// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/third_party/quiche/src/quic/core/quic_framer.h" #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/strings/escaping.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_utils.h" #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" #include "net/third_party/quiche/src/quic/core/frames/quic_ack_frequency_frame.h" #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" #include "net/third_party/quiche/src/quic/core/quic_constants.h" #include "net/third_party/quiche/src/quic/core/quic_data_reader.h" #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" #include "net/third_party/quiche/src/quic/core/quic_error_codes.h" #include "net/third_party/quiche/src/quic/core/quic_packets.h" #include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h" #include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h" #include "net/third_party/quiche/src/quic/core/quic_time.h" #include "net/third_party/quiche/src/quic/core/quic_types.h" #include "net/third_party/quiche/src/quic/core/quic_utils.h" #include "net/third_party/quiche/src/quic/core/quic_versions.h" #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" #include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h" #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" #include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h" #include "net/third_party/quiche/src/common/platform/api/quiche_str_cat.h" #include "net/third_party/quiche/src/common/platform/api/quiche_text_utils.h" namespace quic { namespace { #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") // Number of bits the packet number length bits are shifted from the right // edge of the header. const uint8_t kPublicHeaderSequenceNumberShift = 4; // There are two interpretations for the Frame Type byte in the QUIC protocol, // resulting in two Frame Types: Special Frame Types and Regular Frame Types. // // Regular Frame Types use the Frame Type byte simply. Currently defined // Regular Frame Types are: // Padding : 0b 00000000 (0x00) // ResetStream : 0b 00000001 (0x01) // ConnectionClose : 0b 00000010 (0x02) // GoAway : 0b 00000011 (0x03) // WindowUpdate : 0b 00000100 (0x04) // Blocked : 0b 00000101 (0x05) // // Special Frame Types encode both a Frame Type and corresponding flags // all in the Frame Type byte. Currently defined Special Frame Types // are: // Stream : 0b 1xxxxxxx // Ack : 0b 01xxxxxx // // Semantics of the flag bits above (the x bits) depends on the frame type. // Masks to determine if the frame type is a special use // and for specific special frame types. const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000 const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000 const uint8_t kQuicFrameTypeStreamMask = 0x80; const uint8_t kQuicFrameTypeAckMask = 0x40; static_assert(kQuicFrameTypeSpecialMask == (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), "Invalid kQuicFrameTypeSpecialMask"); // The stream type format is 1FDOOOSS, where // F is the fin bit. // D is the data length bit (0 or 2 bytes). // OO/OOO are the size of the offset. // SS is the size of the stream ID. // Note that the stream encoding can not be determined by inspection. It can // be determined only by knowing the QUIC Version. // Stream frame relative shifts and masks for interpreting the stream flags. // StreamID may be 1, 2, 3, or 4 bytes. const uint8_t kQuicStreamIdShift = 2; const uint8_t kQuicStreamIDLengthMask = 0x03; // Offset may be 0, 2, 4, or 8 bytes. const uint8_t kQuicStreamShift = 3; const uint8_t kQuicStreamOffsetMask = 0x07; // Data length may be 0 or 2 bytes. const uint8_t kQuicStreamDataLengthShift = 1; const uint8_t kQuicStreamDataLengthMask = 0x01; // Fin bit may be set or not. const uint8_t kQuicStreamFinShift = 1; const uint8_t kQuicStreamFinMask = 0x01; // The format is 01M0LLOO, where // M if set, there are multiple ack blocks in the frame. // LL is the size of the largest ack field. // OO is the size of the ack blocks offset field. // packet number size shift used in AckFrames. const uint8_t kQuicSequenceNumberLengthNumBits = 2; const uint8_t kActBlockLengthOffset = 0; const uint8_t kLargestAckedOffset = 2; // Acks may have only one ack block. const uint8_t kQuicHasMultipleAckBlocksOffset = 5; // Timestamps are 4 bytes followed by 2 bytes. const uint8_t kQuicNumTimestampsLength = 1; const uint8_t kQuicFirstTimestampLength = 4; const uint8_t kQuicTimestampLength = 2; // Gaps between packet numbers are 1 byte. const uint8_t kQuicTimestampPacketNumberGapLength = 1; // Maximum length of encoded error strings. const int kMaxErrorStringLength = 256; const uint8_t kConnectionIdLengthAdjustment = 3; const uint8_t kDestinationConnectionIdLengthMask = 0xF0; const uint8_t kSourceConnectionIdLengthMask = 0x0F; // Returns the absolute value of the difference between |a| and |b|. uint64_t Delta(uint64_t a, uint64_t b) { // Since these are unsigned numbers, we can't just return abs(a - b) if (a < b) { return b - a; } return a - b; } uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { return (Delta(target, a) < Delta(target, b)) ? a : b; } QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return PACKET_6BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } QuicPacketNumberLength ReadAckPacketNumberLength( uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return PACKET_6BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } uint8_t PacketNumberLengthToOnWireValue( QuicPacketNumberLength packet_number_length) { return packet_number_length - 1; } QuicPacketNumberLength GetShortHeaderPacketNumberLength(uint8_t type) { DCHECK(!(type & FLAGS_LONG_HEADER)); return static_cast((type & 0x03) + 1); } uint8_t LongHeaderTypeToOnWireValue(QuicLongHeaderType type) { switch (type) { case INITIAL: return 0; case ZERO_RTT_PROTECTED: return 1 << 4; case HANDSHAKE: return 2 << 4; case RETRY: return 3 << 4; case VERSION_NEGOTIATION: return 0xF0; // Value does not matter default: QUIC_BUG << "Invalid long header type: " << type; return 0xFF; } } bool GetLongHeaderType(uint8_t type, QuicLongHeaderType* long_header_type) { DCHECK((type & FLAGS_LONG_HEADER)); switch ((type & 0x30) >> 4) { case 0: *long_header_type = INITIAL; break; case 1: *long_header_type = ZERO_RTT_PROTECTED; break; case 2: *long_header_type = HANDSHAKE; break; case 3: *long_header_type = RETRY; break; default: QUIC_BUG << "Unreachable statement"; *long_header_type = INVALID_PACKET_TYPE; return false; } return true; } QuicPacketNumberLength GetLongHeaderPacketNumberLength(uint8_t type) { return static_cast((type & 0x03) + 1); } // Used to get packet number space before packet gets decrypted. PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) { switch (header.form) { case GOOGLE_QUIC_PACKET: QUIC_BUG << "Try to get packet number space of Google QUIC packet"; break; case IETF_QUIC_SHORT_HEADER_PACKET: return APPLICATION_DATA; case IETF_QUIC_LONG_HEADER_PACKET: switch (header.long_packet_type) { case INITIAL: return INITIAL_DATA; case HANDSHAKE: return HANDSHAKE_DATA; case ZERO_RTT_PROTECTED: return APPLICATION_DATA; case VERSION_NEGOTIATION: case RETRY: case INVALID_PACKET_TYPE: QUIC_BUG << "Try to get packet number space of long header type: " << QuicUtils::QuicLongHeaderTypetoString( header.long_packet_type); break; } } return NUM_PACKET_NUMBER_SPACES; } EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) { switch (header.form) { case GOOGLE_QUIC_PACKET: QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header"; break; case IETF_QUIC_SHORT_HEADER_PACKET: return ENCRYPTION_FORWARD_SECURE; case IETF_QUIC_LONG_HEADER_PACKET: switch (header.long_packet_type) { case INITIAL: return ENCRYPTION_INITIAL; case HANDSHAKE: return ENCRYPTION_HANDSHAKE; case ZERO_RTT_PROTECTED: return ENCRYPTION_ZERO_RTT; case VERSION_NEGOTIATION: case RETRY: case INVALID_PACKET_TYPE: QUIC_BUG << "No encryption used with type " << QuicUtils::QuicLongHeaderTypetoString( header.long_packet_type); } } return NUM_ENCRYPTION_LEVELS; } absl::string_view TruncateErrorString(absl::string_view error) { if (error.length() <= kMaxErrorStringLength) { return error; } return absl::string_view(error.data(), kMaxErrorStringLength); } size_t TruncatedErrorStringSize(const absl::string_view& error) { if (error.length() < kMaxErrorStringLength) { return error.length(); } return kMaxErrorStringLength; } uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { if (length == 0) { return 0; } return static_cast(length - kConnectionIdLengthAdjustment); } bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { size_t length = packet_number_length; return length == 1 || length == 2 || length == 4 || length == 6 || length == 8; } bool IsValidFullPacketNumber(uint64_t full_packet_number, ParsedQuicVersion version) { return full_packet_number > 0 || version.HasIetfQuicFrames(); } bool AppendIetfConnectionIds(bool version_flag, bool use_length_prefix, QuicConnectionId destination_connection_id, QuicConnectionId source_connection_id, QuicDataWriter* writer) { if (!version_flag) { return writer->WriteConnectionId(destination_connection_id); } if (use_length_prefix) { return writer->WriteLengthPrefixedConnectionId(destination_connection_id) && writer->WriteLengthPrefixedConnectionId(source_connection_id); } // Compute connection ID length byte. uint8_t dcil = GetConnectionIdLengthValue( static_cast(destination_connection_id.length())); uint8_t scil = GetConnectionIdLengthValue( static_cast(source_connection_id.length())); uint8_t connection_id_length = dcil << 4 | scil; return writer->WriteUInt8(connection_id_length) && writer->WriteConnectionId(destination_connection_id) && writer->WriteConnectionId(source_connection_id); } enum class DroppedPacketReason { // General errors INVALID_PUBLIC_HEADER, VERSION_MISMATCH, // Version negotiation packet errors INVALID_VERSION_NEGOTIATION_PACKET, // Public reset packet errors, pre-v44 INVALID_PUBLIC_RESET_PACKET, // Data packet errors INVALID_PACKET_NUMBER, INVALID_DIVERSIFICATION_NONCE, DECRYPTION_FAILURE, NUM_REASONS, }; void RecordDroppedPacketReason(DroppedPacketReason reason) { QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, DroppedPacketReason::NUM_REASONS, "The reason a packet was not processed. Recorded " "each time such a packet is dropped"); } PacketHeaderFormat GetIetfPacketHeaderFormat(uint8_t type_byte) { return type_byte & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET : IETF_QUIC_SHORT_HEADER_PACKET; } std::string GenerateErrorString(std::string initial_error_string, QuicErrorCode quic_error_code) { if (quic_error_code == QUIC_IETF_GQUIC_ERROR_MISSING) { // QUIC_IETF_GQUIC_ERROR_MISSING is special -- it means not to encode // the error value in the string. return initial_error_string; } return quiche::QuicheStrCat( std::to_string(static_cast(quic_error_code)), ":", initial_error_string); } } // namespace QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, QuicTime creation_time, Perspective perspective, uint8_t expected_server_connection_id_length) : visitor_(nullptr), error_(QUIC_NO_ERROR), last_serialized_server_connection_id_(EmptyQuicConnectionId()), last_serialized_client_connection_id_(EmptyQuicConnectionId()), version_(ParsedQuicVersion::Unsupported()), supported_versions_(supported_versions), decrypter_level_(ENCRYPTION_INITIAL), alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS), alternative_decrypter_latch_(false), perspective_(perspective), validate_flags_(true), process_timestamps_(false), creation_time_(creation_time), last_timestamp_(QuicTime::Delta::Zero()), support_key_update_for_connection_(false), current_key_phase_bit_(false), potential_peer_key_update_attempt_count_(0), first_sending_packet_number_(FirstSendingPacketNumber()), data_producer_(nullptr), infer_packet_header_type_from_version_(perspective == Perspective::IS_CLIENT), expected_server_connection_id_length_( expected_server_connection_id_length), expected_client_connection_id_length_(0), supports_multiple_packet_number_spaces_(false), last_written_packet_number_length_(0), peer_ack_delay_exponent_(kDefaultAckDelayExponent), local_ack_delay_exponent_(kDefaultAckDelayExponent), current_received_frame_type_(0) { DCHECK(!supported_versions.empty()); version_ = supported_versions_[0]; DCHECK(version_.IsKnown()) << ParsedQuicVersionVectorToString(supported_versions_); } QuicFramer::~QuicFramer() {} // static size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, QuicStreamId stream_id, QuicStreamOffset offset, bool last_frame_in_packet, size_t data_length) { if (VersionHasIetfQuicFrames(version)) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(data_length)) + (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); } return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + GetStreamOffsetSize(offset) + (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); } // static size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, QuicPacketLength data_length) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + QuicDataWriter::GetVarInt62Len(data_length); } // static size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, bool last_frame_in_packet, QuicByteCount length) { QUIC_BUG_IF(!VersionSupportsMessageFrames(version)) << "Try to serialize MESSAGE frame in " << version; return kQuicFrameTypeSize + (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + length; } // static size_t QuicFramer::GetMinAckFrameSize(QuicTransportVersion version, const QuicAckFrame& ack_frame, uint32_t local_ack_delay_exponent) { if (VersionHasIetfQuicFrames(version)) { // The minimal ack frame consists of the following fields: Largest // Acknowledged, ACK Delay, 0 ACK Block Count, First ACK Block and ECN // counts. // Type byte + largest acked. size_t min_size = kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(LargestAcked(ack_frame).ToUint64()); // Ack delay. min_size += QuicDataWriter::GetVarInt62Len( ack_frame.ack_delay_time.ToMicroseconds() >> local_ack_delay_exponent); // 0 ack block count. min_size += QuicDataWriter::GetVarInt62Len(0); // First ack block. min_size += QuicDataWriter::GetVarInt62Len( ack_frame.packets.Empty() ? 