ping_frame)); // Add padding to the rest of the packet. QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); return BuildDataPacket(header, frames, buffer, packet_length, level); } size_t QuicFramer::BuildPaddedPathChallengePacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, QuicPathFrameBuffer* payload, QuicRandom* randomizer, EncryptionLevel level) { if (version_.transport_version != QUIC_VERSION_99) { QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing " "packet and not doing IETF QUIC"; return 0; } QuicFrames frames; // Write a PATH_CHALLENGE frame, which has a random 8-byte payload randomizer->RandBytes(payload->data(), payload->size()); QuicPathChallengeFrame path_challenge_frame(0, *payload); frames.push_back(QuicFrame(&path_challenge_frame)); // Add padding to the rest of the packet in order to assess Path MTU // characteristics. QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); return BuildDataPacket(header, frames, buffer, packet_length, level); } size_t QuicFramer::BuildPathResponsePacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, const QuicDeque& payloads, const bool is_padded, EncryptionLevel level) { if (payloads.empty()) { QUIC_BUG << "Attempt to generate connectivity response with no request payloads"; return 0; } if (version_.transport_version != QUIC_VERSION_99) { QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing " "packet and not doing IETF QUIC"; return 0; } std::vector> path_response_frames; for (const QuicPathFrameBuffer& payload : payloads) { // Note that the control frame ID can be 0 since this is not retransmitted. path_response_frames.push_back( QuicMakeUnique(0, payload)); } QuicFrames frames; for (const std::unique_ptr& path_response_frame : path_response_frames) { frames.push_back(QuicFrame(path_response_frame.get())); } if (is_padded) { // Add padding to the rest of the packet in order to assess Path MTU // characteristics. QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); } return BuildDataPacket(header, frames, buffer, packet_length, level); } // static std::unique_ptr QuicFramer::BuildPublicResetPacket( const QuicPublicResetPacket& packet) { CryptoHandshakeMessage reset; reset.set_tag(kPRST); reset.SetValue(kRNON, packet.nonce_proof); if (packet.client_address.host().address_family() != IpAddressFamily::IP_UNSPEC) { // packet.client_address is non-empty. QuicSocketAddressCoder address_coder(packet.client_address); std::string serialized_address = address_coder.Encode(); if (serialized_address.empty()) { return nullptr; } reset.SetStringPiece(kCADR, serialized_address); } if (!packet.endpoint_id.empty()) { reset.SetStringPiece(kEPID, packet.endpoint_id); } const QuicData& reset_serialized = reset.GetSerialized(); size_t len = kPublicFlagsSize + packet.connection_id.length() + reset_serialized.length(); std::unique_ptr buffer(new char[len]); // Endianness is not a concern here, as writer is not going to write integers // or floating numbers. QuicDataWriter writer(len, buffer.get()); uint8_t flags = static_cast(PACKET_PUBLIC_FLAGS_RST | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); // This hack makes post-v33 public reset packet look like pre-v33 packets. flags |= static_cast(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(packet.connection_id)) { return nullptr; } if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { return nullptr; } return QuicMakeUnique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildIetfStatelessResetPacket( QuicConnectionId connection_id, QuicUint128 stateless_reset_token) { QUIC_DVLOG(1) << "Building IETF stateless reset packet."; size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset + sizeof(stateless_reset_token); std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); uint8_t type = 0; type |= FLAGS_FIXED_BIT; type |= FLAGS_SHORT_HEADER_RESERVED_1; type |= FLAGS_SHORT_HEADER_RESERVED_2; type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED, PACKET_1BYTE_PACKET_NUMBER); // Append type byte. if (!writer.WriteUInt8(type)) { return nullptr; } // Append random bytes. if (!writer.WriteRandomBytes(QuicRandom::GetInstance(), kMinRandomBytesLengthInStatelessReset)) { return nullptr; } // Append stateless reset token. if (!writer.WriteBytes(&stateless_reset_token, sizeof(stateless_reset_token))) { return nullptr; } return QuicMakeUnique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildVersionNegotiationPacket( QuicConnectionId connection_id, bool ietf_quic, const ParsedQuicVersionVector& versions) { if (ietf_quic) { return BuildIetfVersionNegotiationPacket(connection_id, versions); } DCHECK(!versions.empty()); size_t len = kPublicFlagsSize + connection_id.length() + versions.size() * kQuicVersionSize; std::unique_ptr buffer(new char[len]); // Endianness is not a concern here, version negotiation packet does not have // integers or floating numbers. QuicDataWriter writer(len, buffer.get()); uint8_t flags = static_cast( PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | // TODO(rch): Remove this QUIC_VERSION_32 is retired. PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(connection_id)) { return nullptr; } for (const ParsedQuicVersion& version : versions) { // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. if (!writer.WriteTag( QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { return nullptr; } } return QuicMakeUnique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildIetfVersionNegotiationPacket( QuicConnectionId connection_id, const ParsedQuicVersionVector& versions) { QUIC_DVLOG(1) << "Building IETF version negotiation packet."; DCHECK(!versions.empty()); size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + connection_id.length() + (versions.size() + 1) * kQuicVersionSize; std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); // TODO(fayang): Randomly select a value for the type. uint8_t type = static_cast(FLAGS_LONG_HEADER | VERSION_NEGOTIATION); if (!writer.WriteUInt8(type)) { return nullptr; } if (!writer.WriteUInt32(0)) { return nullptr; } if (!GetQuicReloadableFlag(quic_use_new_append_connection_id)) { if (!AppendIetfConnectionId(true, EmptyQuicConnectionId(), PACKET_0BYTE_CONNECTION_ID, connection_id, PACKET_8BYTE_CONNECTION_ID, &writer)) { return nullptr; } } else { QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 1, 2); if (!AppendIetfConnectionIdsNew(true, EmptyQuicConnectionId(), connection_id, &writer)) { return nullptr; } } for (const ParsedQuicVersion& version : versions) { // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. if (!writer.WriteTag( QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { return nullptr; } } return QuicMakeUnique(buffer.release(), len, true); } bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { QuicDataReader reader(packet.data(), packet.length()); bool packet_has_ietf_packet_header = false; if (infer_packet_header_type_from_version_) { packet_has_ietf_packet_header = version_.transport_version > QUIC_VERSION_43; } else if (!reader.IsDoneReading()) { uint8_t type = reader.PeekByte(); packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); } if (packet_has_ietf_packet_header) { QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; } visitor_->OnPacket(); QuicPacketHeader header; if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " << detailed_error_; DCHECK_NE("", detailed_error_); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!visitor_->OnUnauthenticatedPublicHeader(header)) { // The visitor suppresses further processing of the packet. return true; } if (perspective_ == Perspective::IS_SERVER && header.version_flag && header.version != version_) { if (!visitor_->OnProtocolVersionMismatch(header.version, header.form)) { RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); return true; } } bool rv; if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { QUIC_DVLOG(1) << ENDPOINT << "Received version negotiation packet"; rv = ProcessVersionNegotiationPacket(&reader, header); } else if (header.reset_flag) { rv = ProcessPublicResetPacket(&reader, header); } else if (packet.length() <= kMaxIncomingPacketSize) { // The optimized decryption algorithm implementations run faster when // operating on aligned memory. QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize]; if (packet_has_ietf_packet_header) { rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, QUIC_ARRAYSIZE(buffer)); } else { rv = ProcessDataPacket(&reader, &header, packet, buffer, QUIC_ARRAYSIZE(buffer)); } } else { std::unique_ptr large_buffer(new char[packet.length()]); if (packet_has_ietf_packet_header) { rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), packet.length()); } else { rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), packet.length()); } QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" << "than kMaxIncomingPacketSize. packet size:" << packet.length(); } return rv; } bool QuicFramer::ProcessVersionNegotiationPacket( QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionNegotiationPacket packet(header.destination_connection_id); // Try reading at least once to raise error if the packet is invalid. do { QuicVersionLabel version_label; if (!reader->ReadTag(&version_label)) { set_detailed_error("Unable to read supported version in negotiation."); RecordDroppedPacketReason( DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); } // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. version_label = QuicEndian::NetToHost32(version_label); packet.versions.push_back(ParseQuicVersionLabel(version_label)); } while (!reader->IsDoneReading()); visitor_->OnVersionNegotiationPacket(packet); return true; } bool QuicFramer::MaybeProcessIetfInitialRetryToken( QuicDataReader* encrypted_reader, QuicPacketHeader* header) { if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || header->form != IETF_QUIC_LONG_HEADER_PACKET || header->long_packet_type != INITIAL) { return true; } uint64_t retry_token_length = 0; header->retry_token_length_length = encrypted_reader->PeekVarInt62Length(); if (!encrypted_reader->ReadVarInt62(&retry_token_length)) { set_detailed_error("Unable to read INITIAL retry token length."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->retry_token = encrypted_reader->PeekRemainingPayload(); // Safety check to avoid spending ressources if malformed. // At this point header->retry_token contains the rest of the packet // so its length() is the amount of data remaining in the packet. if (retry_token_length > header->retry_token.length()) { set_detailed_error("INITIAL token length longer than packet."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } // Resize retry_token to make it only contain the retry token. header->retry_token.remove_suffix(header->retry_token.length() - retry_token_length); // Advance encrypted_reader by retry_token_length. uint8_t wasted_byte; for (uint64_t i = 0; i < retry_token_length; ++i) { if (!encrypted_reader->ReadUInt8(&wasted_byte)) { set_detailed_error("Unable to read INITIAL retry token."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } } return true; } // Seeks the current packet to check for a coalesced packet at the end. // If the IETF length field only spans part of the outer packet, // then there is a coalesced packet after this one. void QuicFramer::MaybeProcessCoalescedPacket( const QuicDataReader& encrypted_reader, uint64_t remaining_bytes_length, const QuicPacketHeader& header) { if (header.remaining_packet_length >= remaining_bytes_length) { // There is no coalesced packet. return; } QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload(); DCHECK_EQ(remaining_data.length(), remaining_bytes_length); const char* coalesced_data = remaining_data.data() + header.remaining_packet_length; uint64_t coalesced_data_length = remaining_bytes_length - header.remaining_packet_length; QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); QuicPacketHeader coalesced_header; if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { QUIC_PEER_BUG << ENDPOINT << "Failed to parse received coalesced header of length " << coalesced_data_length << ": " << QuicTextUtils::HexEncode(coalesced_data, coalesced_data_length) << " previous header was " << header; return; } if (coalesced_header.destination_connection_id != header.destination_connection_id || (coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET && coalesced_header.version != header.version)) { QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header " << coalesced_header << " previous header was " << header; return; } QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, /*owns_buffer=*/false); visitor_->OnCoalescedPacket(coalesced_packet); } bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, QuicPacketHeader* header) { if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || header->form != IETF_QUIC_LONG_HEADER_PACKET || (header->long_packet_type != INITIAL && header->long_packet_type != HANDSHAKE && header->long_packet_type != ZERO_RTT_PROTECTED)) { return true; } header->length_length = encrypted_reader->PeekVarInt62Length(); if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { set_detailed_error("Unable to read long header payload length."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); if (header->remaining_packet_length > remaining_bytes_length) { set_detailed_error("Long header payload length longer than packet."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, *header); if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { set_detailed_error("Length TruncateRemaining failed."); QUIC_BUG << "Length TruncateRemaining failed."; return RaiseError(QUIC_INVALID_PACKET_HEADER); } return true; } bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, QuicPacketHeader* header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length) { DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); DCHECK(!header->has_possible_stateless_reset_token); header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; header->retry_token = QuicStringPiece(); header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; header->remaining_packet_length = 0; if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && perspective_ == Perspective::IS_CLIENT) { // Peek possible stateless reset token. Will only be used on decryption // failure. QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload(); if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { header->has_possible_stateless_reset_token = true; memcpy(&header->possible_stateless_reset_token, &remaining.data()[remaining.length() - sizeof(header->possible_stateless_reset_token)], sizeof(header->possible_stateless_reset_token)); } } if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) { return false; } if (!MaybeProcessIetfLength(encrypted_reader, header)) { return false; } if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || header->long_packet_type != VERSION_NEGOTIATION) { // Process packet number. QuicPacketNumber base_packet_number; if (supports_multiple_packet_number_spaces_) { base_packet_number = largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)]; } else { base_packet_number = largest_packet_number_; } uint64_t full_packet_number; if (!ProcessAndCalculatePacketNumber( encrypted_reader, header->packet_number_length, base_packet_number, &full_packet_number)) { set_detailed_error("Unable to read packet number."