0 : ack_frame.packets.rbegin()->Length() - 1); // ECN counts. if (ack_frame.ecn_counters_populated && (ack_frame.ect_0_count || ack_frame.ect_1_count || ack_frame.ecn_ce_count)) { min_size += (QuicDataWriter::GetVarInt62Len(ack_frame.ect_0_count) + QuicDataWriter::GetVarInt62Len(ack_frame.ect_1_count) + QuicDataWriter::GetVarInt62Len(ack_frame.ecn_ce_count)); } return min_size; } return kQuicFrameTypeSize + GetMinPacketNumberLength(LargestAcked(ack_frame)) + kQuicDeltaTimeLargestObservedSize + kQuicNumTimestampsSize; } // static size_t QuicFramer::GetStopWaitingFrameSize( QuicPacketNumberLength packet_number_length) { size_t min_size = kQuicFrameTypeSize + packet_number_length; return min_size; } // static size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, const QuicRstStreamFrame& frame) { if (VersionHasIetfQuicFrames(version)) { return QuicDataWriter::GetVarInt62Len(frame.stream_id) + QuicDataWriter::GetVarInt62Len(frame.byte_offset) + kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.ietf_error_code); } return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + kQuicErrorCodeSize; } // static size_t QuicFramer::GetConnectionCloseFrameSize( QuicTransportVersion version, const QuicConnectionCloseFrame& frame) { if (!VersionHasIetfQuicFrames(version)) { // Not IETF QUIC, return Google QUIC CONNECTION CLOSE frame size. return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + TruncatedErrorStringSize(frame.error_details); } // Prepend the extra error information to the string and get the result's // length. const size_t truncated_error_string_size = TruncatedErrorStringSize( GenerateErrorString(frame.error_details, frame.quic_error_code)); const size_t frame_size = truncated_error_string_size + QuicDataWriter::GetVarInt62Len(truncated_error_string_size) + kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.wire_error_code); if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { return frame_size; } // The Transport close frame has the transport_close_frame_type, so include // its length. return frame_size + QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type); } // static size_t QuicFramer::GetMinGoAwayFrameSize() { return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + kQuicMaxStreamIdSize; } // static size_t QuicFramer::GetWindowUpdateFrameSize( QuicTransportVersion version, const QuicWindowUpdateFrame& frame) { if (!VersionHasIetfQuicFrames(version)) { return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; } if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { // Frame would be a MAX DATA frame, which has only a Maximum Data field. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data); } // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID // fields. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data) + QuicDataWriter::GetVarInt62Len(frame.stream_id); } // static size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, const QuicMaxStreamsFrame& frame) { if (!VersionHasIetfQuicFrames(version)) { QUIC_BUG << "In version " << version << ", which does not support IETF Frames, and tried to serialize " "MaxStreams Frame."; } return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_count); } // static size_t QuicFramer::GetStreamsBlockedFrameSize( QuicTransportVersion version, const QuicStreamsBlockedFrame& frame) { if (!VersionHasIetfQuicFrames(version)) { QUIC_BUG << "In version " << version << ", which does not support IETF frames, and tried to serialize " "StreamsBlocked Frame."; } return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_count); } // static size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, const QuicBlockedFrame& frame) { if (!VersionHasIetfQuicFrames(version)) { return kQuicFrameTypeSize + kQuicMaxStreamIdSize; } if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { // return size of IETF QUIC Blocked frame return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); } // return size of IETF QUIC Stream Blocked frame. return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + QuicDataWriter::GetVarInt62Len(frame.stream_id); } // static size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + QuicDataWriter::GetVarInt62Len(frame.ietf_error_code); } // static size_t QuicFramer::GetAckFrequencyFrameSize( const QuicAckFrequencyFrame& frame) { return QuicDataWriter::GetVarInt62Len(IETF_ACK_FREQUENCY) + QuicDataWriter::GetVarInt62Len(frame.sequence_number) + QuicDataWriter::GetVarInt62Len(frame.packet_tolerance) + QuicDataWriter::GetVarInt62Len(frame.max_ack_delay.ToMicroseconds()) + // One byte for encoding boolean 1; } // static size_t QuicFramer::GetPathChallengeFrameSize( const QuicPathChallengeFrame& frame) { return kQuicFrameTypeSize + sizeof(frame.data_buffer); } // static size_t QuicFramer::GetPathResponseFrameSize( const QuicPathResponseFrame& frame) { return kQuicFrameTypeSize + sizeof(frame.data_buffer); } // static size_t QuicFramer::GetRetransmittableControlFrameSize( QuicTransportVersion version, const QuicFrame& frame) { switch (frame.type) { case PING_FRAME: // Ping has no payload. return kQuicFrameTypeSize; case RST_STREAM_FRAME: return GetRstStreamFrameSize(version, *frame.rst_stream_frame); case CONNECTION_CLOSE_FRAME: return GetConnectionCloseFrameSize(version, *frame.connection_close_frame); case GOAWAY_FRAME: return GetMinGoAwayFrameSize() + TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); case WINDOW_UPDATE_FRAME: // For IETF QUIC, this could be either a MAX DATA or MAX STREAM DATA. // GetWindowUpdateFrameSize figures this out and returns the correct // length. return GetWindowUpdateFrameSize(version, *frame.window_update_frame); case BLOCKED_FRAME: return GetBlockedFrameSize(version, *frame.blocked_frame); case NEW_CONNECTION_ID_FRAME: return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); case RETIRE_CONNECTION_ID_FRAME: return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); case NEW_TOKEN_FRAME: return GetNewTokenFrameSize(*frame.new_token_frame); case MAX_STREAMS_FRAME: return GetMaxStreamsFrameSize(version, frame.max_streams_frame); case STREAMS_BLOCKED_FRAME: return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame); case PATH_RESPONSE_FRAME: return GetPathResponseFrameSize(*frame.path_response_frame); case PATH_CHALLENGE_FRAME: return GetPathChallengeFrameSize(*frame.path_challenge_frame); case STOP_SENDING_FRAME: return GetStopSendingFrameSize(*frame.stop_sending_frame); case HANDSHAKE_DONE_FRAME: // HANDSHAKE_DONE has no payload. return kQuicFrameTypeSize; case ACK_FREQUENCY_FRAME: return GetAckFrequencyFrameSize(*frame.ack_frequency_frame); case STREAM_FRAME: case ACK_FRAME: case STOP_WAITING_FRAME: case MTU_DISCOVERY_FRAME: case PADDING_FRAME: case MESSAGE_FRAME: case CRYPTO_FRAME: case NUM_FRAME_TYPES: DCHECK(false); return 0; } // Not reachable, but some Chrome compilers can't figure that out. *sigh* DCHECK(false); return 0; } // static size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { // Sizes are 1 through 4 bytes. for (int i = 1; i <= 4; ++i) { stream_id >>= 8; if (stream_id == 0) { return i; } } QUIC_BUG << "Failed to determine StreamIDSize."; return 4; } // static size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) { // 0 is a special case. if (offset == 0) { return 0; } // 2 through 8 are the remaining sizes. offset >>= 8; for (int i = 2; i <= 8; ++i) { offset >>= 8; if (offset == 0) { return i; } } QUIC_BUG << "Failed to determine StreamOffsetSize."; return 8; } // static size_t QuicFramer::GetNewConnectionIdFrameSize( const QuicNewConnectionIdFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.sequence_number) + QuicDataWriter::GetVarInt62Len(frame.retire_prior_to) + kConnectionIdLengthSize + frame.connection_id.length() + sizeof(frame.stateless_reset_token); } // static size_t QuicFramer::GetRetireConnectionIdFrameSize( const QuicRetireConnectionIdFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.sequence_number); } // static size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.token.length()) + frame.token.length(); } // TODO(nharper): Change this method to take a ParsedQuicVersion. bool QuicFramer::IsSupportedTransportVersion( const QuicTransportVersion version) const { for (const ParsedQuicVersion& supported_version : supported_versions_) { if (version == supported_version.transport_version) { return true; } } return false; } bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { for (const ParsedQuicVersion& supported_version : supported_versions_) { if (version == supported_version) { return true; } } return false; } size_t QuicFramer::GetSerializedFrameLength( const QuicFrame& frame, size_t free_bytes, bool first_frame, bool last_frame, QuicPacketNumberLength packet_number_length) { // Prevent a rare crash reported in b/19458523. if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:" << free_bytes << " first_frame:" << first_frame << " last_frame:" << last_frame << " seq num length:" << packet_number_length; set_error(QUIC_INTERNAL_ERROR); visitor_->OnError(this); return 0; } if (frame.type == PADDING_FRAME) { if (frame.padding_frame.num_padding_bytes == -1) { // Full padding to the end of the packet. return free_bytes; } else { // Lite padding. return free_bytes < static_cast(frame.padding_frame.num_padding_bytes) ? free_bytes : frame.padding_frame.num_padding_bytes; } } size_t frame_len = ComputeFrameLength(frame, last_frame, packet_number_length); if (frame_len <= free_bytes) { // Frame fits within packet. Note that acks may be truncated. return frame_len; } // Only truncate the first frame in a packet, so if subsequent ones go // over, stop including more frames. if (!first_frame) { return 0; } bool can_truncate = frame.type == ACK_FRAME && free_bytes >= GetMinAckFrameSize(version_.transport_version, *frame.ack_frame, local_ack_delay_exponent_); if (can_truncate) { // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize. // Note that we may not use every byte of the writer in this case. QUIC_DLOG(INFO) << ENDPOINT << "Truncating large frame, free bytes: " << free_bytes; return free_bytes; } return 0; } QuicFramer::AckFrameInfo::AckFrameInfo() : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; QuicFramer::AckFrameInfo::~AckFrameInfo() {} bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, QuicDataWriter* writer, size_t length_field_offset, EncryptionLevel level) { if (!QuicVersionHasLongHeaderLengths(transport_version()) || !header.version_flag || length_field_offset == 0) { return true; } if (writer->length() < length_field_offset || writer->length() - length_field_offset < kQuicDefaultLongHeaderLengthLength) { set_detailed_error("Invalid length_field_offset."); QUIC_BUG << "Invalid length_field_offset."; return false; } size_t length_to_write = writer->length() - length_field_offset - kQuicDefaultLongHeaderLengthLength; // Add length of auth tag. length_to_write = GetCiphertextSize(level, length_to_write); QuicDataWriter length_writer(writer->length() - length_field_offset, writer->data() + length_field_offset); if (!length_writer.WriteVarInt62(length_to_write, kQuicDefaultLongHeaderLengthLength)) { set_detailed_error("Failed to overwrite long header length."); QUIC_BUG << "Failed to overwrite long header length."; return false; } return true; } size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, const QuicFrames& frames, char* buffer, size_t packet_length, EncryptionLevel level) { QUIC_BUG_IF(header.version_flag && VersionHasIetfInvariantHeader(transport_version()) && header.long_packet_type == RETRY && !frames.empty()) << "IETF RETRY packets cannot contain frames " << header; QuicDataWriter writer(packet_length, buffer); size_t length_field_offset = 0; if (!AppendPacketHeader(header, &writer, &length_field_offset)) { QUIC_BUG << "AppendPacketHeader failed"; return 0; } if (VersionHasIetfQuicFrames(transport_version())) { if (AppendIetfFrames(frames, &writer) == 0) { return 0; } if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, level)) { return 0; } return writer.length(); } size_t i = 0; for (const QuicFrame& frame : frames) { // Determine if we should write stream frame length in header. const bool last_frame_in_packet = i == frames.size() - 1; if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendTypeByte failed"; return 0; } switch (frame.type) { case PADDING_FRAME: if (!AppendPaddingFrame(frame.padding_frame, &writer)) { QUIC_BUG << "AppendPaddingFrame of " << frame.padding_frame.num_padding_bytes << " failed"; return 0; } break; case STREAM_FRAME: if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendStreamFrame failed"; return 0; } break; case ACK_FRAME: if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_; return 0; } break; case STOP_WAITING_FRAME: if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, &writer)) { QUIC_BUG << "AppendStopWaitingFrame failed"; return 0; } break; case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. ABSL_FALLTHROUGH_INTENDED; case PING_FRAME: // Ping has no payload. break; case RST_STREAM_FRAME: if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { QUIC_BUG << "AppendRstStreamFrame failed"; return 0; } break; case CONNECTION_CLOSE_FRAME: if (!AppendConnectionCloseFrame(*frame.connection_close_frame, &writer)) { QUIC_BUG << "AppendConnectionCloseFrame failed"; return 0; } break; case GOAWAY_FRAME: if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { QUIC_BUG << "AppendGoAwayFrame failed"; return 0; } break; case WINDOW_UPDATE_FRAME: if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { QUIC_BUG << "AppendWindowUpdateFrame failed"; return 0; } break; case BLOCKED_FRAME: if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { QUIC_BUG << "AppendBlockedFrame failed"; return 0; } break; case NEW_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case RETIRE_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF " "QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case NEW_TOKEN_FRAME: set_detailed_error( "Attempt to append NEW_TOKEN_ID frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case MAX_STREAMS_FRAME: set_detailed_error( "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case STREAMS_BLOCKED_FRAME: set_detailed_error( "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_RESPONSE_FRAME: set_detailed_error( "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_CHALLENGE_FRAME: set_detailed_error( "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case STOP_SENDING_FRAME: set_detailed_error( "Attempt to append STOP_SENDING frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case MESSAGE_FRAME: if (!AppendMessageFrameAndTypeByte(*frame.message_frame, last_frame_in_packet, &writer)) { QUIC_BUG << "AppendMessageFrame failed"; return 0; } break; case CRYPTO_FRAME: if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { set_detailed_error( "Attempt to append CRYPTO frame in version prior to 47."); return RaiseError(QUIC_INTERNAL_ERROR); } if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { QUIC_BUG << "AppendCryptoFrame failed"; return 0; } break; case HANDSHAKE_DONE_FRAME: // HANDSHAKE_DONE has no payload. break; default: RaiseError(QUIC_INVALID_FRAME_DATA); QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; return 0; } ++i; } if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, level)) { return 0; } return writer.length(); } size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, QuicDataWriter* writer) { size_t i = 0; for (const QuicFrame& frame : frames) { // Determine if we should write stream frame length in header. const bool last_frame_in_packet = i == frames.size() - 1; if (!AppendIetfFrameType(frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendIetfFrameType failed: " << detailed_error(); return 0; } switch (frame.type) { case PADDING_FRAME: if (!AppendPaddingFrame(frame.padding_frame, writer)) { QUIC_BUG << "AppendPaddingFrame of " << frame.padding_frame.num_padding_bytes << " failed: " << detailed_error(); return 0; } break; case STREAM_FRAME: if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendStreamFrame failed: " << detailed_error(); return 0; } break; case ACK_FRAME: if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: " << detailed_error(); return 0; } break; case STOP_WAITING_FRAME: set_detailed_error( "Attempt to append STOP WAITING frame in IETF QUIC."); RaiseError(QUIC_INTERNAL_ERROR); QUIC_BUG << detailed_error(); return 0; case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. ABSL_FALLTHROUGH_INTENDED; case PING_FRAME: // Ping has no payload. break; case RST_STREAM_FRAME: if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error(); return 0; } break; case CONNECTION_CLOSE_FRAME: if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame, writer)) { QUIC_BUG << "AppendIetfConnectionCloseFrame failed: " << detailed_error(); return 0; } break; case GOAWAY_FRAME: set_detailed_error("Attempt to append GOAWAY frame in IETF QUIC."); RaiseError(QUIC_INTERNAL_ERROR); QUIC_BUG << detailed_error(); return 0; case WINDOW_UPDATE_FRAME: // Depending on whether there is a stream ID or not, will be either a // MAX STREAM DATA frame or a MAX DATA frame. if (frame.window_update_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) { QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error(); return 0; } } else { if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) { QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error(); return 0; } } break; case BLOCKED_FRAME: if (!AppendBlockedFrame(*frame.blocked_frame, writer)) { QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error(); return 0; } break; case MAX_STREAMS_FRAME: if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) { QUIC_BUG << "AppendMaxStreamsFrame failed: " << detailed_error(); return 0; } break; case STREAMS_BLOCKED_FRAME: if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) { QUIC_BUG << "AppendStreamsBlockedFrame failed: " << detailed_error(); return 0; } break; case NEW_CONNECTION_ID_FRAME: if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, writer)) { QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error(); return 0; } break; case RETIRE_CONNECTION_ID_FRAME: if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, writer)) { QUIC_BUG << "AppendRetireConnectionIdFrame failed: " << detailed_error(); return 0; } break; case NEW_TOKEN_FRAME: if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error(); return 0; } break; case STOP_SENDING_FRAME: if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) { QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error(); return 0; } break; case PATH_CHALLENGE_FRAME: if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) { QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error(); return 0; } break; case PATH_RESPONSE_FRAME: if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) { QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error(); return 0; } break; case MESSAGE_FRAME: if (!AppendMessageFrameAndTypeByte(*frame.message_frame, last_frame_in_packet, writer)) { QUIC_BUG << "AppendMessageFrame failed: " << detailed_error(); return 0; } break; case CRYPTO_FRAME: if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error(); return 0; } break; case HANDSHAKE_DONE_FRAME: // HANDSHAKE_DONE has no payload. break; case ACK_FREQUENCY_FRAME: if (!AppendAckFrequencyFrame(*frame.ack_frequency_frame, writer)) { QUIC_BUG << "AppendAckFrequencyFrame failed: " << detailed_error(); return 0; } break; default: set_detailed_error("Tried to append unknown frame type."); RaiseError(QUIC_INVALID_FRAME_DATA); QUIC_BUG << "QUIC_INVALID_FRAME_DATA: " << frame.type; return 0; } ++i; } return writer->length(); } // static std::unique_ptr QuicFramer::BuildPublicResetPacket( const QuicPublicResetPacket& packet) { CryptoHandshakeMessage reset; reset.set_tag(kPRST); reset.SetValue(kRNON, packet.nonce_proof); if (packet.client_address.host().address_family() != IpAddressFamily::IP_UNSPEC) { // packet.client_address is non-empty. QuicSocketAddressCoder address_coder(packet.client_address); std::string serialized_address = address_coder.Encode(); if (serialized_address.empty()) { return nullptr; } reset.SetStringPiece(kCADR, serialized_address); } if (!packet.endpoint_id.empty()) { reset.SetStringPiece(kEPID, packet.endpoint_id); } const QuicData& reset_serialized = reset.GetSerialized(); size_t len = kPublicFlagsSize + packet.connection_id.length() + reset_serialized.length(); std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); uint8_t flags = static_cast(PACKET_PUBLIC_FLAGS_RST | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); // This hack makes post-v33 public reset packet look like pre-v33 packets. flags |= static_cast(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(packet.connection_id)) { return nullptr; } if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { return nullptr; } return std::make_unique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildIetfStatelessResetPacket( QuicConnectionId /*connection_id*/, QuicUint128 stateless_reset_token) { QUIC_DVLOG(1) << "Building IETF stateless reset packet."; size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset + sizeof(stateless_reset_token); std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); uint8_t type = 0; type |= FLAGS_FIXED_BIT; type |= FLAGS_SHORT_HEADER_RESERVED_1; type |= FLAGS_SHORT_HEADER_RESERVED_2; type |= PacketNumberLengthToOnWireValue(PACKET_1BYTE_PACKET_NUMBER); // Append type byte. if (!writer.WriteUInt8(type)) { return nullptr; } // Append random bytes. if (!writer.WriteRandomBytes(QuicRandom::GetInstance(), kMinRandomBytesLengthInStatelessReset)) { return nullptr; } // Append stateless reset token. if (!writer.WriteBytes(&stateless_reset_token, sizeof(stateless_reset_token))) { return nullptr; } return std::make_unique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildVersionNegotiationPacket( QuicConnectionId server_connection_id, QuicConnectionId client_connection_id, bool ietf_quic, bool use_length_prefix, const ParsedQuicVersionVector& versions) { QUIC_CODE_COUNT(quic_build_version_negotiation); if (use_length_prefix) { DCHECK(ietf_quic); QUIC_CODE_COUNT(quic_build_version_negotiation_ietf); } else if (ietf_quic) { QUIC_CODE_COUNT(quic_build_version_negotiation_old_ietf); } else { QUIC_CODE_COUNT(quic_build_version_negotiation_old_gquic); } ParsedQuicVersionVector wire_versions = versions; // Add a version reserved for negotiation as suggested by the // "Using Reserved Versions" section of draft-ietf-quic-transport. if (wire_versions.empty()) { // Ensure that version negotiation packets we send have at least two // versions. This guarantees that, under all circumstances, all QUIC // packets we send are at least 14 bytes long. wire_versions = {QuicVersionReservedForNegotiation(), QuicVersionReservedForNegotiation()}; } else { // This is not uniformely distributed but is acceptable since no security // depends on this randomness. size_t version_index = 0; const bool disable_randomness = GetQuicFlag(FLAGS_quic_disable_version_negotiation_grease_randomness); if (!disable_randomness) { version_index = QuicRandom::GetInstance()->RandUint64() % (wire_versions.size() + 1); } wire_versions.insert(wire_versions.begin() + version_index, QuicVersionReservedForNegotiation()); } if (ietf_quic) { return BuildIetfVersionNegotiationPacket( use_length_prefix, server_connection_id, client_connection_id, wire_versions); } // The GQUIC encoding does not support encoding client connection IDs. DCHECK(client_connection_id.IsEmpty()); // The GQUIC encoding does not support length-prefixed connection IDs. DCHECK(!use_length_prefix); DCHECK(!wire_versions.empty()); size_t len = kPublicFlagsSize + server_connection_id.length() + wire_versions.size() * kQuicVersionSize; std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); uint8_t flags = static_cast( PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(server_connection_id)) { return nullptr; } for (const ParsedQuicVersion& version : wire_versions) { if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { return nullptr; } } return std::make_unique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildIetfVersionNegotiationPacket( bool use_length_prefix, QuicConnectionId server_connection_id, QuicConnectionId client_connection_id, const ParsedQuicVersionVector& versions) { QUIC_DVLOG(1) << "Building IETF version negotiation packet with" << (use_length_prefix ? "" : "out") << " length prefix, server_connection_id " << server_connection_id << " client_connection_id " << client_connection_id << " versions " << ParsedQuicVersionVectorToString(versions); DCHECK(!versions.empty()); size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + client_connection_id.length() + server_connection_id.length() + (versions.size() + 1) * kQuicVersionSize; if (use_length_prefix) { // When using length-prefixed connection IDs, packets carry two lengths // instead of one. len += kConnectionIdLengthSize; } std::unique_ptr buffer(new char[len]); QuicDataWriter writer(len, buffer.get()); // TODO(fayang): Randomly select a value for the type. uint8_t type = static_cast(FLAGS_LONG_HEADER | FLAGS_FIXED_BIT); if (!writer.WriteUInt8(type)) { return nullptr; } if (!writer.WriteUInt32(0)) { return nullptr; } if (!AppendIetfConnectionIds(true, use_length_prefix, client_connection_id, server_connection_id, &writer)) { return nullptr; } for (const ParsedQuicVersion& version : versions) { if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { return nullptr; } } return std::make_unique(buffer.release(), len, true); } bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { is_processing_packet_ = true; bool result = ProcessPacketInternal(packet); is_processing_packet_ = false; return result; } bool QuicFramer::ProcessPacketInternal(const QuicEncryptedPacket& packet) { QuicDataReader reader(packet.data(), packet.length()); bool packet_has_ietf_packet_header = false; if (infer_packet_header_type_from_version_) { packet_has_ietf_packet_header = VersionHasIetfInvariantHeader(version_.transport_version); } else if (!reader.IsDoneReading()) { uint8_t type = reader.PeekByte(); packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); } if (packet_has_ietf_packet_header) { QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; } visitor_->OnPacket(); QuicPacketHeader header; if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " << detailed_error_; DCHECK_NE("", detailed_error_); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!visitor_->OnUnauthenticatedPublicHeader(header)) { // The visitor suppresses further processing of the packet. return true; } if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { if (perspective_ == Perspective::IS_CLIENT) { QUIC_DVLOG(1) << "Client received version negotiation packet"; return ProcessVersionNegotiationPacket(&reader, header); } else { QUIC_DLOG(ERROR) << "Server received version negotiation packet"; set_detailed_error("Server received version negotiation packet."); return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); } } if (header.version_flag && header.version != version_) { if (perspective_ == Perspective::IS_SERVER) { if (!visitor_->OnProtocolVersionMismatch(header.version)) { RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); return true; } } else { // A client received a packet of a different version but that packet is // not a version negotiation packet. It is therefore invalid and dropped. QUIC_DLOG(ERROR) << "Client received unexpected version " << ParsedQuicVersionToString(header.version) << " instead of " << ParsedQuicVersionToString(version_); set_detailed_error("Client received unexpected version."); return RaiseError(QUIC_INVALID_VERSION); } } bool rv; if (header.long_packet_type == RETRY) { rv = ProcessRetryPacket(&reader, header); } else if (header.reset_flag) { rv = ProcessPublicResetPacket(&reader, header); } else if (packet.length() <= kMaxIncomingPacketSize) { // The optimized decryption algorithm implementations run faster when // operating on aligned memory. ABSL_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize]; if (packet_has_ietf_packet_header) { rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, ABSL_ARRAYSIZE(buffer)); } else { rv = ProcessDataPacket(&reader, &header, packet, buffer, ABSL_ARRAYSIZE(buffer)); } } else { std::unique_ptr large_buffer(new char[packet.length()]); if (packet_has_ietf_packet_header) { rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), packet.length()); } else { rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), packet.length()); } QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" << "than kMaxIncomingPacketSize. packet size:" << packet.length(); } return rv; } bool QuicFramer::ProcessVersionNegotiationPacket( QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionNegotiationPacket packet( GetServerConnectionIdAsRecipient(header, perspective_)); // Try reading at least once to raise error if the packet is invalid. do { QuicVersionLabel version_label; if (!ProcessVersionLabel(reader, &version_label)) { set_detailed_error("Unable to read supported version in negotiation."); RecordDroppedPacketReason( DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); } ParsedQuicVersion parsed_version = ParseQuicVersionLabel(version_label); if (parsed_version != UnsupportedQuicVersion()) { packet.versions.push_back(parsed_version); } } while (!reader->IsDoneReading()); QUIC_DLOG(INFO) << ENDPOINT << "parsed version negotiation: " << ParsedQuicVersionVectorToString(packet.versions); visitor_->OnVersionNegotiationPacket(packet); return true; } bool QuicFramer::ProcessRetryPacket(QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); if (version_.HasRetryIntegrityTag()) { DCHECK(version_.HasLengthPrefixedConnectionIds()) << version_; const size_t bytes_remaining = reader->BytesRemaining(); if (bytes_remaining <= kRetryIntegrityTagLength) { set_detailed_error("Retry packet too short to parse integrity tag."); return false; } const size_t retry_token_length = bytes_remaining - kRetryIntegrityTagLength; DCHECK_GT(retry_token_length, 0u); absl::string_view retry_token; if (!reader->ReadStringPiece(&retry_token, retry_token_length)) { set_detailed_error("Failed to read retry token."); return false; } absl::string_view retry_without_tag = reader->PreviouslyReadPayload(); absl::string_view integrity_tag = reader->ReadRemainingPayload(); DCHECK_EQ(integrity_tag.length(), kRetryIntegrityTagLength); visitor_->OnRetryPacket(EmptyQuicConnectionId(), header.source_connection_id, retry_token, integrity_tag, retry_without_tag); return true; } QuicConnectionId original_destination_connection_id; if (version_.HasLengthPrefixedConnectionIds()) { // Parse Original Destination Connection ID. if (!reader->ReadLengthPrefixedConnectionId( &original_destination_connection_id)) { set_detailed_error("Unable to read Original Destination ConnectionId."); return false; } } else { // Parse Original Destination Connection ID Length. uint8_t odcil = header.type_byte & 0xf; if (odcil != 0) { odcil += kConnectionIdLengthAdjustment; } // Parse Original Destination Connection ID. if (!reader->ReadConnectionId(&original_destination_connection_id, odcil)) { set_detailed_error("Unable to read Original Destination ConnectionId."); return false; } } if (!QuicUtils::IsConnectionIdValidForVersion( original_destination_connection_id, transport_version())) { set_detailed_error( "Received Original Destination ConnectionId with invalid length."); return false; } absl::string_view retry_token = reader->ReadRemainingPayload(); visitor_->OnRetryPacket(original_destination_connection_id, header.source_connection_id, retry_token, /*retry_integrity_tag=*/absl::string_view(), /*retry_without_tag=*/absl::string_view()); return true; } // Seeks the current packet to check for a coalesced packet at the end. // If the IETF length field only spans part of the outer packet, // then there is a coalesced packet after this one. void QuicFramer::MaybeProcessCoalescedPacket( const QuicDataReader& encrypted_reader, uint64_t remaining_bytes_length, const QuicPacketHeader& header) { if (header.remaining_packet_length >= remaining_bytes_length) { // There is no coalesced packet. return; } absl::string_view remaining_data = encrypted_reader.PeekRemainingPayload(); DCHECK_EQ(remaining_data.length(), remaining_bytes_length); const char* coalesced_data = remaining_data.data() + header.remaining_packet_length; uint64_t coalesced_data_length = remaining_bytes_length - header.remaining_packet_length; QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); QuicPacketHeader coalesced_header; if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { // Some implementations pad their INITIAL packets by sending random invalid // data after the INITIAL, and that is allowed by the specification. If we // fail to parse a subsequent coalesced packet, simply ignore it. QUIC_DLOG(INFO) << ENDPOINT << "Failed to parse received coalesced header of length " << coalesced_data_length << " with error: " << detailed_error_ << ": " << absl::BytesToHexString(absl::string_view( coalesced_data, coalesced_data_length)) << " previous header was " << header; return; } if (coalesced_header.destination_connection_id != header.destination_connection_id) { // Drop coalesced packets with mismatched connection IDs. QUIC_DLOG(INFO) << ENDPOINT << "Received mismatched coalesced header " << coalesced_header << " previous header was " << header; QUIC_CODE_COUNT( quic_received_coalesced_packets_with_mismatched_connection_id); return; } QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, /*owns_buffer=*/false); visitor_->OnCoalescedPacket(coalesced_packet); } bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, QuicPacketHeader* header) { if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || header->form != IETF_QUIC_LONG_HEADER_PACKET || (header->long_packet_type != INITIAL && header->long_packet_type != HANDSHAKE && header->long_packet_type != ZERO_RTT_PROTECTED)) { return true; } header->length_length = encrypted_reader->PeekVarInt62Length(); if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { set_detailed_error("Unable to read long header payload length."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); if (header->remaining_packet_length > remaining_bytes_length) { set_detailed_error("Long header payload length longer than packet."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, *header); if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { set_detailed_error("Length TruncateRemaining failed."); QUIC_BUG << "Length TruncateRemaining failed."; return RaiseError(QUIC_INVALID_PACKET_HEADER); } return true; } bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, QuicPacketHeader* header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length) { DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); DCHECK(!header->has_possible_stateless_reset_token); header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; header->remaining_packet_length = 0; if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && perspective_ == Perspective::IS_CLIENT) { // Peek possible stateless reset token. Will only be used on decryption // failure. absl::string_view remaining = encrypted_reader->PeekRemainingPayload(); if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { header->has_possible_stateless_reset_token = true; memcpy(&header->possible_stateless_reset_token, &remaining.data()[remaining.length() - sizeof(header->possible_stateless_reset_token)], sizeof(header->possible_stateless_reset_token)); } } if (!MaybeProcessIetfLength(encrypted_reader, header)) { return false; } absl::string_view associated_data; std::vector ad_storage; QuicPacketNumber base_packet_number; if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || header->long_packet_type != VERSION_NEGOTIATION) { DCHECK(header->form == IETF_QUIC_SHORT_HEADER_PACKET || header->long_packet_type == INITIAL || header->long_packet_type == HANDSHAKE || header->long_packet_type == ZERO_RTT_PROTECTED); // Process packet number. if (supports_multiple_packet_number_spaces_) { PacketNumberSpace pn_space = GetPacketNumberSpace(*header); if (pn_space == NUM_PACKET_NUMBER_SPACES) { return RaiseError(QUIC_INVALID_PACKET_HEADER); } base_packet_number = largest_decrypted_packet_numbers_[pn_space]; } else { base_packet_number = largest_packet_number_; } uint64_t full_packet_number; bool hp_removal_failed = false; if (version_.HasHeaderProtection()) { if (!RemoveHeaderProtection(encrypted_reader, packet, header, &full_packet_number, &ad_storage)) { hp_removal_failed = true; } associated_data = absl::string_view(ad_storage.data(), ad_storage.size()); } else if (!ProcessAndCalculatePacketNumber( encrypted_reader, header->packet_number_length, base_packet_number, &full_packet_number)) { set_detailed_error("Unable to read packet number."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (hp_removal_failed || !IsValidFullPacketNumber(full_packet_number, version())) { if (IsIetfStatelessResetPacket(*header)) { // This is a stateless reset packet. QuicIetfStatelessResetPacket packet( *header, header->possible_stateless_reset_token); visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); return true; } if (hp_removal_failed) { const EncryptionLevel decryption_level = GetEncryptionLevel(*header); const bool has_decryption_key = decrypter_[decryption_level] != nullptr; visitor_->OnUndecryptablePacket( QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, has_decryption_key); RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); set_detailed_error(quiche::QuicheStrCat( "Unable to decrypt ", EncryptionLevelToString(decryption_level), " header protection", has_decryption_key ? "" : " (missing key)", ".")); return RaiseError(QUIC_DECRYPTION_FAILURE); } RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); set_detailed_error("packet numbers cannot be 0."