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { if (IsIetfStatelessResetPacket(*header)) { // This is a stateless reset packet. QuicIetfStatelessResetPacket packet( *header, header->possible_stateless_reset_token); visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); return true; } RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); set_detailed_error("packet numbers cannot be 0."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->packet_number = QuicPacketNumber(full_packet_number); } // A nonce should only present in SHLO from the server to the client when // using QUIC crypto. if (header->form == IETF_QUIC_LONG_HEADER_PACKET && header->long_packet_type == ZERO_RTT_PROTECTED && perspective_ == Perspective::IS_CLIENT && version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { if (!encrypted_reader->ReadBytes( reinterpret_cast(last_nonce_.data()), last_nonce_.size())) { set_detailed_error("Unable to read nonce."); RecordDroppedPacketReason( DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->nonce = &last_nonce_; } else { header->nonce = nullptr; } if (!visitor_->OnUnauthenticatedHeader(*header)) { set_detailed_error( "Visitor asked to stop processing of unauthenticated header."); return false; } QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( version_.transport_version, packet, GetIncludedDestinationConnectionIdLength(*header), GetIncludedSourceConnectionIdLength(*header), header->version_flag, header->nonce != nullptr, header->packet_number_length, header->retry_token_length_length, header->retry_token.length(), header->length_length); size_t decrypted_length = 0; EncryptionLevel decrypted_level; if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, buffer_length, &decrypted_length, &decrypted_level)) { if (IsIetfStatelessResetPacket(*header)) { // This is a stateless reset packet. QuicIetfStatelessResetPacket packet( *header, header->possible_stateless_reset_token); visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); return true; } set_detailed_error("Unable to decrypt payload."); RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); return RaiseError(QUIC_DECRYPTION_FAILURE); } QuicDataReader reader(decrypted_buffer, decrypted_length); // Update the largest packet number after we have decrypted the packet // so we are confident is not attacker controlled. if (supports_multiple_packet_number_spaces_) { largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( decrypted_level)] .UpdateMax(header->packet_number); } else { largest_packet_number_.UpdateMax(header->packet_number); } if (!visitor_->OnPacketHeader(*header)) { RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); // The visitor suppresses further processing of the packet. return true; } if (packet.length() > kMaxIncomingPacketSize) { set_detailed_error("Packet too large."); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if (version_.transport_version == QUIC_VERSION_99) { if (!ProcessIetfFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } } else { if (!ProcessFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } } visitor_->OnPacketComplete(); return true; } bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, QuicPacketHeader* header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length) { if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process packet header. Stopping parsing. Error: " << detailed_error_; RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); return false; } QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( version_.transport_version, packet, GetIncludedDestinationConnectionIdLength(*header), GetIncludedSourceConnectionIdLength(*header), header->version_flag, header->nonce != nullptr, header->packet_number_length, header->retry_token_length_length, header->retry_token.length(), header->length_length); size_t decrypted_length = 0; EncryptionLevel decrypted_level; if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, buffer_length, &decrypted_length, &decrypted_level)) { RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); set_detailed_error("Unable to decrypt payload."); return RaiseError(QUIC_DECRYPTION_FAILURE); } QuicDataReader reader(decrypted_buffer, decrypted_length); // Update the largest packet number after we have decrypted the packet // so we are confident is not attacker controlled. if (supports_multiple_packet_number_spaces_) { largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( decrypted_level)] .UpdateMax(header->packet_number); } else { largest_packet_number_.UpdateMax(header->packet_number); } if (!visitor_->OnPacketHeader(*header)) { // The visitor suppresses further processing of the packet. return true; } if (packet.length() > kMaxIncomingPacketSize) { set_detailed_error("Packet too large."); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if (!ProcessFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } visitor_->OnPacketComplete(); return true; } bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, const QuicPacketHeader& header) { QuicPublicResetPacket packet(header.destination_connection_id); std::unique_ptr reset( CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); if (!reset.get()) { set_detailed_error("Unable to read reset message."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->tag() != kPRST) { set_detailed_error("Incorrect message tag."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { set_detailed_error("Unable to read nonce proof."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } // TODO(satyamshekhar): validate nonce to protect against DoS. QuicStringPiece address; if (reset->GetStringPiece(kCADR, &address)) { QuicSocketAddressCoder address_coder; if (address_coder.Decode(address.data(), address.length())) { packet.client_address = QuicSocketAddress(address_coder.ip(), address_coder.port()); } } QuicStringPiece endpoint_id; if (perspective_ == Perspective::IS_CLIENT && reset->GetStringPiece(kEPID, &endpoint_id)) { packet.endpoint_id = std::string(endpoint_id); packet.endpoint_id += '\0'; } visitor_->OnPublicResetPacket(packet); return true; } bool QuicFramer::IsIetfStatelessResetPacket( const QuicPacketHeader& header) const { QUIC_BUG_IF(header.has_possible_stateless_reset_token && perspective_ != Perspective::IS_CLIENT) << "has_possible_stateless_reset_token can only be true at client side."; return header.form == IETF_QUIC_SHORT_HEADER_PACKET && header.has_possible_stateless_reset_token && visitor_->IsValidStatelessResetToken( header.possible_stateless_reset_token); } bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { return encrypter_[level] != nullptr; } bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer, size_t* length_field_offset) { if (transport_version() > QUIC_VERSION_43) { return AppendIetfPacketHeader(header, writer, length_field_offset); } QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; uint8_t public_flags = 0; if (header.reset_flag) { public_flags |= PACKET_PUBLIC_FLAGS_RST; } if (header.version_flag) { public_flags |= PACKET_PUBLIC_FLAGS_VERSION; } public_flags |= GetPacketNumberFlags(header.packet_number_length) << kPublicHeaderSequenceNumberShift; if (header.nonce != nullptr) { DCHECK_EQ(Perspective::IS_SERVER, perspective_); public_flags |= PACKET_PUBLIC_FLAGS_NONCE; } DCHECK_EQ(CONNECTION_ID_ABSENT, header.source_connection_id_included); switch (header.destination_connection_id_included) { case CONNECTION_ID_ABSENT: if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { return false; } break; case CONNECTION_ID_PRESENT: QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( header.destination_connection_id, transport_version())) << "AppendPacketHeader: attempted to use connection ID " << header.destination_connection_id << " which is invalid with version " << QuicVersionToString(transport_version()); public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; if (perspective_ == Perspective::IS_CLIENT) { public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; } if (!writer->WriteUInt8(public_flags) || !writer->WriteConnectionId(header.destination_connection_id)) { return false; } break; } last_serialized_connection_id_ = header.destination_connection_id; if (header.version_flag) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionLabel version_label = CreateQuicVersionLabel(version_); // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { return false; } QUIC_DVLOG(1) << ENDPOINT << "label = '" << QuicVersionLabelToString(version_label) << "'"; } if (header.nonce != nullptr && !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { return false; } if (!AppendPacketNumber(header.packet_number_length, header.packet_number, writer)) { return false; } return true; } bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, QuicDataWriter* writer) { uint8_t type = 0; if (transport_version() > QUIC_VERSION_44) { if (header.version_flag) { type = static_cast( FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | LongHeaderTypeToOnWireValue(transport_version(), header.long_packet_type) | PacketNumberLengthToOnWireValue(transport_version(), header.packet_number_length)); } else { type = static_cast( FLAGS_FIXED_BIT | PacketNumberLengthToOnWireValue(transport_version(), header.packet_number_length)); } return writer->WriteUInt8(type); } if (header.version_flag) { type = static_cast( FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue( transport_version(), header.long_packet_type)); DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); } else { type |= FLAGS_SHORT_HEADER_RESERVED_1; type |= FLAGS_SHORT_HEADER_RESERVED_2; DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); type |= PacketNumberLengthToOnWireValue(transport_version(), header.packet_number_length); } return writer->WriteUInt8(type); } bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer, size_t* length_field_offset) { QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( header.destination_connection_id, transport_version())) << "AppendIetfPacketHeader: attempted to use connection ID " << header.destination_connection_id << " which is invalid with version " << QuicVersionToString(transport_version()); if (!AppendIetfHeaderTypeByte(header, writer)) { return false; } if (header.version_flag) { // Append version for long header. QuicVersionLabel version_label = CreateQuicVersionLabel(version_); // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { return false; } } // Append connection ID. if (!QuicUtils::VariableLengthConnectionIdAllowedForVersion( transport_version()) && !GetQuicReloadableFlag(quic_use_new_append_connection_id)) { if (!AppendIetfConnectionId( header.version_flag, header.destination_connection_id, GetIncludedDestinationConnectionIdLength(header), header.source_connection_id, GetIncludedSourceConnectionIdLength(header), writer)) { return false; } } else { QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 2, 2); if (!AppendIetfConnectionIdsNew( header.version_flag, header.destination_connection_id_included != CONNECTION_ID_ABSENT ? header.destination_connection_id : EmptyQuicConnectionId(), header.source_connection_id_included != CONNECTION_ID_ABSENT ? header.source_connection_id : EmptyQuicConnectionId(), writer)) { return false; } } last_serialized_connection_id_ = header.destination_connection_id; if (QuicVersionHasLongHeaderLengths(transport_version()) && header.version_flag) { if (header.long_packet_type == INITIAL) { // Write retry token length. if (!writer->WriteVarInt62(header.retry_token.length(), header.retry_token_length_length)) { return false; } // Write retry token. if (!header.retry_token.empty() && !writer->WriteStringPiece(header.retry_token)) { return false; } } if (length_field_offset != nullptr) { *length_field_offset = writer->length(); } // Add fake length to reserve two bytes to add length in later. writer->WriteVarInt62(256); } else if (length_field_offset != nullptr) { *length_field_offset = 0; } // Append packet number. if (!AppendPacketNumber(header.packet_number_length, header.packet_number, writer)) { return false; } if (!header.version_flag) { return true; } if (header.nonce != nullptr) { DCHECK(header.version_flag); DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); DCHECK_EQ(Perspective::IS_SERVER, perspective_); if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { return false; } } return true; } const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( uint32_t time_delta_us) { // The new time_delta might have wrapped to the next epoch, or it // might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the time closest to the previous // time. // // epoch_delta is the delta between epochs. A delta is 4 bytes of // microseconds. const uint64_t epoch_delta = UINT64_C(1) << 32; uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); // Wrapping is safe here because a wrapped value will not be ClosestTo below. uint64_t prev_epoch = epoch - epoch_delta; uint64_t next_epoch = epoch + epoch_delta; uint64_t time = ClosestTo( last_timestamp_.ToMicroseconds(), epoch + time_delta_us, ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, next_epoch + time_delta_us)); return QuicTime::Delta::FromMicroseconds(time); } uint64_t QuicFramer::CalculatePacketNumberFromWire( QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, uint64_t packet_number) const { // The new packet number might have wrapped to the next epoch, or // it might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the packet number closest to the // next expected packet number, the previous packet number plus 1. // epoch_delta is the delta between epochs the packet number was serialized // with, so the correct value is likely the same epoch as the last sequence // number or an adjacent epoch. if (!base_packet_number.IsInitialized()) { return packet_number; } const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); uint64_t next_packet_number = base_packet_number.ToUint64() + 1; uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); uint64_t prev_epoch = epoch - epoch_delta; uint64_t next_epoch = epoch + epoch_delta; return ClosestTo(next_packet_number, epoch + packet_number, ClosestTo(next_packet_number, prev_epoch + packet_number, next_epoch + packet_number)); } bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, bool packet_has_ietf_packet_header, QuicPacketHeader* header) { if (packet_has_ietf_packet_header) { return ProcessIetfPacketHeader(reader, header); } uint8_t public_flags; if (!reader->ReadBytes(&public_flags, 1)) { set_detailed_error("Unable to read public flags."); return false; } header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; if (validate_flags_ && !header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } if (header->reset_flag && header->version_flag) { set_detailed_error("Got version flag in reset packet"); return false; } switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: if (!reader->ReadConnectionId(&header->destination_connection_id, kQuicDefaultConnectionIdLength)) { set_detailed_error("Unable to read ConnectionId."); return false; } header->destination_connection_id_included = CONNECTION_ID_PRESENT; break; case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: header->destination_connection_id_included = CONNECTION_ID_ABSENT; header->destination_connection_id = last_serialized_connection_id_; break; } header->packet_number_length = ReadSequenceNumberLength( public_flags >> kPublicHeaderSequenceNumberShift); // Read the version only if the packet is from the client. // version flag from the server means version negotiation packet. if (header->version_flag && perspective_ == Perspective::IS_SERVER) { QuicVersionLabel version_label; if (!reader->ReadTag(&version_label)) { set_detailed_error("Unable to read protocol version."); return false; } // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. version_label = QuicEndian::NetToHost32(version_label); // If the version from the new packet is the same as the version of this // framer, then the public flags should be set to something we understand. // If not, this raises an error. last_version_label_ = version_label; ParsedQuicVersion version = ParseQuicVersionLabel(version_label); if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } header->version = version; } // A nonce should only be present in packets from the server to the client, // which are neither version negotiation nor public reset packets. if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && !(public_flags & PACKET_PUBLIC_FLAGS_RST) && // The nonce flag from a client is ignored and is assumed to be an older // client indicating an eight-byte connection ID. perspective_ == Perspective::IS_CLIENT) { if (!reader->ReadBytes(reinterpret_cast(last_nonce_.data()), last_nonce_.size())) { set_detailed_error("Unable to read nonce."); return false; } header->nonce = &last_nonce_; } else { header->nonce = nullptr; } return true; } // static QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( QuicTransportVersion version, QuicPacketNumber packet_number) { DCHECK(packet_number.IsInitialized()); if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { return PACKET_1BYTE_PACKET_NUMBER; } else if (packet_number < QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { return PACKET_2BYTE_PACKET_NUMBER; } else if (packet_number < QuicPacketNumber(UINT64_C(1) << (PACKET_4BYTE_PACKET_NUMBER * 8))) { return PACKET_4BYTE_PACKET_NUMBER; } else { return PACKET_6BYTE_PACKET_NUMBER; } } // static uint8_t QuicFramer::GetPacketNumberFlags( QuicPacketNumberLength packet_number_length) { switch (packet_number_length) { case PACKET_1BYTE_PACKET_NUMBER: return PACKET_FLAGS_1BYTE_PACKET; case PACKET_2BYTE_PACKET_NUMBER: return PACKET_FLAGS_2BYTE_PACKET; case PACKET_4BYTE_PACKET_NUMBER: return PACKET_FLAGS_4BYTE_PACKET; case PACKET_6BYTE_PACKET_NUMBER: case PACKET_8BYTE_PACKET_NUMBER: return PACKET_FLAGS_8BYTE_PACKET; default: QUIC_BUG << "Unreachable case statement."; return PACKET_FLAGS_8BYTE_PACKET; } } // static QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( const QuicAckFrame& frame) { AckFrameInfo new_ack_info; if (frame.packets.Empty()) { return new_ack_info; } // The first block is the last interval. It isn't encoded with the gap-length // encoding, so skip it. new_ack_info.first_block_length = frame.packets.LastIntervalLength(); auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); new_ack_info.max_block_length = PacketNumberIntervalLength(*itr); ++itr; // Don't do any more work after getting information for 256 ACK blocks; any // more can't be encoded anyway. for (; itr != frame.packets.rend() && new_ack_info.num_ack_blocks < std::numeric_limits::max(); previous_start = itr->min(), ++itr) { const auto& interval = *itr; const QuicPacketCount total_gap = previous_start - interval.max(); new_ack_info.num_ack_blocks += (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); new_ack_info.max_block_length = std::max( new_ack_info.max_block_length, PacketNumberIntervalLength(interval)); } return new_ack_info; } bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, QuicPacketHeader* header) { QuicPacketNumber base_packet_number; if (supports_multiple_packet_number_spaces_) { base_packet_number = largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)]; } else { base_packet_number = largest_packet_number_; } uint64_t full_packet_number; if (!ProcessAndCalculatePacketNumber( encrypted_reader, header->packet_number_length, base_packet_number, &full_packet_number)) { set_detailed_error("Unable to read packet number."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { set_detailed_error("packet numbers cannot be 0."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->packet_number = QuicPacketNumber(full_packet_number); if (!visitor_->OnUnauthenticatedHeader(*header)) { set_detailed_error( "Visitor asked to stop processing of unauthenticated header."); return false; } return true; } bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, QuicPacketHeader* header) { uint8_t type; if (!reader->ReadBytes(&type, 1)) { set_detailed_error("Unable to read type."); return false; } // Determine whether this is a long or short header. header->form = type & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET : IETF_QUIC_SHORT_HEADER_PACKET; if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { // Version is always present in long headers. header->version_flag = true; // Long header packets received by client must include 8-byte source // connection ID, and those received by server must include 8-byte // destination connection ID. header->destination_connection_id_included = perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT : CONNECTION_ID_PRESENT; header->source_connection_id_included = perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; // Read version tag. QuicVersionLabel version_label; if (!reader->ReadTag(&version_label)) { set_detailed_error("Unable to read protocol version."); return false; } // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. version_label = QuicEndian::NetToHost32(version_label); if (!version_label) { // Version label is 0 indicating this is a version negotiation packet. header->long_packet_type = VERSION_NEGOTIATION; } else { header->version = ParseQuicVersionLabel(version_label); if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) { if (header->version.transport_version > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in long header."); return false; } if (!GetLongHeaderType(header->version.transport_version, type, &header->long_packet_type)) { set_detailed_error("Illegal long header type value."); return false; } header->packet_number_length = GetLongHeaderPacketNumberLength( header->version.transport_version, type); } } if (header->long_packet_type != VERSION_NEGOTIATION) { // Do not save version of version negotiation packet. last_version_label_ = version_label; } QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " << QuicUtils::QuicLongHeaderTypetoString( header->long_packet_type); return true; } QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; // Version is not present in short headers. header->version_flag = false; // Connection ID length depends on the perspective. Client does not expect // destination connection ID, and server expects destination connection ID. header->destination_connection_id_included = perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT : CONNECTION_ID_PRESENT; header->source_connection_id_included = CONNECTION_ID_ABSENT; if (infer_packet_header_type_from_version_ && transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in short header."); return false; } if (!GetShortHeaderPacketNumberLength(transport_version(), type, infer_packet_header_type_from_version_, &header->packet_number_length)) { set_detailed_error("Illegal short header type value."); return false; } QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; return true; } bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, QuicPacketHeader* header) { if (!ProcessIetfHeaderTypeByte(reader, header)) { return false; } uint8_t destination_connection_id_length = header->destination_connection_id_included == CONNECTION_ID_PRESENT ? expected_connection_id_length_ : 0; uint8_t source_connection_id_length = header->source_connection_id_included == CONNECTION_ID_PRESENT ? expected_connection_id_length_ : 0; if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { // Read and validate connection ID length. uint8_t connection_id_lengths_byte; if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { set_detailed_error("Unable to read ConnectionId length."); return false; } uint8_t dcil = (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; if (dcil != 0) { dcil += kConnectionIdLengthAdjustment; } if (should_update_expected_connection_id_length_ && expected_connection_id_length_ != dcil) { QUIC_DVLOG(1) << ENDPOINT << "Updating expected_connection_id_length: " << static_cast(expected_connection_id_length_) << " -> " << static_cast(dcil); expected_connection_id_length_ = dcil; } uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; if (scil != 0) { scil += kConnectionIdLengthAdjustment; } if ((dcil != destination_connection_id_length || scil != source_connection_id_length) && !should_update_expected_connection_id_length_ && !QuicUtils::VariableLengthConnectionIdAllowedForVersion( header->version.transport_version)) { // TODO(dschinazi): use the framer's version once the // OnProtocolVersionMismatch call is moved to before this is run. QUIC_DVLOG(1) << "dcil: " << static_cast(dcil) << ", scil: " << static_cast(scil); set_detailed_error("Invalid ConnectionId length."); return false; } destination_connection_id_length = dcil; source_connection_id_length = scil; } DCHECK_LE(destination_connection_id_length, kQuicMaxConnectionIdLength); DCHECK_LE(source_connection_id_length, kQuicMaxConnectionIdLength); // Read connection ID. if (!reader->ReadConnectionId(&header->destination_connection_id, destination_connection_id_length)) { set_detailed_error("Unable to read Destination ConnectionId."); return false; } if (!reader->ReadConnectionId(&header->source_connection_id, source_connection_id_length)) { set_detailed_error("Unable to read Source ConnectionId."); return false; } if (header->source_connection_id_included == CONNECTION_ID_PRESENT) { // Set destination connection ID to source connection ID. DCHECK_EQ(EmptyQuicConnectionId(), header->destination_connection_id); header->destination_connection_id = header->source_connection_id; } else if (header->destination_connection_id_included == CONNECTION_ID_ABSENT) { header->destination_connection_id = last_serialized_connection_id_; } return true; } bool QuicFramer::ProcessAndCalculatePacketNumber( QuicDataReader* reader, QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, uint64_t* packet_number) { uint64_t wire_packet_number; if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { return false; } // TODO(ianswett): Explore the usefulness of trying multiple packet numbers // in case the first guess is incorrect. *packet_number = CalculatePacketNumberFromWire( packet_number_length, base_packet_number, wire_packet_number); return true; } bool QuicFramer::ProcessFrameData(QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_NE(QUIC_VERSION_99, version_.transport_version) << "Version 99 negotiated, but not processing frames as version 99."; if (reader->IsDoneReading()) { set_detailed_error("Packet has no frames."); return RaiseError(QUIC_MISSING_PAYLOAD); } while (!reader->IsDoneReading()) { uint8_t frame_type; if (!reader->ReadBytes(&frame_type, 1)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } const uint8_t special_mask = transport_version() <= QUIC_VERSION_44 ? kQuicFrameTypeBrokenMask : kQuicFrameTypeSpecialMask; if (frame_type & special_mask) { // Stream Frame if (frame_type & kQuicFrameTypeStreamMask) { QuicStreamFrame frame; if (!ProcessStreamFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_STREAM_DATA); } if (!visitor_->OnStreamFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } // Ack Frame if (frame_type & kQuicFrameTypeAckMask) { if (!ProcessAckFrame(reader, frame_type)) { return RaiseError(QUIC_INVALID_ACK_DATA); } continue; } // This was a special frame type that did not match any // of the known ones. Error. set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } switch (frame_type) { case PADDING_FRAME: { QuicPaddingFrame frame; ProcessPaddingFrame(reader, &frame); if (!visitor_->OnPaddingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case RST_STREAM_FRAME: { QuicRstStreamFrame frame; if (!ProcessRstStreamFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } if (!visitor_->OnRstStreamFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case CONNECTION_CLOSE_FRAME: { QuicConnectionCloseFrame frame; if (!ProcessConnectionCloseFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } if (!visitor_->OnConnectionCloseFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case GOAWAY_FRAME: { QuicGoAwayFrame goaway_frame; if (!ProcessGoAwayFrame(reader, &goaway_frame)) { return RaiseError(QUIC_INVALID_GOAWAY_DATA); } if (!visitor_->OnGoAwayFrame(goaway_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case WINDOW_UPDATE_FRAME: { QuicWindowUpdateFrame window_update_frame; if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); } if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case BLOCKED_FRAME: { QuicBlockedFrame blocked_frame; if (!ProcessBlockedFrame(reader, &blocked_frame)) { return RaiseError(QUIC_INVALID_BLOCKED_DATA); } if (!visitor_->OnBlockedFrame(blocked_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case STOP_WAITING_FRAME: { QuicStopWaitingFrame stop_waiting_frame; if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); } if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case PING_FRAME: { // Ping has no payload. QuicPingFrame ping_frame; if (!visitor_->OnPingFrame(ping_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case IETF_EXTENSION_MESSAGE_NO_LENGTH: QUIC_FALLTHROUGH_INTENDED; case IETF_EXTENSION_MESSAGE: { QuicMessageFrame message_frame; if (!ProcessMessageFrame(reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, &message_frame)) { return RaiseError(QUIC_INVALID_MESSAGE_DATA); } if (!visitor_->OnMessageFrame(message_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case CRYPTO_FRAME: { if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { set_detailed_error("Illegal frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } QuicCryptoFrame frame; if (!ProcessCryptoFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } if (!visitor_->OnCryptoFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } default: set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } } return true; } bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_EQ(QUIC_VERSION_99, version_.transport_version) << "Attempt to process frames as IETF frames but version is " << version_.transport_version << ", not 99."; if (reader->IsDoneReading()) { set_detailed_error("Packet has no frames."); return RaiseError(QUIC_MISSING_PAYLOAD); } while (!reader->IsDoneReading()) { uint64_t frame_type; // Will be the number of bytes into which frame_type was encoded. size_t encoded_bytes = reader->BytesRemaining(); if (!reader->ReadVarInt62(&frame_type)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } // Is now the number of bytes into which the frame type was encoded. encoded_bytes -= reader->BytesRemaining(); // Check that the frame type is minimally encoded. if (encoded_bytes != static_cast(QuicDataWriter::GetVarInt62Len(frame_type))) { // The frame type was not minimally encoded. set_detailed_error("Frame type not minimally encoded."); return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); } if (IS_IETF_STREAM_FRAME(frame_type)) { QuicStreamFrame frame; if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_STREAM_DATA); } if (!visitor_->OnStreamFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } } else { switch (frame_type) { case IETF_PADDING: { QuicPaddingFrame frame; ProcessPaddingFrame(reader, &frame); if (!visitor_->OnPaddingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_RST_STREAM: { QuicRstStreamFrame frame; if (!ProcessIetfResetStreamFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } if (!visitor_->OnRstStreamFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_APPLICATION_CLOSE: case IETF_CONNECTION_CLOSE: { QuicConnectionCloseFrame frame; if (!ProcessIetfConnectionCloseFrame( reader, (frame_type == IETF_CONNECTION_CLOSE) ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE : IETF_QUIC_APPLICATION_CONNECTION_CLOSE, &frame)) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } if (!visitor_->OnConnectionCloseFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_DATA: { QuicWindowUpdateFrame frame; if (!ProcessMaxDataFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); } // TODO(fkastenholz): Or should we create a new visitor function, // OnMaxDataFrame()? if (!visitor_->OnWindowUpdateFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_STREAM_DATA: { QuicWindowUpdateFrame frame; if (!ProcessMaxStreamDataFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); } // TODO(fkastenholz): Or should we create a new visitor function, // OnMaxStreamDataFrame()? if (!visitor_->OnWindowUpdateFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_STREAMS_BIDIRECTIONAL: case IETF_MAX_STREAMS_UNIDIRECTIONAL: { QuicMaxStreamIdFrame frame; if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { return RaiseError(QUIC_MAX_STREAM_ID_DATA); } QUIC_CODE_COUNT_N(max_stream_id_received, 1, 2); if (!visitor_->OnMaxStreamIdFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_PING: { // Ping has no payload. QuicPingFrame ping_frame; if (!visitor_->OnPingFrame(ping_frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_BLOCKED: { QuicBlockedFrame frame; if (!ProcessIetfBlockedFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_BLOCKED_DATA); } if (!visitor_->OnBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STREAM_BLOCKED: { QuicBlockedFrame frame; if (!ProcessStreamBlockedFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); } if (!visitor_->OnBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { QuicStreamIdBlockedFrame frame; if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { return RaiseError(QUIC_STREAM_ID_BLOCKED_DATA); } QUIC_CODE_COUNT_N(stream_id_blocked_received, 1, 2); if (!visitor_->OnStreamIdBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_NEW_CONNECTION_ID: { QuicNewConnectionIdFrame frame; if (!ProcessNewConnectionIdFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); } if (!visitor_->OnNewConnectionIdFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_RETIRE_CONNECTION_ID: { QuicRetireConnectionIdFrame frame; if (!ProcessRetireConnectionIdFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); } if (!visitor_->OnRetireConnectionIdFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_NEW_TOKEN: { QuicNewTokenFrame frame; if (!ProcessNewTokenFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_NEW_TOKEN); } if (!visitor_->OnNewTokenFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STOP_SENDING: { QuicStopSendingFrame frame; if (!ProcessStopSendingFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); } if (!visitor_->OnStopSendingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_ACK_ECN: case IETF_ACK: { QuicAckFrame frame; if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_ACK_DATA); } break; } case IETF_PATH_CHALLENGE: { QuicPathChallengeFrame frame; if (!ProcessPathChallengeFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); } if (!visitor_->OnPathChallengeFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_PATH_RESPONSE: { QuicPathResponseFrame frame; if (!ProcessPathResponseFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); } if (!visitor_->OnPathResponseFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_EXTENSION_MESSAGE_NO_LENGTH: QUIC_FALLTHROUGH_INTENDED; case IETF_EXTENSION_MESSAGE: { QuicMessageFrame message_frame; if (!ProcessMessageFrame( reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, &message_frame)) { return RaiseError(QUIC_INVALID_MESSAGE_DATA); } if (!visitor_->OnMessageFrame(message_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_CRYPTO: { QuicCryptoFrame frame; if (!ProcessCryptoFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } if (!visitor_->OnCryptoFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } default: set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } } } return true; } namespace { // Create a mask that sets the last |num_bits| to 1 and the rest to 0. inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { return (1u << num_bits) - 1; } // Extract |num_bits| from |flags| offset by |offset|. uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { return (flags >> offset) & GetMaskFromNumBits(num_bits); } // Extract the bit at position |offset| from |flags| as a bool. bool ExtractBit(uint8_t flags, uint8_t offset) { return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; } // Set |num_bits|, offset by |offset| to |val| in |flags|. void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { DCHECK_LE(val, GetMaskFromNumBits(num_bits)); *flags |= val << offset; } // Set the bit at position |offset| to |val| in |flags|. void SetBit(uint8_t* flags, bool val, uint8_t offset) { SetBits(flags, val ? 1 : 0, 1, offset); } } // namespace bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, uint8_t frame_type, QuicStreamFrame* frame) { uint8_t stream_flags = frame_type; uint8_t stream_id_length = 0; uint8_t offset_length = 4; bool has_data_length = true; stream_flags &= ~kQuicFrameTypeStreamMask; // Read from right to left: StreamID, Offset, Data Length, Fin. stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; stream_flags >>= kQuicStreamIdShift; offset_length = (stream_flags & kQuicStreamOffsetMask); // There is no encoding for 1 byte, only 0 and 2 through 8. if (offset_length > 0) { offset_length += 1; } stream_flags >>= kQuicStreamShift; has_data_length = (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; stream_flags >>= kQuicStreamDataLengthShift; frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; uint64_t stream_id; if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } frame->stream_id = static_cast(stream_id); if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { set_detailed_error("Unable to read offset."); return false; } // TODO(ianswett): Don't use QuicStringPiece as an intermediary. QuicStringPiece data; if (has_data_length) { if (!reader->ReadStringPiece16(&data)) { set_detailed_error("Unable to read frame data."); return false; } } else { if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { set_detailed_error("Unable to read frame data."); return false; } } frame->data_buffer = data.data(); frame->data_length = static_cast(data.length()); return true; } bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, uint8_t frame_type, QuicStreamFrame* frame) { // Read stream id from the frame. It's always present. if (!reader->ReadVarIntStreamId(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } // If we have a data offset, read it. If not, set to 0. if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Unable to read stream data offset."); return false; } } else { // no offset in the frame, ensure it's 0 in the Frame. frame->offset = 0; } // If we have a data length, read it. If not, set to 0. if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { QuicIetfStreamDataLength length; if (!reader->ReadVarInt62(&length)) { set_detailed_error("Unable to read stream data length."); return false; } if (length > 0xffff) { set_detailed_error("Stream data length is too large."); return false; } frame->data_length = length; } else { // no length in the frame, it is the number of bytes remaining in the // packet. frame->data_length = reader->BytesRemaining(); } if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { frame->fin = true; } else { frame->fin = false; } // TODO(ianswett): Don't use QuicStringPiece as an intermediary. QuicStringPiece data; if (!reader->ReadStringPiece(&data, frame->data_length)) { set_detailed_error("Unable to read frame data."); return false; } frame->data_buffer = data.data(); frame->data_length = static_cast(data.length()); return true; } bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, QuicCryptoFrame* frame) { if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Unable to read crypto data offset."); return false; } uint64_t len; if (!reader->ReadVarInt62(&len) || len > std::numeric_limits::max()) { set_detailed_error("Invalid data length."); return false; } frame->data_length = len; // TODO(ianswett): Don't use QuicStringPiece as an intermediary. QuicStringPiece data; if (!reader->ReadStringPiece(&data, frame->data_length)) { set_detailed_error("Unable to read frame data."); return false; } frame->data_buffer = data.data(); return true; } bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { const bool has_ack_blocks = ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); uint8_t num_ack_blocks = 0; uint8_t num_received_packets = 0; // Determine the two lengths from the frame type: largest acked length, // ack block length. const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( version_.transport_version, ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset)); const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( version_.transport_version, ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kLargestAckedOffset)); uint64_t largest_acked; if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { set_detailed_error("Unable to read largest acked."); return false; } if (largest_acked < first_sending_packet_number_.ToUint64()) { // Connection always sends packet starting from kFirstSendingPacketNumber > // 0, peer has observed an unsent packet. set_detailed_error("Largest acked is 0."); return false; } uint64_t ack_delay_time_us; if (!reader->ReadUFloat16(&ack_delay_time_us)) { set_detailed_error("Unable to read ack delay time."); return false; } if (!visitor_->OnAckFrameStart( QuicPacketNumber(largest_acked), ack_delay_time_us == kUFloat16MaxValue ? QuicTime::Delta::Infinite() : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { // The visitor suppresses further processing of the packet. Although this is // not a parsing error, returns false as this is in middle of processing an // ack frame, set_detailed_error("Visitor suppresses further processing of ack frame."); return false; } if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { set_detailed_error("Unable to read num of ack blocks."); return false; } uint64_t first_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { set_detailed_error("Unable to read first ack block length."); return false; } if (first_block_length == 0) { set_detailed_error("First block length is zero."); return false; } bool first_ack_block_underflow = first_block_length > largest_acked + 1; if (first_block_length + first_sending_packet_number_.ToUint64() > largest_acked + 1) { first_ack_block_underflow = true; } if (first_ack_block_underflow) { set_detailed_error(QuicStrCat("Underflow with first ack block length ", first_block_length, " largest acked is ", largest_acked, ".") .c_str()); return false; } uint64_t first_received = largest_acked + 1 - first_block_length; if (!visitor_->OnAckRange(QuicPacketNumber(first_received), QuicPacketNumber(largest_acked + 1))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ack frame, set_detailed_error("Visitor suppresses further processing of ack frame."); return false; } if (num_ack_blocks > 0) { for (size_t i = 0; i < num_ack_blocks; ++i) { uint8_t gap = 0; if (!reader->ReadUInt8(&gap)) { set_detailed_error("Unable to read gap to next ack block."); return false; } uint64_t current_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { set_detailed_error("Unable to ack block length."); return false; } bool ack_block_underflow = first_received < gap + current_block_length; if (first_received < gap + current_block_length + first_sending_packet_number_.ToUint64()) { ack_block_underflow = true; } if (ack_block_underflow) { set_detailed_error( QuicStrCat("Underflow with ack block length ", current_block_length, ", end of block is ", first_received - gap, ".") .c_str()); return false; } first_received -= (gap + current_block_length); if (current_block_length > 0) { if (!visitor_->OnAckRange( QuicPacketNumber(first_received), QuicPacketNumber(first_received) + current_block_length)) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ack frame, set_detailed_error( "Visitor suppresses further processing of ack frame."); return false; } } } } if (!reader->ReadUInt8(&num_received_packets)) { set_detailed_error("Unable to read num received packets."); return false; } if (!ProcessTimestampsInAckFrame(num_received_packets, QuicPacketNumber(largest_acked), reader)) { return false; } // Done processing the ACK frame. return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received)); } bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, QuicPacketNumber largest_acked, QuicDataReader* reader) { if (num_received_packets == 0) { return true; } uint8_t delta_from_largest_observed; if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error("Unable to read sequence delta in received packets."); return false; } if (largest_acked.ToUint64() <= delta_from_largest_observed) { set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ", delta_from_largest_observed, ", largest_acked: ", largest_acked.ToUint64()) .c_str()); return false; } // Time delta from the framer creation. uint32_t time_delta_us; if (!reader->ReadUInt32(&time_delta_us)) { set_detailed_error("Unable to read time delta in received packets."); return false; } QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; if (process_timestamps_) { last_timestamp_ = CalculateTimestampFromWire(time_delta_us); visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); } for (uint8_t i = 1; i < num_received_packets; ++i) { if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error("Unable to read sequence delta in received packets."); return false; } if (largest_acked.ToUint64() <= delta_from_largest_observed) { set_detailed_error( QuicStrCat("delta_from_largest_observed too high: ", delta_from_largest_observed, ", largest_acked: ", largest_acked.ToUint64()) .c_str()); return false; } seq_num = largest_acked - delta_from_largest_observed; // Time delta from the previous timestamp. uint64_t incremental_time_delta_us; if (!reader->ReadUFloat16(&incremental_time_delta_us)) { set_detailed_error( "Unable to read incremental time delta in received packets."); return false; } if (process_timestamps_) { last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( incremental_time_delta_us); visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); } } return true; } bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, uint64_t frame_type, QuicAckFrame* ack_frame) { uint64_t largest_acked; if (!reader->ReadVarInt62(&largest_acked)) { set_detailed_error("Unable to read largest acked."); return false; } if (largest_acked < first_sending_packet_number_.ToUint64()) { // Connection always sends packet starting from kFirstSendingPacketNumber > // 0, peer has observed an