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->packet_number = QuicPacketNumber(full_packet_number); } // A nonce should only present in SHLO from the server to the client when // using QUIC crypto. if (header->form == IETF_QUIC_LONG_HEADER_PACKET && header->long_packet_type == ZERO_RTT_PROTECTED && perspective_ == Perspective::IS_CLIENT && version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { if (!encrypted_reader->ReadBytes( reinterpret_cast(last_nonce_.data()), last_nonce_.size())) { set_detailed_error("Unable to read nonce."); RecordDroppedPacketReason( DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->nonce = &last_nonce_; } else { header->nonce = nullptr; } if (!visitor_->OnUnauthenticatedHeader(*header)) { set_detailed_error( "Visitor asked to stop processing of unauthenticated header."); return false; } absl::string_view encrypted = encrypted_reader->ReadRemainingPayload(); if (!version_.HasHeaderProtection()) { associated_data = GetAssociatedDataFromEncryptedPacket( version_.transport_version, packet, GetIncludedDestinationConnectionIdLength(*header), GetIncludedSourceConnectionIdLength(*header), header->version_flag, header->nonce != nullptr, header->packet_number_length, header->retry_token_length_length, header->retry_token.length(), header->length_length); } size_t decrypted_length = 0; EncryptionLevel decrypted_level; if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, buffer_length, &decrypted_length, &decrypted_level)) { if (IsIetfStatelessResetPacket(*header)) { // This is a stateless reset packet. QuicIetfStatelessResetPacket packet( *header, header->possible_stateless_reset_token); visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); return true; } const EncryptionLevel decryption_level = GetEncryptionLevel(*header); const bool has_decryption_key = version_.KnowsWhichDecrypterToUse() && decrypter_[decryption_level] != nullptr; visitor_->OnUndecryptablePacket( QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, has_decryption_key); set_detailed_error(quiche::QuicheStrCat( "Unable to decrypt ", EncryptionLevelToString(decryption_level), " payload with reconstructed packet number ", header->packet_number.ToString(), " (largest decrypted was ", base_packet_number.ToString(), ")", has_decryption_key || !version_.KnowsWhichDecrypterToUse() ? "" : " (missing key)", ".")); RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); return RaiseError(QUIC_DECRYPTION_FAILURE); } QuicDataReader reader(decrypted_buffer, decrypted_length); // Update the largest packet number after we have decrypted the packet // so we are confident is not attacker controlled. if (supports_multiple_packet_number_spaces_) { largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( decrypted_level)] .UpdateMax(header->packet_number); } else { largest_packet_number_.UpdateMax(header->packet_number); } if (!visitor_->OnPacketHeader(*header)) { RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); // The visitor suppresses further processing of the packet. return true; } if (packet.length() > kMaxIncomingPacketSize) { set_detailed_error("Packet too large."); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if (VersionHasIetfQuicFrames(version_.transport_version)) { current_received_frame_type_ = 0; if (!ProcessIetfFrameData(&reader, *header)) { current_received_frame_type_ = 0; DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } current_received_frame_type_ = 0; } else { if (!ProcessFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } } visitor_->OnPacketComplete(); return true; } bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, QuicPacketHeader* header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length) { if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process packet header. Stopping parsing. Error: " << detailed_error_; RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); return false; } absl::string_view encrypted = encrypted_reader->ReadRemainingPayload(); absl::string_view associated_data = GetAssociatedDataFromEncryptedPacket( version_.transport_version, packet, GetIncludedDestinationConnectionIdLength(*header), GetIncludedSourceConnectionIdLength(*header), header->version_flag, header->nonce != nullptr, header->packet_number_length, header->retry_token_length_length, header->retry_token.length(), header->length_length); size_t decrypted_length = 0; EncryptionLevel decrypted_level; if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, buffer_length, &decrypted_length, &decrypted_level)) { const EncryptionLevel decryption_level = decrypter_level_; // This version uses trial decryption so we always report to our visitor // that we are not certain we have the correct decryption key. const bool has_decryption_key = false; visitor_->OnUndecryptablePacket( QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, has_decryption_key); RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); set_detailed_error(quiche::QuicheStrCat( "Unable to decrypt ", EncryptionLevelToString(decryption_level), " payload.")); return RaiseError(QUIC_DECRYPTION_FAILURE); } QuicDataReader reader(decrypted_buffer, decrypted_length); // Update the largest packet number after we have decrypted the packet // so we are confident is not attacker controlled. if (supports_multiple_packet_number_spaces_) { largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( decrypted_level)] .UpdateMax(header->packet_number); } else { largest_packet_number_.UpdateMax(header->packet_number); } if (!visitor_->OnPacketHeader(*header)) { // The visitor suppresses further processing of the packet. return true; } if (packet.length() > kMaxIncomingPacketSize) { set_detailed_error("Packet too large."); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if (!ProcessFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } visitor_->OnPacketComplete(); return true; } bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, const QuicPacketHeader& header) { QuicPublicResetPacket packet( GetServerConnectionIdAsRecipient(header, perspective_)); std::unique_ptr reset( CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); if (!reset) { set_detailed_error("Unable to read reset message."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->tag() != kPRST) { set_detailed_error("Incorrect message tag."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { set_detailed_error("Unable to read nonce proof."); RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } // TODO(satyamshekhar): validate nonce to protect against DoS. absl::string_view address; if (reset->GetStringPiece(kCADR, &address)) { QuicSocketAddressCoder address_coder; if (address_coder.Decode(address.data(), address.length())) { packet.client_address = QuicSocketAddress(address_coder.ip(), address_coder.port()); } } absl::string_view endpoint_id; if (perspective_ == Perspective::IS_CLIENT && reset->GetStringPiece(kEPID, &endpoint_id)) { packet.endpoint_id = std::string(endpoint_id); packet.endpoint_id += '\0'; } visitor_->OnPublicResetPacket(packet); return true; } bool QuicFramer::IsIetfStatelessResetPacket( const QuicPacketHeader& header) const { QUIC_BUG_IF(header.has_possible_stateless_reset_token && perspective_ != Perspective::IS_CLIENT) << "has_possible_stateless_reset_token can only be true at client side."; return header.form == IETF_QUIC_SHORT_HEADER_PACKET && header.has_possible_stateless_reset_token && visitor_->IsValidStatelessResetToken( header.possible_stateless_reset_token); } bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { return encrypter_[level] != nullptr; } bool QuicFramer::HasDecrypterOfEncryptionLevel(EncryptionLevel level) const { return decrypter_[level] != nullptr; } bool QuicFramer::HasAnEncrypterForSpace(PacketNumberSpace space) const { switch (space) { case INITIAL_DATA: return HasEncrypterOfEncryptionLevel(ENCRYPTION_INITIAL); case HANDSHAKE_DATA: return HasEncrypterOfEncryptionLevel(ENCRYPTION_HANDSHAKE); case APPLICATION_DATA: return HasEncrypterOfEncryptionLevel(ENCRYPTION_ZERO_RTT) || HasEncrypterOfEncryptionLevel(ENCRYPTION_FORWARD_SECURE); case NUM_PACKET_NUMBER_SPACES: break; } QUIC_BUG << ENDPOINT << "Try to send data of space: " << PacketNumberSpaceToString(space); return false; } EncryptionLevel QuicFramer::GetEncryptionLevelToSendApplicationData() const { if (!HasAnEncrypterForSpace(APPLICATION_DATA)) { QUIC_BUG << "Tried to get encryption level to send application data with no " "encrypter available."; return NUM_ENCRYPTION_LEVELS; } if (HasEncrypterOfEncryptionLevel(ENCRYPTION_FORWARD_SECURE)) { return ENCRYPTION_FORWARD_SECURE; } DCHECK(HasEncrypterOfEncryptionLevel(ENCRYPTION_ZERO_RTT)); return ENCRYPTION_ZERO_RTT; } bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer, size_t* length_field_offset) { if (VersionHasIetfInvariantHeader(transport_version())) { return AppendIetfPacketHeader(header, writer, length_field_offset); } QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; uint8_t public_flags = 0; if (header.reset_flag) { public_flags |= PACKET_PUBLIC_FLAGS_RST; } if (header.version_flag) { public_flags |= PACKET_PUBLIC_FLAGS_VERSION; } public_flags |= GetPacketNumberFlags(header.packet_number_length) << kPublicHeaderSequenceNumberShift; if (header.nonce != nullptr) { DCHECK_EQ(Perspective::IS_SERVER, perspective_); public_flags |= PACKET_PUBLIC_FLAGS_NONCE; } QuicConnectionId server_connection_id = GetServerConnectionIdAsSender(header, perspective_); QuicConnectionIdIncluded server_connection_id_included = GetServerConnectionIdIncludedAsSender(header, perspective_); DCHECK_EQ(CONNECTION_ID_ABSENT, GetClientConnectionIdIncludedAsSender(header, perspective_)) << ENDPOINT << ParsedQuicVersionToString(version_) << " invalid header: " << header; switch (server_connection_id_included) { case CONNECTION_ID_ABSENT: if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { return false; } break; case CONNECTION_ID_PRESENT: QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( server_connection_id, transport_version())) << "AppendPacketHeader: attempted to use connection ID " << server_connection_id << " which is invalid with version " << QuicVersionToString(transport_version()); public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; if (perspective_ == Perspective::IS_CLIENT) { public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; } if (!writer->WriteUInt8(public_flags) || !writer->WriteConnectionId(server_connection_id)) { return false; } break; } last_serialized_server_connection_id_ = server_connection_id; if (header.version_flag) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionLabel version_label = CreateQuicVersionLabel(version_); if (!writer->WriteUInt32(version_label)) { return false; } QUIC_DVLOG(1) << ENDPOINT << "label = '" << QuicVersionLabelToString(version_label) << "'"; } if (header.nonce != nullptr && !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { return false; } if (!AppendPacketNumber(header.packet_number_length, header.packet_number, writer)) { return false; } return true; } bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, QuicDataWriter* writer) { uint8_t type = 0; if (header.version_flag) { type = static_cast( FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | LongHeaderTypeToOnWireValue(header.long_packet_type) | PacketNumberLengthToOnWireValue(header.packet_number_length)); } else { type = static_cast( FLAGS_FIXED_BIT | (current_key_phase_bit_ ? FLAGS_KEY_PHASE_BIT : 0) | PacketNumberLengthToOnWireValue(header.packet_number_length)); } return writer->WriteUInt8(type); } bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer, size_t* length_field_offset) { QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; QuicConnectionId server_connection_id = GetServerConnectionIdAsSender(header, perspective_); QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(server_connection_id, transport_version())) << "AppendIetfPacketHeader: attempted to use connection ID " << server_connection_id << " which is invalid with version " << QuicVersionToString(transport_version()); if (!AppendIetfHeaderTypeByte(header, writer)) { return false; } if (header.version_flag) { DCHECK_NE(VERSION_NEGOTIATION, header.long_packet_type) << "QuicFramer::AppendIetfPacketHeader does not support sending " "version negotiation packets, use " "QuicFramer::BuildVersionNegotiationPacket instead " << header; // Append version for long header. QuicVersionLabel version_label = CreateQuicVersionLabel(version_); if (!writer->WriteUInt32(version_label)) { return false; } } // Append connection ID. if (!AppendIetfConnectionIds( header.version_flag, version_.HasLengthPrefixedConnectionIds(), header.destination_connection_id_included != CONNECTION_ID_ABSENT ? header.destination_connection_id : EmptyQuicConnectionId(), header.source_connection_id_included != CONNECTION_ID_ABSENT ? header.source_connection_id : EmptyQuicConnectionId(), writer)) { return false; } last_serialized_server_connection_id_ = server_connection_id; if (version_.SupportsClientConnectionIds()) { last_serialized_client_connection_id_ = GetClientConnectionIdAsSender(header, perspective_); } // TODO(b/141924462) Remove this QUIC_BUG once we do support sending RETRY. QUIC_BUG_IF(header.version_flag && header.long_packet_type == RETRY) << "Sending IETF RETRY packets is not currently supported " << header; if (QuicVersionHasLongHeaderLengths(transport_version()) && header.version_flag) { if (header.long_packet_type == INITIAL) { DCHECK_NE(VARIABLE_LENGTH_INTEGER_LENGTH_0, header.retry_token_length_length) << ENDPOINT << ParsedQuicVersionToString(version_) << " bad retry token length length in header: " << header; // Write