unsent packet. set_detailed_error("Largest acked is 0."); return false; } ack_frame->largest_acked = static_cast(largest_acked); uint64_t ack_delay_time_in_us; if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { set_detailed_error("Unable to read ack delay time."); return false; } // TODO(fkastenholz) when we get real IETF QUIC, need to get // the currect shift from the transport parameters. if (ack_delay_time_in_us == kVarInt62MaxValue) { ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); } else { ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift); ack_frame->ack_delay_time = QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); } if (frame_type == IETF_ACK_ECN) { ack_frame->ecn_counters_populated = true; if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { set_detailed_error("Unable to read ack ect_0_count."); return false; } if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { set_detailed_error("Unable to read ack ect_1_count."); return false; } if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { set_detailed_error("Unable to read ack ecn_ce_count."); return false; } } else { ack_frame->ecn_counters_populated = false; ack_frame->ect_0_count = 0; ack_frame->ect_1_count = 0; ack_frame->ecn_ce_count = 0; } if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), ack_frame->ack_delay_time)) { // The visitor suppresses further processing of the packet. Although this is // not a parsing error, returns false as this is in middle of processing an // ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } // Get number of ACK blocks from the packet. uint64_t ack_block_count; if (!reader->ReadVarInt62(&ack_block_count)) { set_detailed_error("Unable to read ack block count."); return false; } // There always is a first ACK block, which is the (number of packets being // acked)-1, up to and including the packet at largest_acked. Therefore if the // value is 0, then only largest is acked. If it is 1, then largest-1, // largest] are acked, etc uint64_t ack_block_value; if (!reader->ReadVarInt62(&ack_block_value)) { set_detailed_error("Unable to read first ack block length."); return false; } // Calculate the packets being acked in the first block. // +1 because AddRange implementation requires [low,high) uint64_t block_high = largest_acked + 1; uint64_t block_low = largest_acked - ack_block_value; // ack_block_value is the number of packets preceding the // largest_acked packet which are in the block being acked. Thus, // its maximum value is largest_acked-1. Test this, reporting an // error if the value is wrong. if (ack_block_value + first_sending_packet_number_.ToUint64() > largest_acked) { set_detailed_error(QuicStrCat("Underflow with first ack block length ", ack_block_value + 1, " largest acked is ", largest_acked, ".") .c_str()); return false; } if (!visitor_->OnAckRange(QuicPacketNumber(block_low), QuicPacketNumber(block_high))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } while (ack_block_count != 0) { uint64_t gap_block_value; // Get the sizes of the gap and ack blocks, if (!reader->ReadVarInt62(&gap_block_value)) { set_detailed_error("Unable to read gap block value."); return false; } // It's an error if the gap is larger than the space from packet // number 0 to the start of the block that's just been acked, PLUS // there must be space for at least 1 packet to be acked. For // example, if block_low is 10 and gap_block_value is 9, it means // the gap block is 10 packets long, leaving no room for a packet // to be acked. Thus, gap_block_value+2 can not be larger than // block_low. // The test is written this way to detect wrap-arounds. if ((gap_block_value + 2) > block_low) { set_detailed_error( QuicStrCat("Underflow with gap block length ", gap_block_value + 1, " previous ack block start is ", block_low, ".") .c_str()); return false; } // Adjust block_high to be the top of the next ack block. // There is a gap of |gap_block_value| packets between the bottom // of ack block N and top of block N+1. Note that gap_block_value // is he size of the gap minus 1 (per the QUIC protocol), and // block_high is the packet number of the first packet of the gap // (per the implementation of OnAckRange/AddAckRange, below). block_high = block_low - 1 - gap_block_value; if (!reader->ReadVarInt62(&ack_block_value)) { set_detailed_error("Unable to read ack block value."); return false; } if (ack_block_value + first_sending_packet_number_.ToUint64() > (block_high - 1)) { set_detailed_error( QuicStrCat("Underflow with ack block length ", ack_block_value + 1, " latest ack block end is ", block_high - 1, ".") .c_str()); return false; } // Calculate the low end of the new nth ack block. The +1 is // because the encoded value is the blocksize-1. block_low = block_high - 1 - ack_block_value; if (!visitor_->OnAckRange(QuicPacketNumber(block_low), QuicPacketNumber(block_high))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } // Another one done. ack_block_count--; } return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low)); } bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, const QuicPacketHeader& header, QuicStopWaitingFrame* stop_waiting) { uint64_t least_unacked_delta; if (!reader->ReadBytesToUInt64(header.packet_number_length, &least_unacked_delta)) { set_detailed_error("Unable to read least unacked delta."); return false; } if (header.packet_number.ToUint64() <= least_unacked_delta) { set_detailed_error("Invalid unacked delta."); return false; } stop_waiting->least_unacked = header.packet_number - least_unacked_delta; return true; } bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, QuicRstStreamFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } if (error_code >= QUIC_STREAM_LAST_ERROR) { // Ignore invalid stream error code if any. error_code = QUIC_STREAM_LAST_ERROR; } frame->error_code = static_cast(error_code); return true; } bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, QuicConnectionCloseFrame* frame) { uint32_t error_code; frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read connection close error code."); return false; } if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } frame->quic_error_code = static_cast(error_code); QuicStringPiece error_details; if (!reader->ReadStringPiece16(&error_details)) { set_detailed_error("Unable to read connection close error details."); return false; } frame->error_details = std::string(error_details); return true; } bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, QuicGoAwayFrame* frame) { uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read go away error code."); return false; } if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } frame->error_code = static_cast(error_code); uint32_t stream_id; if (!reader->ReadUInt32(&stream_id)) { set_detailed_error("Unable to read last good stream id."); return false; } frame->last_good_stream_id = static_cast(stream_id); QuicStringPiece reason_phrase; if (!reader->ReadStringPiece16(&reason_phrase)) { set_detailed_error("Unable to read goaway reason."); return false; } frame->reason_phrase = std::string(reason_phrase); return true; } bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read window byte_offset."); return false; } return true; } bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { DCHECK_NE(QUIC_VERSION_99, version_.transport_version) << "Attempt to process non-IETF frames but version is 99"; if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } return true; } void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, QuicPaddingFrame* frame) { // Type byte has been read. frame->num_padding_bytes = 1; uint8_t next_byte; while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { reader->ReadBytes(&next_byte, 1); DCHECK_EQ(0x00, next_byte); ++frame->num_padding_bytes; } } bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, bool no_message_length, QuicMessageFrame* frame) { if (no_message_length) { QuicStringPiece remaining(reader->ReadRemainingPayload()); frame->data = remaining.data(); frame->message_length = remaining.length(); return true; } uint64_t message_length; if (!reader->ReadVarInt62(&message_length)) { set_detailed_error("Unable to read message length"); return false; } QuicStringPiece message_piece; if (!reader->ReadStringPiece(&message_piece, message_length)) { set_detailed_error("Unable to read message data"); return false; } frame->data = message_piece.data(); frame->message_length = message_length; return true; } // static QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( QuicTransportVersion version, const QuicEncryptedPacket& encrypted, QuicConnectionIdLength destination_connection_id_length, QuicConnectionIdLength source_connection_id_length, bool includes_version, bool includes_diversification_nonce, QuicPacketNumberLength packet_number_length, QuicVariableLengthIntegerLength retry_token_length_length, uint64_t retry_token_length, QuicVariableLengthIntegerLength length_length) { // TODO(ianswett): This is identical to QuicData::AssociatedData. return QuicStringPiece( encrypted.data(), GetStartOfEncryptedData(version, destination_connection_id_length, source_connection_id_length, includes_version, includes_diversification_nonce, packet_number_length, retry_token_length_length, retry_token_length, length_length)); } void QuicFramer::SetDecrypter(EncryptionLevel level, std::unique_ptr decrypter) { DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS); DCHECK_GE(level, decrypter_level_); DCHECK(!version_.KnowsWhichDecrypterToUse()); decrypter_[decrypter_level_] = nullptr; decrypter_[level] = std::move(decrypter); decrypter_level_ = level; } void QuicFramer::SetAlternativeDecrypter( EncryptionLevel level, std::unique_ptr decrypter, bool latch_once_used) { DCHECK_NE(level, decrypter_level_); DCHECK(!version_.KnowsWhichDecrypterToUse()); if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { decrypter_[alternative_decrypter_level_] = nullptr; } decrypter_[level] = std::move(decrypter); alternative_decrypter_level_ = level; alternative_decrypter_latch_ = latch_once_used; } void QuicFramer::InstallDecrypter(EncryptionLevel level, std::unique_ptr decrypter) { DCHECK(version_.KnowsWhichDecrypterToUse()); decrypter_[level] = std::move(decrypter); } void QuicFramer::RemoveDecrypter(EncryptionLevel level) { DCHECK(version_.KnowsWhichDecrypterToUse()); decrypter_[level] = nullptr; } const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const { DCHECK(version_.KnowsWhichDecrypterToUse()); return decrypter_[level].get(); } const QuicDecrypter* QuicFramer::decrypter() const { return decrypter_[decrypter_level_].get(); } const QuicDecrypter* QuicFramer::alternative_decrypter() const { if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) { return nullptr; } return decrypter_[alternative_decrypter_level_].get(); } void QuicFramer::SetEncrypter(EncryptionLevel level, std::unique_ptr encrypter) { DCHECK_GE(level, 0); DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); encrypter_[level] = std::move(encrypter); } size_t QuicFramer::EncryptInPlace(EncryptionLevel level, QuicPacketNumber packet_number, size_t ad_len, size_t total_len, size_t buffer_len, char* buffer) { DCHECK(packet_number.IsInitialized()); if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to encrypt in place without encrypter at level " << QuicUtils::EncryptionLevelToString(level); RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( packet_number.ToUint64(), QuicStringPiece(buffer, ad_len), // Associated data QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext buffer + ad_len, // Destination buffer &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } size_t QuicFramer::EncryptPayload(EncryptionLevel level, QuicPacketNumber packet_number, const QuicPacket& packet, char* buffer, size_t buffer_len) { DCHECK(packet_number.IsInitialized()); if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level " << QuicUtils::EncryptionLevelToString(level); RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } QuicStringPiece associated_data = packet.AssociatedData(version_.transport_version); // Copy in the header, because the encrypter only populates the encrypted // plaintext content. const size_t ad_len = associated_data.length(); memmove(buffer, associated_data.data(), ad_len); // Encrypt the plaintext into the buffer. size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( packet_number.ToUint64(), associated_data, packet.Plaintext(version_.transport_version), buffer + ad_len, &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, size_t plaintext_size) const { return encrypter_[level]->GetCiphertextSize(plaintext_size); } size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { // In order to keep the code simple, we don't have the current encryption // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. size_t min_plaintext_size = ciphertext_size; for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) { if (encrypter_[i] != nullptr) { size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); if (size < min_plaintext_size) { min_plaintext_size = size; } } } return min_plaintext_size; } bool QuicFramer::DecryptPayload(QuicStringPiece encrypted, QuicStringPiece associated_data, const QuicPacketHeader& header, char* decrypted_buffer, size_t buffer_length, size_t* decrypted_length, EncryptionLevel* decrypted_level) { EncryptionLevel level = decrypter_level_; QuicDecrypter* decrypter = decrypter_[level].get(); QuicDecrypter* alternative_decrypter = nullptr; if (version().KnowsWhichDecrypterToUse()) { level = GetEncryptionLevel(header); decrypter = decrypter_[level].get(); if (decrypter == nullptr) { return false; } if (level == ENCRYPTION_ZERO_RTT && perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) { decrypter->SetDiversificationNonce(*header.nonce); } } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { alternative_decrypter = decrypter_[alternative_decrypter_level_].get(); } DCHECK(decrypter != nullptr); bool success = decrypter->DecryptPacket( header.packet_number.ToUint64(), associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); if (success) { visitor_->OnDecryptedPacket(level); *decrypted_level = level; } else if (alternative_decrypter != nullptr) { if (header.nonce != nullptr) { DCHECK_EQ(perspective_, Perspective::IS_CLIENT); alternative_decrypter->SetDiversificationNonce(*header.nonce); } bool try_alternative_decryption = true; if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { if (perspective_ == Perspective::IS_CLIENT) { if (header.nonce == nullptr) { // Can not use INITIAL decryption without a diversification nonce. try_alternative_decryption = false; } } else { DCHECK(header.nonce == nullptr); } } if (try_alternative_decryption) { success = alternative_decrypter->DecryptPacket( header.packet_number.ToUint64(), associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); } if (success) { visitor_->OnDecryptedPacket(alternative_decrypter_level_); *decrypted_level = decrypter_level_; if (alternative_decrypter_latch_) { // Switch to the alternative decrypter and latch so that we cannot // switch back. decrypter_level_ = alternative_decrypter_level_; decrypter_[decrypter_level_] = std::move(decrypter_[alternative_decrypter_level_]); alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS; } else { // Switch the alternative decrypter so that we use it first next time. EncryptionLevel level = alternative_decrypter_level_; alternative_decrypter_level_ = decrypter_level_; decrypter_level_ = level; } } } if (!success) { QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:" << header.packet_number; return false; } return true; } size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { // Type byte, largest_acked, and delay_time are straight-forward. size_t ack_frame_size = kQuicFrameTypeSize; QuicPacketNumber largest_acked = LargestAcked(frame); ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); uint64_t ack_delay_time_us; ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); // If |ecn_counters_populated| is true and any of the ecn counters is non-0 // then the ecn counters are included... if (frame.ecn_counters_populated && (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); } // The rest (ack_block_count, first_ack_block, and additional ack // blocks, if any) depends: uint64_t ack_block_count = frame.packets.NumIntervals(); if (ack_block_count == 0) { // If the QuicAckFrame has no Intervals, then it is interpreted // as an ack of a single packet at QuicAckFrame.largest_acked. // The resulting ack will consist of only the frame's // largest_ack & first_ack_block fields. The first ack block will be 0 // (indicating a single packet) and the ack block_count will be 0. // Each 0 takes 1 byte when VarInt62 encoded. ack_frame_size += 2; return ack_frame_size; } auto itr = frame.packets.rbegin(); QuicPacketNumber ack_block_largest = largest_acked; QuicPacketNumber ack_block_smallest; if ((itr->max() - 1) == largest_acked) { // If largest_acked + 1 is equal to the Max() of the first Interval // in the QuicAckFrame then the first Interval is the first ack block of the // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's // first Interval is encoded in the frame's largest_acked/first_ack_block, // the remaining Intervals are encoded in additional ack blocks in the // frame, and the packet's ack_block_count is the number of QuicAckFrame // Intervals - 1. ack_block_smallest = itr->min(); itr++; ack_block_count--; } else { // If QuicAckFrame.largest_acked is NOT equal to the Max() of // the first Interval then it is interpreted as acking a single // packet at QuicAckFrame.largest_acked, with additional // Intervals indicating additional ack blocks. The encoding is // a) The packet's largest_acked is the QuicAckFrame's largest // acked, // b) the first ack block size is 0, // c) The packet's ack_block_count is the number of QuicAckFrame // Intervals, and // d) The QuicAckFrame Intervals are encoded in additional ack // blocks in the packet. ack_block_smallest = largest_acked; } size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count); ack_frame_size += ack_block_count_size; uint64_t first_ack_block = ack_block_largest - ack_block_smallest; size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block); ack_frame_size += first_ack_block_size; // Account for the remaining Intervals, if any. while (ack_block_count != 0) { uint64_t gap_size = ack_block_smallest - itr->max(); // Decrement per the protocol specification size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1); ack_frame_size += size_of_gap_size; uint64_t block_size = itr->max() - itr->min(); // Decrement per the protocol specification size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1); ack_frame_size += size_of_block_size; ack_block_smallest = itr->min(); itr++; ack_block_count--; } return ack_frame_size; } size_t QuicFramer::GetAckFrameSize( const QuicAckFrame& ack, QuicPacketNumberLength packet_number_length) { DCHECK(!ack.packets.Empty()); size_t ack_size = 0; if (version_.transport_version == QUIC_VERSION_99) { return GetIetfAckFrameSize(ack); } AckFrameInfo ack_info = GetAckFrameInfo(ack); QuicPacketNumberLength largest_acked_length = GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack)); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( version_.transport_version, QuicPacketNumber(ack_info.max_block_length)); ack_size = GetMinAckFrameSize(version_.transport_version, largest_acked_length); // First ack block length. ack_size += ack_block_length; if (ack_info.num_ack_blocks != 0) { ack_size += kNumberOfAckBlocksSize; ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); } // Include timestamps. if (process_timestamps_) { ack_size += GetAckFrameTimeStampSize(ack); } return ack_size; } size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { if (ack.received_packet_times.empty()) { return 0; } return kQuicNumTimestampsLength + kQuicFirstTimestampLength + (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * (ack.received_packet_times.size() - 1); } size_t QuicFramer::ComputeFrameLength( const QuicFrame& frame, bool last_frame_in_packet, QuicPacketNumberLength packet_number_length) { switch (frame.type) { case STREAM_FRAME: return GetMinStreamFrameSize( version_.transport_version, frame.stream_frame.stream_id, frame.stream_frame.offset, last_frame_in_packet, frame.stream_frame.data_length) + frame.stream_frame.data_length; case CRYPTO_FRAME: return GetMinCryptoFrameSize(frame.crypto_frame->offset, frame.crypto_frame->data_length) + frame.crypto_frame->data_length; case ACK_FRAME: { return GetAckFrameSize(*frame.ack_frame, packet_number_length); } case STOP_WAITING_FRAME: return GetStopWaitingFrameSize(version_.transport_version, packet_number_length); case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. return kQuicFrameTypeSize; case MESSAGE_FRAME: return GetMessageFrameSize(version_.transport_version, last_frame_in_packet, frame.message_frame->message_length); case PADDING_FRAME: DCHECK(false); return 0; default: return GetRetransmittableControlFrameSize(version_.transport_version, frame); } } bool QuicFramer::AppendTypeByte(const QuicFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { if (version_.transport_version == QUIC_VERSION_99) { return AppendIetfTypeByte(frame, last_frame_in_packet, writer); } uint8_t type_byte = 0; switch (frame.type) { case STREAM_FRAME: type_byte = GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); break; case ACK_FRAME: return true; case MTU_DISCOVERY_FRAME: type_byte = static_cast(PING_FRAME); break; case NEW_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case RETIRE_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append RETIRE_CONNECTION_ID frame and not in version " "99."); return RaiseError(QUIC_INTERNAL_ERROR); case NEW_TOKEN_FRAME: set_detailed_error( "Attempt to append NEW_TOKEN frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case MAX_STREAM_ID_FRAME: set_detailed_error( "Attempt to append MAX_STREAM_ID frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case STREAM_ID_BLOCKED_FRAME: set_detailed_error( "Attempt to append STREAM_ID_BLOCKED frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_RESPONSE_FRAME: set_detailed_error( "Attempt to append PATH_RESPONSE frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_CHALLENGE_FRAME: set_detailed_error( "Attempt to append PATH_CHALLENGE frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case STOP_SENDING_FRAME: set_detailed_error( "Attempt to append STOP_SENDING frame and not in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case MESSAGE_FRAME: return true; default: type_byte = static_cast(frame.type); break; } return writer->WriteUInt8(type_byte); } bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { uint8_t type_byte = 0; switch (frame.type) { case PADDING_FRAME: type_byte = IETF_PADDING; break; case RST_STREAM_FRAME: type_byte = IETF_RST_STREAM; break; case CONNECTION_CLOSE_FRAME: switch (frame.connection_close_frame->close_type) { case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: type_byte = IETF_APPLICATION_CLOSE; break; case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: type_byte = IETF_CONNECTION_CLOSE; break; default: set_detailed_error("Invalid QuicConnectionCloseFrame type."); return RaiseError(QUIC_INTERNAL_ERROR); } break; case GOAWAY_FRAME: set_detailed_error( "Attempt to create non-version-99 GOAWAY frame in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case WINDOW_UPDATE_FRAME: // Depending on whether there is a stream ID or not, will be either a // MAX_STREAM_DATA frame or a MAX_DATA frame. if (frame.window_update_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { type_byte = IETF_MAX_DATA; } else { type_byte = IETF_MAX_STREAM_DATA; } break; case BLOCKED_FRAME: if (frame.blocked_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { type_byte = IETF_BLOCKED; } else { type_byte = IETF_STREAM_BLOCKED; } break; case STOP_WAITING_FRAME: set_detailed_error( "Attempt to append type byte of STOP WAITING frame in version 99."); return RaiseError(QUIC_INTERNAL_ERROR); case PING_FRAME: type_byte = IETF_PING; break; case STREAM_FRAME: type_byte = GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); break; case ACK_FRAME: // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte // in the buffer. return true; case MTU_DISCOVERY_FRAME: // The path MTU discovery frame is encoded as a PING frame on the wire. type_byte = IETF_PING; break; case NEW_CONNECTION_ID_FRAME: type_byte = IETF_NEW_CONNECTION_ID; break; case RETIRE_CONNECTION_ID_FRAME: type_byte = IETF_RETIRE_CONNECTION_ID; break; case NEW_TOKEN_FRAME: type_byte = IETF_NEW_TOKEN; break; case MAX_STREAM_ID_FRAME: if (QuicUtils::IsBidirectionalStreamId( frame.max_stream_id_frame.max_stream_id)) { type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; } else { type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; } break; case STREAM_ID_BLOCKED_FRAME: if (QuicUtils::IsBidirectionalStreamId( frame.max_stream_id_frame.max_stream_id)) { type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; } else { type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; } break; case PATH_RESPONSE_FRAME: type_byte = IETF_PATH_RESPONSE; break; case PATH_CHALLENGE_FRAME: type_byte = IETF_PATH_CHALLENGE; break; case STOP_SENDING_FRAME: type_byte = IETF_STOP_SENDING; break; case MESSAGE_FRAME: return true; case CRYPTO_FRAME: type_byte = IETF_CRYPTO; break; default: QUIC_BUG << "Attempt to generate a frame type for an unsupported value: " << frame.type; return false; } return writer->WriteUInt8(type_byte); } // static bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, QuicPacketNumber packet_number, QuicDataWriter* writer) { DCHECK(packet_number.IsInitialized()); if (!IsValidPacketNumberLength(packet_number_length)) { QUIC_BUG << "Invalid packet_number_length: " << packet_number_length; return false; } return writer->WriteBytesToUInt64(packet_number_length, packet_number.ToUint64()); } // static bool QuicFramer::AppendStreamId(size_t stream_id_length, QuicStreamId stream_id, QuicDataWriter* writer) { if (stream_id_length == 0 || stream_id_length > 4) { QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; return false; } return writer->WriteBytesToUInt64(stream_id_length, stream_id); } // static bool QuicFramer::AppendStreamOffset(size_t offset_length, QuicStreamOffset offset, QuicDataWriter* writer) { if (offset_length == 1 || offset_length > 8) { QUIC_BUG << "Invalid stream_offset_length: " << offset_length; return false; } return writer->WriteBytesToUInt64(offset_length, offset); } // static bool QuicFramer::AppendAckBlock(uint8_t gap, QuicPacketNumberLength length_length, uint64_t length, QuicDataWriter* writer) { if (length == 0) { if (!IsValidPacketNumberLength(length_length)) { QUIC_BUG << "Invalid packet_number_length: " << length_length; return false; } return writer->WriteUInt8(gap) && writer->WriteBytesToUInt64(length_length, length); } return writer->WriteUInt8(gap) && AppendPacketNumber(length_length, QuicPacketNumber(length), writer); } bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, bool no_stream_frame_length, QuicDataWriter* writer) { if (version_.transport_version == QUIC_VERSION_99) { return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); } if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, writer)) { QUIC_BUG << "Writing stream id size failed."; return false; } if (!AppendStreamOffset( GetStreamOffsetSize(version_.transport_version, frame.offset), frame.offset, writer)) { QUIC_BUG << "Writing offset size failed."; return false; } if (!no_stream_frame_length) { if ((frame.data_length > std::numeric_limits::max()) || !writer->WriteUInt16(static_cast(frame.data_length))) { QUIC_BUG << "Writing stream frame length failed"; return false; } } if (data_producer_ != nullptr) { DCHECK_EQ(nullptr, frame.data_buffer); if (frame.data_length == 0) { return true; } if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, frame.data_length, writer) != WRITE_SUCCESS) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } // static bool QuicFramer::AppendIetfConnectionId( bool version_flag, QuicConnectionId destination_connection_id, QuicConnectionIdLength destination_connection_id_length, QuicConnectionId source_connection_id, QuicConnectionIdLength source_connection_id_length, QuicDataWriter* writer) { if (version_flag) { // Append connection ID length byte. uint8_t dcil = GetConnectionIdLengthValue(destination_connection_id_length); uint8_t scil = GetConnectionIdLengthValue(source_connection_id_length); uint8_t connection_id_length = dcil << 4 | scil; if (!writer->WriteBytes(&connection_id_length, 1)) { return false; } } if (destination_connection_id_length == PACKET_8BYTE_CONNECTION_ID && !writer->WriteConnectionId(destination_connection_id)) { return false; } if (source_connection_id_length == PACKET_8BYTE_CONNECTION_ID && !writer->WriteConnectionId(source_connection_id)) { return false; } return true; } bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.token.length()))) { set_detailed_error("Writing token length failed."); return false; } if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { set_detailed_error("Writing token buffer failed."); return false; } return true; } bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, QuicNewTokenFrame* frame) { uint64_t length; if (!reader->ReadVarInt62(&length)) { set_detailed_error("Unable to read new token length."); return false; } if (length > kMaxNewTokenTokenLength) { set_detailed_error("Token length larger than maximum."); return false; } // TODO(ianswett): Don't use QuicStringPiece as an intermediary. QuicStringPiece data; if (!reader->ReadStringPiece(&data, length)) { set_detailed_error("Unable to read new token data."); return false; } frame->token = std::string(data); return true; } // Add a new ietf-format stream frame. // Bits controlling whether there is a frame-length and frame-offset // are in the QuicStreamFrame. bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.stream_id))) { set_detailed_error("Writing stream id failed."); return false; } if (frame.offset != 0) { if (!writer->WriteVarInt62(static_cast(frame.offset))) { set_detailed_error("Writing data offset failed."); return false; } } if (!last_frame_in_packet) { if (!writer->WriteVarInt62(frame.data_length)) { set_detailed_error("Writing data length failed."); return false; } } if (frame.data_length == 0) { return true; } if (data_producer_ == nullptr) { if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { set_detailed_error("Writing frame data failed."); return false; } } else { DCHECK_EQ(nullptr, frame.data_buffer); if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, frame.data_length, writer) != WRITE_SUCCESS) { set_detailed_error("Writing frame data failed."); return