retry token length. if (!writer->WriteVarInt62(header.retry_token.length(), header.retry_token_length_length)) { return false; } // Write retry token. if (!header.retry_token.empty() && !writer->WriteStringPiece(header.retry_token)) { return false; } } if (length_field_offset != nullptr) { *length_field_offset = writer->length(); } // Add fake length to reserve two bytes to add length in later. writer->WriteVarInt62(256); } else if (length_field_offset != nullptr) { *length_field_offset = 0; } // Append packet number. if (!AppendPacketNumber(header.packet_number_length, header.packet_number, writer)) { return false; } last_written_packet_number_length_ = header.packet_number_length; if (!header.version_flag) { return true; } if (header.nonce != nullptr) { DCHECK(header.version_flag); DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); DCHECK_EQ(Perspective::IS_SERVER, perspective_); if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { return false; } } return true; } const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( uint32_t time_delta_us) { // The new time_delta might have wrapped to the next epoch, or it // might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the time closest to the previous // time. // // epoch_delta is the delta between epochs. A delta is 4 bytes of // microseconds. const uint64_t epoch_delta = UINT64_C(1) << 32; uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); // Wrapping is safe here because a wrapped value will not be ClosestTo below. uint64_t prev_epoch = epoch - epoch_delta; uint64_t next_epoch = epoch + epoch_delta; uint64_t time = ClosestTo( last_timestamp_.ToMicroseconds(), epoch + time_delta_us, ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, next_epoch + time_delta_us)); return QuicTime::Delta::FromMicroseconds(time); } uint64_t QuicFramer::CalculatePacketNumberFromWire( QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, uint64_t packet_number) const { // The new packet number might have wrapped to the next epoch, or // it might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the packet number closest to the // next expected packet number, the previous packet number plus 1. // epoch_delta is the delta between epochs the packet number was serialized // with, so the correct value is likely the same epoch as the last sequence // number or an adjacent epoch. if (!base_packet_number.IsInitialized()) { return packet_number; } const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); uint64_t next_packet_number = base_packet_number.ToUint64() + 1; uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); uint64_t prev_epoch = epoch - epoch_delta; uint64_t next_epoch = epoch + epoch_delta; return ClosestTo(next_packet_number, epoch + packet_number, ClosestTo(next_packet_number, prev_epoch + packet_number, next_epoch + packet_number)); } bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, bool packet_has_ietf_packet_header, QuicPacketHeader* header) { if (packet_has_ietf_packet_header) { return ProcessIetfPacketHeader(reader, header); } uint8_t public_flags; if (!reader->ReadBytes(&public_flags, 1)) { set_detailed_error("Unable to read public flags."); return false; } header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; if (validate_flags_ && !header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } if (header->reset_flag && header->version_flag) { set_detailed_error("Got version flag in reset packet"); return false; } QuicConnectionId* header_connection_id = &header->destination_connection_id; QuicConnectionIdIncluded* header_connection_id_included = &header->destination_connection_id_included; if (perspective_ == Perspective::IS_CLIENT) { header_connection_id = &header->source_connection_id; header_connection_id_included = &header->source_connection_id_included; } switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: if (!reader->ReadConnectionId(header_connection_id, kQuicDefaultConnectionIdLength)) { set_detailed_error("Unable to read ConnectionId."); return false; } *header_connection_id_included = CONNECTION_ID_PRESENT; break; case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: *header_connection_id_included = CONNECTION_ID_ABSENT; *header_connection_id = last_serialized_server_connection_id_; break; } header->packet_number_length = ReadSequenceNumberLength( public_flags >> kPublicHeaderSequenceNumberShift); // Read the version only if the packet is from the client. // version flag from the server means version negotiation packet. if (header->version_flag && perspective_ == Perspective::IS_SERVER) { QuicVersionLabel version_label; if (!ProcessVersionLabel(reader, &version_label)) { set_detailed_error("Unable to read protocol version."); return false; } // If the version from the new packet is the same as the version of this // framer, then the public flags should be set to something we understand. // If not, this raises an error. ParsedQuicVersion version = ParseQuicVersionLabel(version_label); if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } header->version = version; } // A nonce should only be present in packets from the server to the client, // which are neither version negotiation nor public reset packets. if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && !(public_flags & PACKET_PUBLIC_FLAGS_RST) && // The nonce flag from a client is ignored and is assumed to be an older // client indicating an eight-byte connection ID. perspective_ == Perspective::IS_CLIENT) { if (!reader->ReadBytes(reinterpret_cast(last_nonce_.data()), last_nonce_.size())) { set_detailed_error("Unable to read nonce."); return false; } header->nonce = &last_nonce_; } else { header->nonce = nullptr; } return true; } // static QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( QuicPacketNumber packet_number) { DCHECK(packet_number.IsInitialized()); if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { return PACKET_1BYTE_PACKET_NUMBER; } else if (packet_number < QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { return PACKET_2BYTE_PACKET_NUMBER; } else if (packet_number < QuicPacketNumber(UINT64_C(1) << (PACKET_4BYTE_PACKET_NUMBER * 8))) { return PACKET_4BYTE_PACKET_NUMBER; } else { return PACKET_6BYTE_PACKET_NUMBER; } } // static uint8_t QuicFramer::GetPacketNumberFlags( QuicPacketNumberLength packet_number_length) { switch (packet_number_length) { case PACKET_1BYTE_PACKET_NUMBER: return PACKET_FLAGS_1BYTE_PACKET; case PACKET_2BYTE_PACKET_NUMBER: return PACKET_FLAGS_2BYTE_PACKET; case PACKET_4BYTE_PACKET_NUMBER: return PACKET_FLAGS_4BYTE_PACKET; case PACKET_6BYTE_PACKET_NUMBER: case PACKET_8BYTE_PACKET_NUMBER: return PACKET_FLAGS_8BYTE_PACKET; default: QUIC_BUG << "Unreachable case statement."; return PACKET_FLAGS_8BYTE_PACKET; } } // static QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( const QuicAckFrame& frame) { AckFrameInfo new_ack_info; if (frame.packets.Empty()) { return new_ack_info; } // The first block is the last interval. It isn't encoded with the gap-length // encoding, so skip it. new_ack_info.first_block_length = frame.packets.LastIntervalLength(); auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); new_ack_info.max_block_length = itr->Length(); ++itr; // Don't do any more work after getting information for 256 ACK blocks; any // more can't be encoded anyway. for (; itr != frame.packets.rend() && new_ack_info.num_ack_blocks < std::numeric_limits::max(); previous_start = itr->min(), ++itr) { const auto& interval = *itr; const QuicPacketCount total_gap = previous_start - interval.max(); new_ack_info.num_ack_blocks += (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); new_ack_info.max_block_length = std::max(new_ack_info.max_block_length, interval.Length()); } return new_ack_info; } bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, QuicPacketHeader* header) { QuicPacketNumber base_packet_number; if (supports_multiple_packet_number_spaces_) { PacketNumberSpace pn_space = GetPacketNumberSpace(*header); if (pn_space == NUM_PACKET_NUMBER_SPACES) { set_detailed_error("Unable to determine packet number space."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } base_packet_number = largest_decrypted_packet_numbers_[pn_space]; } else { base_packet_number = largest_packet_number_; } uint64_t full_packet_number; if (!ProcessAndCalculatePacketNumber( encrypted_reader, header->packet_number_length, base_packet_number, &full_packet_number)) { set_detailed_error("Unable to read packet number."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!IsValidFullPacketNumber(full_packet_number, version())) { set_detailed_error("packet numbers cannot be 0."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } header->packet_number = QuicPacketNumber(full_packet_number); if (!visitor_->OnUnauthenticatedHeader(*header)) { set_detailed_error( "Visitor asked to stop processing of unauthenticated header."); return false; } // The function we are in is called because the framer believes that it is // processing a packet that uses the non-IETF (i.e. Google QUIC) packet header // type. Usually, the framer makes that decision based on the framer's // version, but when the framer is used with Perspective::IS_SERVER, then // before version negotiation is complete (specifically, before // InferPacketHeaderTypeFromVersion is called), this decision is made based on // the type byte of the packet. // // If the framer's version KnowsWhichDecrypterToUse, then that version expects // to use the IETF packet header type. If that's the case and we're in this // function, then the packet received is invalid: the framer was expecting an // IETF packet header and didn't get one. if (version().KnowsWhichDecrypterToUse()) { set_detailed_error("Invalid public header type for expected version."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } return true; } bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, QuicPacketHeader* header) { uint8_t type; if (!reader->ReadBytes(&type, 1)) { set_detailed_error("Unable to read first byte."); return false; } header->type_byte = type; // Determine whether this is a long or short header. header->form = GetIetfPacketHeaderFormat(type); if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { // Version is always present in long headers. header->version_flag = true; // In versions that do not support client connection IDs, we mark the // corresponding connection ID as absent. header->destination_connection_id_included = (perspective_ == Perspective::IS_SERVER || version_.SupportsClientConnectionIds()) ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; header->source_connection_id_included = (perspective_ == Perspective::IS_CLIENT || version_.SupportsClientConnectionIds()) ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; // Read version tag. QuicVersionLabel version_label; if (!ProcessVersionLabel(reader, &version_label)) { set_detailed_error("Unable to read protocol version."); return false; } if (!version_label) { // Version label is 0 indicating this is a version negotiation packet. header->long_packet_type = VERSION_NEGOTIATION; } else { header->version = ParseQuicVersionLabel(version_label); if (header->version.IsKnown()) { if (!(type & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in long header."); return false; } if (!GetLongHeaderType(type, &header->long_packet_type)) { set_detailed_error("Illegal long header type value."); return false; } if (header->long_packet_type == RETRY) { if (!version().SupportsRetry()) { set_detailed_error("RETRY not supported in this version."); return false; } if (perspective_ == Perspective::IS_SERVER) { set_detailed_error("Client-initiated RETRY is invalid."); return false; } } else if (!header->version.HasHeaderProtection()) { header->packet_number_length = GetLongHeaderPacketNumberLength(type); } } } QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " << QuicUtils::QuicLongHeaderTypetoString( header->long_packet_type); return true; } QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; // Version is not present in short headers. header->version_flag = false; // In versions that do not support client connection IDs, the client will not // receive destination connection IDs. header->destination_connection_id_included = (perspective_ == Perspective::IS_SERVER || version_.SupportsClientConnectionIds()) ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; header->source_connection_id_included = CONNECTION_ID_ABSENT; if (!