false; } } return true; } bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.offset))) { set_detailed_error("Writing data offset failed."); return false; } if (!writer->WriteVarInt62(static_cast(frame.data_length))) { set_detailed_error("Writing data length failed."); return false; } if (data_producer_ == nullptr) { if (frame.data_buffer == nullptr || !writer->WriteBytes(frame.data_buffer, frame.data_length)) { set_detailed_error("Writing frame data failed."); return false; } } else { DCHECK_EQ(nullptr, frame.data_buffer); if (!data_producer_->WriteCryptoData(frame.level, frame.offset, frame.data_length, writer)) { return false; } } return true; } void QuicFramer::set_version(const ParsedQuicVersion version) { DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); version_ = version; } bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, QuicDataWriter* writer) { if (transport_version() == QUIC_VERSION_99) { return AppendIetfAckFrameAndTypeByte(frame, writer); } const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); QuicPacketNumber largest_acked = LargestAcked(frame); QuicPacketNumberLength largest_acked_length = GetMinPacketNumberLength(version_.transport_version, largest_acked); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(version_.transport_version, QuicPacketNumber(new_ack_info.max_block_length)); // Calculate available bytes for timestamps and ack blocks. int32_t available_timestamp_and_ack_block_bytes = writer->capacity() - writer->length() - ack_block_length - GetMinAckFrameSize(version_.transport_version, largest_acked_length) - (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); DCHECK_LE(0, available_timestamp_and_ack_block_bytes); // Write out the type byte by setting the low order bits and doing shifts // to make room for the next bit flags to be set. // Whether there are multiple ack blocks. uint8_t type_byte = 0; SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, kQuicHasMultipleAckBlocksOffset); SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); type_byte |= kQuicFrameTypeAckMask; if (!writer->WriteUInt8(type_byte)) { return false; } size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); // Number of ack blocks. size_t num_ack_blocks = std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); if (num_ack_blocks > std::numeric_limits::max()) { num_ack_blocks = std::numeric_limits::max(); } // Largest acked. if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { return false; } // Largest acked delta time. uint64_t ack_delay_time_us = kUFloat16MaxValue; if (!frame.ack_delay_time.IsInfinite()) { DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); } if (!writer->WriteUFloat16(ack_delay_time_us)) { return false; } if (num_ack_blocks > 0) { if (!writer->WriteBytes(&num_ack_blocks, 1)) { return false; } } // First ack block length. if (!AppendPacketNumber(ack_block_length, QuicPacketNumber(new_ack_info.first_block_length), writer)) { return false; } // Ack blocks. if (num_ack_blocks > 0) { size_t num_ack_blocks_written = 0; // Append, in descending order from the largest ACKed packet, a series of // ACK blocks that represents the successfully acknoweldged packets. Each // appended gap/block length represents a descending delta from the previous // block. i.e.: // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| // For gaps larger than can be represented by a single encoded gap, a 0 // length gap of the maximum is used, i.e.: // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); ++itr; for (; itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; previous_start = itr->min(), ++itr) { const auto& interval = *itr; const uint64_t total_gap = previous_start - interval.max(); const size_t num_encoded_gaps = (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); DCHECK_LE(0u, num_encoded_gaps); // Append empty ACK blocks because the gap is longer than a single gap. for (size_t i = 1; i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; ++i) { if (!AppendAckBlock(std::numeric_limits::max(), ack_block_length, 0, writer)) { return false; } ++num_ack_blocks_written; } if (num_ack_blocks_written >= num_ack_blocks) { if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { QUIC_BUG << "Wrote " << num_ack_blocks_written << ", expected to write " << num_ack_blocks; } break; } const uint8_t last_gap = total_gap - (num_encoded_gaps - 1) * std::numeric_limits::max(); // Append the final ACK block with a non-empty size. if (!AppendAckBlock(last_gap, ack_block_length, PacketNumberIntervalLength(interval), writer)) { return false; } ++num_ack_blocks_written; } DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); } // Timestamps. // If we don't process timestamps or if we don't have enough available space // to append all the timestamps, don't append any of them. if (process_timestamps_ && writer->capacity() - writer->length() >= GetAckFrameTimeStampSize(frame)) { if (!AppendTimestampsToAckFrame(frame, writer)) { return false; } } else { uint8_t num_received_packets = 0; if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } } return true; } bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, QuicDataWriter* writer) { DCHECK_GE(std::numeric_limits::max(), frame.received_packet_times.size()); // num_received_packets is only 1 byte. if (frame.received_packet_times.size() > std::numeric_limits::max()) { return false; } uint8_t num_received_packets = frame.received_packet_times.size(); if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } if (num_received_packets == 0) { return true; } auto it = frame.received_packet_times.begin(); QuicPacketNumber packet_number = it->first; uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; DCHECK_GE(std::numeric_limits::max(), delta_from_largest_observed); if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } // Use the lowest 4 bytes of the time delta from the creation_time_. const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; uint32_t time_delta_us = static_cast((it->second - creation_time_).ToMicroseconds() & (time_epoch_delta_us - 1)); if (!writer->WriteUInt32(time_delta_us)) { return false; } QuicTime prev_time = it->second; for (++it; it != frame.received_packet_times.end(); ++it) { packet_number = it->first; delta_from_largest_observed = LargestAcked(frame) - packet_number; if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); prev_time = it->second; if (!writer->WriteUFloat16(frame_time_delta_us)) { return false; } } return true; } bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, const QuicStopWaitingFrame& frame, QuicDataWriter* writer) { DCHECK_GE(QUIC_VERSION_43, version_.transport_version); DCHECK(frame.least_unacked.IsInitialized() && header.packet_number >= frame.least_unacked); const uint64_t least_unacked_delta = header.packet_number - frame.least_unacked; const uint64_t length_shift = header.packet_number_length * 8; if (least_unacked_delta >> length_shift > 0) { QUIC_BUG << "packet_number_length " << header.packet_number_length << " is too small for least_unacked_delta: " << least_unacked_delta << " packet_number:" << header.packet_number << " least_unacked:" << frame.least_unacked << " version:" << version_.transport_version; return false; } if (least_unacked_delta == 0) { return writer->WriteBytesToUInt64(header.packet_number_length, least_unacked_delta); } if (!AppendPacketNumber(header.packet_number_length, QuicPacketNumber(least_unacked_delta), writer)) { QUIC_BUG << " seq failed: " << header.packet_number_length; return false; } return true; } int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame, QuicDataWriter* writer, size_t available_space) { // Number of blocks requested in the frame uint64_t ack_block_count = frame.packets.NumIntervals(); auto itr = frame.packets.rbegin(); int actual_block_count = 1; uint64_t block_length = itr->max() - itr->min(); size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length); if (encoded_size > available_space) { return 0; } available_space -= encoded_size; QuicPacketNumber previous_ack_end = itr->min(); ack_block_count--; while (ack_block_count) { // Each block is a gap followed by another ACK. Calculate each value, // determine the encoded lengths, and check against the available space. itr++; size_t gap = previous_ack_end - itr->max() - 1; encoded_size = QuicDataWriter::GetVarInt62Len(gap); // Add the ACK block. block_length = itr->max() - itr->min(); encoded_size += QuicDataWriter::GetVarInt62Len(block_length); if (encoded_size > available_space) { // No room for this block, so what we've // done up to now is all that can be done. return actual_block_count; } available_space -= encoded_size; actual_block_count++; previous_ack_end = itr->min(); ack_block_count--; } // Ran through the whole thing! We can do all blocks. return actual_block_count; } bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, QuicDataWriter* writer) { // Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and // any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame. uint8_t type = IETF_ACK; if (frame.ecn_counters_populated && (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { type = IETF_ACK_ECN; } if (!writer->WriteUInt8(type)) { set_detailed_error("No room for frame-type"); return false; } QuicPacketNumber largest_acked = LargestAcked(frame); if (!writer->WriteVarInt62(largest_acked.ToUint64())) { set_detailed_error("No room for largest-acked in ack frame"); return false; } uint64_t ack_delay_time_us = kVarInt62MaxValue; if (!frame.ack_delay_time.IsInfinite()) { DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); // TODO(fkastenholz): Use the shift from TLS transport parameters. ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; } if (!writer->WriteVarInt62(ack_delay_time_us)) { set_detailed_error("No room for ack-delay in ack frame"); return false; } if (type == IETF_ACK_ECN) { // Encode the ACK ECN fields if (!writer->WriteVarInt62(frame.ect_0_count)) { set_detailed_error("No room for ect_0_count in ack frame"); return false; } if (!writer->WriteVarInt62(frame.ect_1_count)) { set_detailed_error("No room for ect_1_count in ack frame"); return false; } if (!writer->WriteVarInt62(frame.ecn_ce_count)) { set_detailed_error("No room for ecn_ce_count in ack frame"); return false; } } uint64_t ack_block_count = frame.packets.NumIntervals(); if (ack_block_count == 0) { // If the QuicAckFrame has no Intervals, then it is interpreted // as an ack of a single packet at QuicAckFrame.largest_acked. // The resulting ack will consist of only the frame's // largest_ack & first_ack_block fields. The first ack block will be 0 // (indicating a single packet) and the ack block_count will be 0. if (!writer->WriteVarInt62(0)) { set_detailed_error("No room for ack block count in ack frame"); return false; } // size of the first block is 1 packet if (!writer->WriteVarInt62(0)) { set_detailed_error("No room for first ack block in ack frame"); return false; } return true; } // Case 2 or 3 auto itr = frame.packets.rbegin(); QuicPacketNumber ack_block_largest(largest_acked); QuicPacketNumber ack_block_smallest; if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) { // If largest_acked + 1 is equal to the Max() of the first Interval // in the QuicAckFrame then the first Interval is the first ack block of the // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's // first Interval is encoded in the frame's largest_acked/first_ack_block, // the remaining Intervals are encoded in additional ack blocks in the // frame, and the packet's ack_block_count is the number of QuicAckFrame // Intervals - 1. ack_block_smallest = itr->min(); itr++; ack_block_count--; } else { // If QuicAckFrame.largest_acked is NOT equal to the Max() of // the first Interval then it is interpreted as acking a single // packet at QuicAckFrame.largest_acked, with additional // Intervals indicating additional ack blocks. The encoding is // a) The packet's largest_acked is the QuicAckFrame's largest // acked, // b) the first ack block size is 0, // c) The packet's ack_block_count is the number of QuicAckFrame // Intervals, and // d) The QuicAckFrame Intervals are encoded in additional ack // blocks in the packet. ack_block_smallest = largest_acked; } if (!writer->WriteVarInt62(ack_block_count)) { set_detailed_error("No room for ack block count in ack frame"); return false; } uint64_t first_ack_block = ack_block_largest - ack_block_smallest; if (!writer->WriteVarInt62(first_ack_block)) { set_detailed_error("No room for first ack block in ack frame"); return false; } // For the remaining QuicAckFrame Intervals, if any while (ack_block_count != 0) { uint64_t gap_size = ack_block_smallest - itr->max(); if (!writer->WriteVarInt62(gap_size - 1)) { set_detailed_error("No room for gap block in ack frame"); return false; } uint64_t block_size = itr->max() - itr->min(); if (!writer->WriteVarInt62(block_size - 1)) { set_detailed_error("No room for nth ack block in ack frame"); return false; } ack_block_smallest = itr->min(); itr++; ack_block_count--; } return true; } bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (version_.transport_version == QUIC_VERSION_99) { return AppendIetfResetStreamFrame(frame, writer); } if (!writer->WriteUInt32(frame.stream_id)) { return false; } if (!writer->WriteUInt64(frame.byte_offset)) { return false; } uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } return true; } bool QuicFramer::AppendConnectionCloseFrame( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { if (version_.transport_version == QUIC_VERSION_99) { return AppendIetfConnectionCloseFrame(frame, writer); } uint32_t error_code = static_cast(frame.quic_error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { return false; } return true; } bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, QuicDataWriter* writer) { uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } uint32_t stream_id = static_cast(frame.last_good_stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { return false; } return true; } bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteUInt64(frame.byte_offset)) { return false; } return true; } bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (version_.transport_version == QUIC_VERSION_99) { if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { return AppendIetfBlockedFrame(frame, writer); } return AppendStreamBlockedFrame(frame, writer); } uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } return true; } bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, QuicDataWriter* writer) { if (frame.num_padding_bytes == 0) { return false; } if (frame.num_padding_bytes < 0) { QUIC_BUG_IF(frame.num_padding_bytes != -1); writer->WritePadding(); return true; } // Please note, num_padding_bytes includes type byte which has been written. return writer->WritePaddingBytes(frame.num_padding_bytes - 1); } bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH : IETF_EXTENSION_MESSAGE; if (!writer->WriteUInt8(type_byte)) { return false; } if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { return false; } for (const auto& slice : frame.message_data) { if (!writer->WriteBytes(slice.data(), slice.length())) { return false; } } return true; } bool QuicFramer::RaiseError(QuicErrorCode error) { QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) << " detail: " << detailed_error_; set_error(error); visitor_->OnError(this); return false; } bool QuicFramer::IsVersionNegotiation( const QuicPacketHeader& header, bool packet_has_ietf_packet_header) const { if (perspective_ == Perspective::IS_SERVER) { return false; } if (!packet_has_ietf_packet_header) { return header.version_flag; } if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { return false; } return header.long_packet_type == VERSION_NEGOTIATION; } bool QuicFramer::AppendIetfConnectionCloseFrame( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE."; set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE."); return false; } if (!writer->WriteUInt16(frame.application_error_code)) { set_detailed_error("Can not write connection close frame error code"); return false; } if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { // Write the frame-type of the frame causing the error only // if it's a CONNECTION_CLOSE/Transport. if (!writer->WriteVarInt62(frame.transport_close_frame_type)) { set_detailed_error("Writing frame type failed."); return false; } } // TODO(fkastenholz): For full IETF CONNECTION CLOSE support, // if this is a Transport CONNECTION_CLOSE and the extended // error is not QUIC_IETF_GQUIC_ERROR_MISSING then append the extended // "QuicErrorCode: #" string to the phrase. if (!writer->WriteStringPieceVarInt62( TruncateErrorString(frame.error_details))) { set_detailed_error("Can not write connection close phrase"); return false; } return true; } bool QuicFramer::ProcessIetfConnectionCloseFrame( QuicDataReader* reader, QuicConnectionCloseType type, QuicConnectionCloseFrame* frame) { frame->close_type = type; uint16_t code; if (!reader->ReadUInt16(&code)) { set_detailed_error("Unable to read connection close error code."); return false; } frame->transport_error_code = static_cast(code); if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { // The frame-type of the frame causing the error is present only // if it's a CONNECTION_CLOSE/Transport. if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) { set_detailed_error("Unable to read connection close frame type."); return false; } } uint64_t phrase_length; if (!reader->ReadVarInt62(&phrase_length)) { set_detailed_error("Unable to read connection close error details."); return false; } QuicStringPiece phrase; if (!reader->ReadStringPiece(&phrase, static_cast(phrase_length))) { set_detailed_error("Unable to read connection close error details."); return false; } // TODO(fkastenholz): when full support is done, add code here // to extract the extended error code from the reason phrase // and set it into frame->extracted_error_code. frame->error_details = std::string(phrase); return true; } // IETF Quic Path Challenge/Response frames. bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, QuicPathChallengeFrame* frame) { if (!reader->ReadBytes(frame->data_buffer.data(), frame->data_buffer.size())) { set_detailed_error("Can not read path challenge data."); return false; } return true; } bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, QuicPathResponseFrame* frame) { if (!reader->ReadBytes(frame->data_buffer.data(), frame->data_buffer.size())) { set_detailed_error("Can not read path response data."); return false; } return true; } bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, QuicDataWriter* writer) { if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { set_detailed_error("Writing Path Challenge data failed."); return false; } return true; } bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, QuicDataWriter* writer) { if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { set_detailed_error("Writing Path Response data failed."); return false; } return true; } // Add a new ietf-format stream reset frame. // General format is // stream id // application error code // final offset bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.stream_id))) { set_detailed_error("Writing reset-stream stream id failed."); return false; } if (!writer->WriteUInt16(frame.ietf_error_code)) { set_detailed_error("Writing reset-stream error code failed."); return false; } if (!writer->WriteVarInt62(static_cast(frame.byte_offset))) { set_detailed_error("Writing reset-stream final-offset failed."); return false; } return true; } bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, QuicRstStreamFrame* frame) { // Get Stream ID from frame. ReadVarIntStreamID returns false // if either A) there is a read error or B) the resulting value of // the Stream ID is larger than the maximum allowed value. if (!reader->ReadVarIntStreamId(&frame->stream_id)) { set_detailed_error("Unable to read rst stream stream id."); return false; } if (!reader->ReadUInt16(&frame->ietf_error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } if (!reader->ReadVarInt62(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } return true; } bool QuicFramer::ProcessStopSendingFrame( QuicDataReader* reader, QuicStopSendingFrame* stop_sending_frame) { if (!reader->ReadVarIntStreamId(&stop_sending_frame->stream_id)) { set_detailed_error("Unable to read stop sending stream id."); return false; } if (!reader->ReadUInt16(&stop_sending_frame->application_error_code)) { set_detailed_error("Unable to read stop sending application error code."); return false; } return true; } bool QuicFramer::AppendStopSendingFrame( const QuicStopSendingFrame& stop_sending_frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { set_detailed_error("Can not write stop sending stream id"); return false; } if (!writer->WriteUInt16(stop_sending_frame.application_error_code)) { set_detailed_error("Can not write application error code"); return false; } return true; } // Append/process IETF-Format MAX_DATA Frame bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.byte_offset)) { set_detailed_error("Can not write MAX_DATA byte-offset"); return false; } return true; } bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); if (!reader->ReadVarInt62(&frame->byte_offset)) { set_detailed_error("Can not read MAX_DATA byte-offset"); return false; } return true; } // Append/process IETF-Format MAX_STREAM_DATA Frame bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_id)) { set_detailed_error("Can not write MAX_STREAM_DATA stream id"); return false; } if (!writer->WriteVarInt62(frame.byte_offset)) { set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); return false; } return true; } bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { if (!reader->ReadVarIntStreamId(&frame->stream_id)) { set_detailed_error("Can not read MAX_STREAM_DATA stream id"); return false; } if (!reader->ReadVarInt62(&frame->byte_offset)) { set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); return false; } return true; } bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamIdFrame& frame, QuicDataWriter* writer) { // Convert from the stream id on which the connection is blocked to a count QuicStreamId stream_count = StreamIdToCount(version_.transport_version, frame.max_stream_id); if (!writer->WriteVarInt62(stream_count)) { set_detailed_error("Can not write MAX_STREAMS stream count"); return false; } return true; } bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, QuicMaxStreamIdFrame* frame, uint64_t frame_type) { QuicStreamId received_stream_count; if (!reader->ReadVarIntStreamId(&received_stream_count)) { set_detailed_error("Can not read MAX_STREAMS stream count."); return false; } // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED // frame is implemented and passed up to the stream ID manager. if (received_stream_count == 0) { set_detailed_error("MAX_STREAMS stream count of 0 not supported."); return false; } // Note that this code assumes that the only possible error that // StreamCountToId can detect is that the stream count is too big or is 0. // Too big is prevented by passing in the minimum of the received count // and the maximum supported count, ensuring that the stream ID is // pegged at the maximum allowed ID. // count==0 is handled above, so that detailed_error_ may be set // properly. return StreamCountToId( std::min( received_stream_count, GetMaxStreamCount((frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), perspective_)), /*unidirectional=*/(frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), perspective_, version_.transport_version, &frame->max_stream_id); } bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.offset)) { set_detailed_error("Can not write blocked offset."); return false; } return true; } bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Can not read blocked offset."); return false; } return true; } bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_id)) { set_detailed_error("Can not write stream blocked stream id."); return false; } if (!writer->WriteVarInt62(frame.offset)) { set_detailed_error("Can not write stream blocked offset."); return false; } return true; } bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { if (!reader->ReadVarIntStreamId(&frame->stream_id)) { set_detailed_error("Can not read stream blocked stream id."); return false; } if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Can not read stream blocked offset."); return false; } return true; } bool QuicFramer::AppendStreamsBlockedFrame( const QuicStreamIdBlockedFrame& frame, QuicDataWriter* writer) { // Convert from the stream id on which the connection is blocked to a count QuicStreamId stream_count = StreamIdToCount(version_.transport_version, frame.stream_id); if (!writer->WriteVarInt62(stream_count)) { set_detailed_error("Can not write STREAMS_BLOCKED stream count"); return false; } return true; } bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, QuicStreamIdBlockedFrame* frame, uint64_t frame_type) { QuicStreamId received_stream_count; if (!reader->ReadVarIntStreamId(&received_stream_count)) { set_detailed_error("Can not read STREAMS_BLOCKED stream id."); return false; } // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED // frame is implemented and passed up to the stream ID manager. if (received_stream_count == 0) { set_detailed_error("STREAMS_BLOCKED stream count 0 not supported."); return false; } // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED // frame is implemented and passed up to the stream ID manager. if (received_stream_count > GetMaxStreamCount((frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), ((perspective_ == Perspective::IS_CLIENT) ? Perspective::IS_SERVER : Perspective::IS_CLIENT))) { // If stream count is such that the resulting stream ID would exceed our // implementation limit, generate an error. set_detailed_error( "STREAMS_BLOCKED stream count exceeds implementation limit."); return false; } // Convert the stream count to an ID that can be used. // The STREAMS_BLOCKED frame is a request for more streams // that the peer will initiate. If this node is a client, it // means that the peer is a server, and wants server-initiated // stream IDs. return StreamCountToId( received_stream_count, /*unidirectional=*/(frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL), (perspective_ == Perspective::IS_CLIENT) ? Perspective::IS_SERVER : Perspective::IS_CLIENT, version_.transport_version, &frame->stream_id); } bool QuicFramer::AppendNewConnectionIdFrame( const QuicNewConnectionIdFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.sequence_number)) { set_detailed_error("Can not write New Connection ID sequence number"); return false; } if (!writer->WriteUInt8(frame.connection_id.length())) { set_detailed_error( "Can not write New Connection ID frame connection ID Length"); return false; } if (!writer->WriteConnectionId(frame.connection_id)) { set_detailed_error("Can not write New Connection ID frame connection ID"); return false; } if (!writer->WriteBytes( static_cast(&frame.stateless_reset_token), sizeof(frame.stateless_reset_token))) { set_detailed_error("Can not write New Connection ID Reset Token"); return false; } return true; } bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, QuicNewConnectionIdFrame* frame) { if (!reader->ReadVarInt62(&frame->sequence_number)) { set_detailed_error( "Unable to read new connection ID frame sequence number."); return false; } uint8_t connection_id_length; if (!reader->ReadUInt8(&connection_id_length)) { set_detailed_error( "Unable to read new connection ID frame connection id length."); return false; } if (connection_id_length > kQuicMaxConnectionIdLength) { set_detailed_error("New connection ID length too high."); return false; } if (connection_id_length != kQuicDefaultConnectionIdLength && !QuicUtils::VariableLengthConnectionIdAllowedForVersion( transport_version())) { set_detailed_error("Invalid new connection ID length for version."); return false; } if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) { set_detailed_error("Unable to read new connection ID frame connection id."); return false; } if (!reader->ReadBytes(&frame->stateless_reset_token, sizeof(frame->stateless_reset_token))) { set_detailed_error("Can not read new connection ID frame reset token."); return false; } return true; } bool QuicFramer::AppendRetireConnectionIdFrame( const QuicRetireConnectionIdFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.sequence_number)) { set_detailed_error("Can not write Retire Connection ID sequence number"); return false; } return true; } bool QuicFramer::ProcessRetireConnectionIdFrame( QuicDataReader* reader, QuicRetireConnectionIdFrame* frame) { if (!reader->ReadVarInt62(&frame->sequence_number)) { set_detailed_error( "Unable to read retire connection ID frame sequence number."); return false; } return true; } uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, bool last_frame_in_packet) const { if (version_.transport_version == QUIC_VERSION_99) { return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); } uint8_t type_byte = 0; // Fin bit. type_byte |= frame.fin ? kQuicStreamFinMask : 0; // Data Length bit. type_byte <<= kQuicStreamDataLengthShift; type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; // Offset 3 bits. type_byte <<= kQuicStreamShift; const size_t offset_len = GetStreamOffsetSize(version_.transport_version, frame.offset); if (offset_len > 0) { type_byte |= offset_len - 1; } // stream id 2 bits. type_byte <<= kQuicStreamIdShift; type_byte |= GetStreamIdSize(frame.stream_id) - 1; type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. return type_byte; } uint8_t QuicFramer::GetIetfStreamFrameTypeByte( const QuicStreamFrame& frame, bool last_frame_in_packet) const { DCHECK_EQ(QUIC_VERSION_99, version_.transport_version); uint8_t type_byte = IETF_STREAM; if (!last_frame_in_packet) { type_byte |= IETF_STREAM_FRAME_LEN_BIT; } if (frame.offset != 0) { type_byte |= IETF_STREAM_FRAME_OFF_BIT; } if (frame.fin) { type_byte |= IETF_STREAM_FRAME_FIN_BIT; } return type_byte; } void QuicFramer::InferPacketHeaderTypeFromVersion() { // This function should only be called when server connection negotiates the // version. DCHECK(perspective_ == Perspective::IS_SERVER && !infer_packet_header_type_from_version_); infer_packet_header_type_from_version_ = true; } void QuicFramer::EnableMultiplePacketNumberSpacesSupport() { if (supports_multiple_packet_number_spaces_) { QUIC_BUG << "Multiple packet number spaces has already been enabled"; return; } if (largest_packet_number_.IsInitialized()) { QUIC_BUG << "Try to enable multiple packet number spaces support after any " "packet has been received."; return; } supports_multiple_packet_number_spaces_ = true; } #undef ENDPOINT // undef for jumbo builds } // namespace quic