(type & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in short header."); return false; } if (!version_.HasHeaderProtection()) { header->packet_number_length = GetShortHeaderPacketNumberLength(type); } QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; return true; } // static bool QuicFramer::ProcessVersionLabel(QuicDataReader* reader, QuicVersionLabel* version_label) { if (!reader->ReadUInt32(version_label)) { return false; } return true; } // static bool QuicFramer::ProcessAndValidateIetfConnectionIdLength( QuicDataReader* reader, ParsedQuicVersion version, Perspective perspective, bool should_update_expected_server_connection_id_length, uint8_t* expected_server_connection_id_length, uint8_t* destination_connection_id_length, uint8_t* source_connection_id_length, std::string* detailed_error) { uint8_t connection_id_lengths_byte; if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { *detailed_error = "Unable to read ConnectionId length."; return false; } uint8_t dcil = (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; if (dcil != 0) { dcil += kConnectionIdLengthAdjustment; } uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; if (scil != 0) { scil += kConnectionIdLengthAdjustment; } if (should_update_expected_server_connection_id_length) { uint8_t server_connection_id_length = perspective == Perspective::IS_SERVER ? dcil : scil; if (*expected_server_connection_id_length != server_connection_id_length) { QUIC_DVLOG(1) << "Updating expected_server_connection_id_length: " << static_cast(*expected_server_connection_id_length) << " -> " << static_cast(server_connection_id_length); *expected_server_connection_id_length = server_connection_id_length; } } if (!should_update_expected_server_connection_id_length && (dcil != *destination_connection_id_length || scil != *source_connection_id_length) && version.IsKnown() && !version.AllowsVariableLengthConnectionIds()) { QUIC_DVLOG(1) << "dcil: " << static_cast(dcil) << ", scil: " << static_cast(scil); *detailed_error = "Invalid ConnectionId length."; return false; } *destination_connection_id_length = dcil; *source_connection_id_length = scil; return true; } bool QuicFramer::ValidateReceivedConnectionIds(const QuicPacketHeader& header) { if (!QuicUtils::IsConnectionIdValidForVersion( GetServerConnectionIdAsRecipient(header, perspective_), transport_version())) { set_detailed_error("Received server connection ID with invalid length."); return false; } if (version_.SupportsClientConnectionIds() && !QuicUtils::IsConnectionIdValidForVersion( GetClientConnectionIdAsRecipient(header, perspective_), transport_version())) { set_detailed_error("Received client connection ID with invalid length."); return false; } return true; } bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, QuicPacketHeader* header) { if (version_.HasLengthPrefixedConnectionIds()) { uint8_t expected_destination_connection_id_length = perspective_ == Perspective::IS_CLIENT ? expected_client_connection_id_length_ : expected_server_connection_id_length_; QuicVersionLabel version_label; bool has_length_prefix; std::string detailed_error; QuicErrorCode parse_result = QuicFramer::ParsePublicHeader( reader, expected_destination_connection_id_length, VersionHasIetfInvariantHeader(version_.transport_version), &header->type_byte, &header->form, &header->version_flag, &has_length_prefix, &version_label, &header->version, &header->destination_connection_id, &header->source_connection_id, &header->long_packet_type, &header->retry_token_length_length, &header->retry_token, &detailed_error); if (parse_result != QUIC_NO_ERROR) { set_detailed_error(detailed_error); return false; } header->destination_connection_id_included = CONNECTION_ID_PRESENT; header->source_connection_id_included = header->version_flag ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; if (header->source_connection_id_included == CONNECTION_ID_ABSENT) { DCHECK(header->source_connection_id.IsEmpty()); if (perspective_ == Perspective::IS_CLIENT) { header->source_connection_id = last_serialized_server_connection_id_; } else { header->source_connection_id = last_serialized_client_connection_id_; } } if (!ValidateReceivedConnectionIds(*header)) { return false; } if (header->version_flag && header->long_packet_type != VERSION_NEGOTIATION && !(header->type_byte & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in long header."); return false; } if (!header->version_flag && !(header->type_byte & FLAGS_FIXED_BIT)) { set_detailed_error("Fixed bit is 0 in short header."); return false; } if (!header->version_flag) { if (!version_.HasHeaderProtection()) { header->packet_number_length = GetShortHeaderPacketNumberLength(header->type_byte); } return true; } if (header->long_packet_type == RETRY) { if (!version().SupportsRetry()) { set_detailed_error("RETRY not supported in this version."); return false; } if (perspective_ == Perspective::IS_SERVER) { set_detailed_error("Client-initiated RETRY is invalid."); return false; } return true; } if (header->version.IsKnown() && !header->version.HasHeaderProtection()) { header->packet_number_length = GetLongHeaderPacketNumberLength(header->type_byte); } return true; } if (!ProcessIetfHeaderTypeByte(reader, header)) { return false; } uint8_t destination_connection_id_length = header->destination_connection_id_included == CONNECTION_ID_PRESENT ? (perspective_ == Perspective::IS_SERVER ? expected_server_connection_id_length_ : expected_client_connection_id_length_) : 0; uint8_t source_connection_id_length = header->source_connection_id_included == CONNECTION_ID_PRESENT ? (perspective_ == Perspective::IS_CLIENT ? expected_server_connection_id_length_ : expected_client_connection_id_length_) : 0; if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { if (!ProcessAndValidateIetfConnectionIdLength( reader, header->version, perspective_, /*should_update_expected_server_connection_id_length=*/false, &expected_server_connection_id_length_, &destination_connection_id_length, &source_connection_id_length, &detailed_error_)) { return false; } } // Read connection ID. if (!reader->ReadConnectionId(&header->destination_connection_id, destination_connection_id_length)) { set_detailed_error("Unable to read destination connection ID."); return false; } if (!reader->ReadConnectionId(&header->source_connection_id, source_connection_id_length)) { set_detailed_error("Unable to read source connection ID."); return false; } if (header->source_connection_id_included == CONNECTION_ID_ABSENT) { if (!header->source_connection_id.IsEmpty()) { DCHECK(!version_.SupportsClientConnectionIds()); set_detailed_error("Client connection ID not supported in this version."); return false; } if (perspective_ == Perspective::IS_CLIENT) { header->source_connection_id = last_serialized_server_connection_id_; } else { header->source_connection_id = last_serialized_client_connection_id_; } } return ValidateReceivedConnectionIds(*header); } bool QuicFramer::ProcessAndCalculatePacketNumber( QuicDataReader* reader, QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, uint64_t* packet_number) { uint64_t wire_packet_number; if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { return false; } // TODO(ianswett): Explore the usefulness of trying multiple packet numbers // in case the first guess is incorrect. *packet_number = CalculatePacketNumberFromWire( packet_number_length, base_packet_number, wire_packet_number); return true; } bool QuicFramer::ProcessFrameData(QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) << "IETF QUIC Framing negotiated but attempting to process frames as " "non-IETF QUIC."; if (reader->IsDoneReading()) { set_detailed_error("Packet has no frames."); return RaiseError(QUIC_MISSING_PAYLOAD); } QUIC_DVLOG(2) << ENDPOINT << "Processing packet with header " << header; while (!reader->IsDoneReading()) { uint8_t frame_type; if (!reader->ReadBytes(&frame_type, 1)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } const uint8_t special_mask = version_.HasIetfInvariantHeader() ? kQuicFrameTypeSpecialMask : kQuicFrameTypeBrokenMask; if (frame_type & special_mask) { // Stream Frame if (frame_type & kQuicFrameTypeStreamMask) { QuicStreamFrame frame; if (!ProcessStreamFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_STREAM_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing stream frame " << frame; if (!visitor_->OnStreamFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } // Ack Frame if (frame_type & kQuicFrameTypeAckMask) { if (!ProcessAckFrame(reader, frame_type)) { return RaiseError(QUIC_INVALID_ACK_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing ACK frame"; continue; } // This was a special frame type that did not match any // of the known ones. Error. set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } switch (frame_type) { case PADDING_FRAME: { QuicPaddingFrame frame; ProcessPaddingFrame(reader, &frame); QUIC_DVLOG(2) << ENDPOINT << "Processing padding frame " << frame; if (!visitor_->OnPaddingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case RST_STREAM_FRAME: { QuicRstStreamFrame frame; if (!ProcessRstStreamFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing reset stream frame " << frame; if (!visitor_->OnRstStreamFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case CONNECTION_CLOSE_FRAME: { QuicConnectionCloseFrame frame; if (!ProcessConnectionCloseFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing connection close frame " << frame; if (!visitor_->OnConnectionCloseFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case GOAWAY_FRAME: { QuicGoAwayFrame goaway_frame; if (!ProcessGoAwayFrame(reader, &goaway_frame)) { return RaiseError(QUIC_INVALID_GOAWAY_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing go away frame " << goaway_frame; if (!visitor_->OnGoAwayFrame(goaway_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case WINDOW_UPDATE_FRAME: { QuicWindowUpdateFrame window_update_frame; if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing window update frame " << window_update_frame; if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case BLOCKED_FRAME: { QuicBlockedFrame blocked_frame; if (!ProcessBlockedFrame(reader, &blocked_frame)) { return RaiseError(QUIC_INVALID_BLOCKED_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing blocked frame " << blocked_frame; if (!visitor_->OnBlockedFrame(blocked_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case STOP_WAITING_FRAME: { QuicStopWaitingFrame stop_waiting_frame; if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing stop waiting frame " << stop_waiting_frame; if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case PING_FRAME: { // Ping has no payload. QuicPingFrame ping_frame; if (!visitor_->OnPingFrame(ping_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } QUIC_DVLOG(2) << ENDPOINT << "Processing ping frame " << ping_frame; continue; } case IETF_EXTENSION_MESSAGE_NO_LENGTH: ABSL_FALLTHROUGH_INTENDED; case IETF_EXTENSION_MESSAGE: { QuicMessageFrame message_frame; if (!ProcessMessageFrame(reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, &message_frame)) { return RaiseError(QUIC_INVALID_MESSAGE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing message frame " << message_frame; if (!visitor_->OnMessageFrame(message_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case CRYPTO_FRAME: { if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { set_detailed_error("Illegal frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } QuicCryptoFrame frame; if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing crypto frame " << frame; if (!visitor_->OnCryptoFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case HANDSHAKE_DONE_FRAME: { // HANDSHAKE_DONE has no payload. QuicHandshakeDoneFrame handshake_done_frame; QUIC_DVLOG(2) << ENDPOINT << "Processing handshake done frame " << handshake_done_frame; if (!visitor_->OnHandshakeDoneFrame(handshake_done_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } default: set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } } return true; } bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK(VersionHasIetfQuicFrames(version_.transport_version)) << "Attempt to process frames as IETF frames but version (" << version_.transport_version << ") does not support IETF Framing."; if (reader->IsDoneReading()) { set_detailed_error("Packet has no frames."); return RaiseError(QUIC_MISSING_PAYLOAD); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF packet with header " << header; while (!reader->IsDoneReading()) { uint64_t frame_type; // Will be the number of bytes into which frame_type was encoded. size_t encoded_bytes = reader->BytesRemaining(); if (!reader->ReadVarInt62(&frame_type)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } current_received_frame_type_ = frame_type; // Is now the number of bytes into which the frame type was encoded. encoded_bytes -= reader->BytesRemaining(); // Check that the frame type is minimally encoded. if (encoded_bytes != static_cast(QuicDataWriter::GetVarInt62Len(frame_type))) { // The frame type was not minimally encoded. set_detailed_error("Frame type not minimally encoded."); return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); } if (IS_IETF_STREAM_FRAME(frame_type)) { QuicStreamFrame frame; if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_STREAM_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream frame " << frame; if (!visitor_->OnStreamFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } } else { switch (frame_type) { case IETF_PADDING: { QuicPaddingFrame frame; ProcessPaddingFrame(reader, &frame); QUIC_DVLOG(2) << ENDPOINT << "Processing IETF padding frame " << frame; if (!visitor_->OnPaddingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_RST_STREAM: { QuicRstStreamFrame frame; if (!ProcessIetfResetStreamFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF reset stream frame " << frame; if (!visitor_->OnRstStreamFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_APPLICATION_CLOSE: case IETF_CONNECTION_CLOSE: { QuicConnectionCloseFrame frame; if (!ProcessIetfConnectionCloseFrame( reader, (frame_type == IETF_CONNECTION_CLOSE) ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE : IETF_QUIC_APPLICATION_CONNECTION_CLOSE, &frame)) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF connection close frame " << frame; if (!visitor_->OnConnectionCloseFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_DATA: { QuicWindowUpdateFrame frame; if (!ProcessMaxDataFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max data frame " << frame; if (!visitor_->OnWindowUpdateFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_STREAM_DATA: { QuicWindowUpdateFrame frame; if (!ProcessMaxStreamDataFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max stream data frame " << frame; if (!visitor_->OnWindowUpdateFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_MAX_STREAMS_BIDIRECTIONAL: case IETF_MAX_STREAMS_UNIDIRECTIONAL: { QuicMaxStreamsFrame frame; if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { return RaiseError(QUIC_MAX_STREAMS_DATA); } QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2); QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max streams frame " << frame; if (!visitor_->OnMaxStreamsFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_PING: { // Ping has no payload. QuicPingFrame ping_frame; QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ping frame " << ping_frame; if (!visitor_->OnPingFrame(ping_frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_DATA_BLOCKED: { QuicBlockedFrame frame; if (!ProcessDataBlockedFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_BLOCKED_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF blocked frame " << frame; if (!visitor_->OnBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STREAM_DATA_BLOCKED: { QuicBlockedFrame frame; if (!ProcessStreamDataBlockedFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream blocked frame " << frame; if (!visitor_->OnBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { QuicStreamsBlockedFrame frame; if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { return RaiseError(QUIC_STREAMS_BLOCKED_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF streams blocked frame " << frame; if (!visitor_->OnStreamsBlockedFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_NEW_CONNECTION_ID: { QuicNewConnectionIdFrame frame; if (!ProcessNewConnectionIdFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF new connection ID frame " << frame; if (!visitor_->OnNewConnectionIdFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_RETIRE_CONNECTION_ID: { QuicRetireConnectionIdFrame frame; if (!ProcessRetireConnectionIdFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF retire connection ID frame " << frame; if (!visitor_->OnRetireConnectionIdFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_NEW_TOKEN: { QuicNewTokenFrame frame; if (!ProcessNewTokenFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_NEW_TOKEN); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF new token frame " << frame; if (!visitor_->OnNewTokenFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_STOP_SENDING: { QuicStopSendingFrame frame; if (!ProcessStopSendingFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stop sending frame " << frame; if (!visitor_->OnStopSendingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_ACK_ECN: case IETF_ACK: { QuicAckFrame frame; if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_ACK_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ACK frame " << frame; break; } case IETF_PATH_CHALLENGE: { QuicPathChallengeFrame frame; if (!ProcessPathChallengeFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path challenge frame " << frame; if (!visitor_->OnPathChallengeFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_PATH_RESPONSE: { QuicPathResponseFrame frame; if (!ProcessPathResponseFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path response frame " << frame; if (!visitor_->OnPathResponseFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_EXTENSION_MESSAGE_NO_LENGTH_V99: ABSL_FALLTHROUGH_INTENDED; case IETF_EXTENSION_MESSAGE_V99: { QuicMessageFrame message_frame; if (!ProcessMessageFrame( reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH_V99, &message_frame)) { return RaiseError(QUIC_INVALID_MESSAGE_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF message frame " << message_frame; if (!visitor_->OnMessageFrame(message_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_CRYPTO: { QuicCryptoFrame frame; if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF crypto frame " << frame; if (!visitor_->OnCryptoFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } case IETF_HANDSHAKE_DONE: { // HANDSHAKE_DONE has no payload. QuicHandshakeDoneFrame handshake_done_frame; if (!visitor_->OnHandshakeDoneFrame(handshake_done_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } QUIC_DVLOG(2) << ENDPOINT << "Processing handshake done frame " << handshake_done_frame; break; } case IETF_ACK_FREQUENCY: { QuicAckFrequencyFrame frame; if (!ProcessAckFrequencyFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ack frequency frame " << frame; if (!visitor_->OnAckFrequencyFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } break; } default: set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } } } return true; } namespace { // Create a mask that sets the last |num_bits| to 1 and the rest to 0. inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { return (1u << num_bits) - 1; } // Extract |num_bits| from |flags| offset by |offset|. uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { return (flags >> offset) & GetMaskFromNumBits(num_bits); } // Extract the bit at position |offset| from |flags| as a bool. bool ExtractBit(uint8_t flags, uint8_t offset) { return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; } // Set |num_bits|, offset by |offset| to |val| in |flags|. void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { DCHECK_LE(val, GetMaskFromNumBits(num_bits)); *flags |= val << offset; } // Set the bit at position |offset| to |val| in |flags|. void SetBit(uint8_t* flags, bool val, uint8_t offset) { SetBits(flags, val ? 1 : 0, 1, offset); } } // namespace bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, uint8_t frame_type, QuicStreamFrame* frame) { uint8_t stream_flags = frame_type; uint8_t stream_id_length = 0; uint8_t offset_length = 4; bool has_data_length = true; stream_flags &= ~kQuicFrameTypeStreamMask; // Read from right to left: StreamID, Offset, Data Length, Fin. stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; stream_flags >>= kQuicStreamIdShift; offset_length = (stream_flags & kQuicStreamOffsetMask); // There is no encoding for 1 byte, only 0 and 2 through 8. if (offset_length > 0) { offset_length += 1; } stream_flags >>= kQuicStreamShift; has_data_length = (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; stream_flags >>= kQuicStreamDataLengthShift; frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; uint64_t stream_id; if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } frame->stream_id = static_cast(stream_id); if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { set_detailed_error("Unable to read offset."); return false; } // TODO(ianswett): Don't use absl::string_view as an intermediary. absl::string_view data; if (has_data_length) { if (!reader->ReadStringPiece16(&data)) { set_detailed_error("Unable to read frame data."); return false; } } else { if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { set_detailed_error("Unable to read frame data."); return false; } } frame->data_buffer = data.data(); frame->data_length = static_cast(data.length()); return true; } bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, uint8_t frame_type, QuicStreamFrame* frame) { // Read stream id from the frame. It's always present. if (!ReadUint32FromVarint62(reader, IETF_STREAM, &frame->stream_id)) { return false; } // If we have a data offset, read it. If not, set to 0. if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Unable to read stream data offset."); return false; } } else { // no offset in the frame, ensure it's 0 in the Frame. frame->offset = 0; } // If we have a data length, read it. If not, set to 0. if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { uint64_t length; if (!reader->ReadVarInt62(&length)) { set_detailed_error("Unable to read stream data length."); return false; } if (length > std::numeric_limitsdata_length)>::max()) { set_detailed_error("Stream data length is too large."); return false; } frame->data_length = length; } else { // no length in the frame, it is the number of bytes remaining in the // packet. frame->data_length = reader->BytesRemaining(); } if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { frame->fin = true; } else { frame->fin = false; } // TODO(ianswett): Don't use absl::string_view as an intermediary. absl::string_view data; if (!reader->ReadStringPiece(&data, frame->data_length)) { set_detailed_error("Unable to read frame data."); return false; } frame->data_buffer = data.data(); DCHECK_EQ(frame->data_length, data.length()); return true; } bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, EncryptionLevel encryption_level, QuicCryptoFrame* frame) { frame->level = encryption_level; if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Unable to read crypto data offset."); return false; } uint64_t len; if (!reader->ReadVarInt62(&len) || len > std::numeric_limits::max()) { set_detailed_error("Invalid data length."); return false; } frame->data_length = len; // TODO(ianswett): Don't use absl::string_view as an intermediary. absl::string_view data; if (!reader->ReadStringPiece(&data, frame->data_length)) { set_detailed_error("Unable to read frame data."); return false; } frame->data_buffer = data.data(); return true; } bool QuicFramer::ProcessAckFrequencyFrame(QuicDataReader* reader, QuicAckFrequencyFrame* frame) { if (!reader->ReadVarInt62(&frame->sequence_number)) { set_detailed_error("Unable to read sequence number."); return false; } if (!reader->ReadVarInt62(&frame->packet_tolerance)) { set_detailed_error("Unable to read packet tolerance."); return false; } if (frame->packet_tolerance == 0) { set_detailed_error("Invalid packet tolerance."); return false; } uint64_t max_ack_delay_us; if (!reader->ReadVarInt62(&max_ack_delay_us)) { set_detailed_error("Unable to read max_ack_delay_us."); return false; } constexpr uint64_t kMaxAckDelayUsBound = 1u << 24; if (max_ack_delay_us > kMaxAckDelayUsBound) { set_detailed_error("Invalid max_ack_delay_us."); return false; } frame->max_ack_delay = QuicTime::Delta::FromMicroseconds(max_ack_delay_us); uint8_t ignore_order; if (!reader->ReadUInt8(&ignore_order)) { set_detailed_error("Unable to read ignore_order."); return false; } if (ignore_order > 1) { set_detailed_error("Invalid ignore_order."); return false; } frame->ignore_order = ignore_order; return true; } bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { const bool has_ack_blocks = ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); uint8_t num_ack_blocks = 0; uint8_t num_received_packets = 0; // Determine the two lengths from the frame type: largest acked length, // ack block length. const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset)); const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kLargestAckedOffset)); uint64_t largest_acked; if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { set_detailed_error("Unable to read largest acked."); return false; } if (largest_acked < first_sending_packet_number_.ToUint64()) { // Connection always sends packet starting from kFirstSendingPacketNumber > // 0, peer has observed an unsent packet. set_detailed_error("Largest acked is 0."); return false; } uint64_t ack_delay_time_us; if (!reader->ReadUFloat16(&ack_delay_time_us)) { set_detailed_error("Unable to read ack delay time."); return false; } if (!visitor_->OnAckFrameStart( QuicPacketNumber(largest_acked), ack_delay_time_us == kUFloat16MaxValue ? QuicTime::Delta::Infinite() : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { // The visitor suppresses further processing of the packet. Although this is // not a parsing error, returns false as this is in middle of processing an // ack frame, set_detailed_error("Visitor suppresses further processing of ack frame."); return false; } if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { set_detailed_error("Unable to read num of ack blocks."); return false; } uint64_t first_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { set_detailed_error("Unable to read first ack block length."); return false; } if (first_block_length == 0) { set_detailed_error("First block length is zero."); return false; } bool first_ack_block_underflow = first_block_length > largest_acked + 1; if (first_block_length + first_sending_packet_number_.ToUint64() > largest_acked + 1) { first_ack_block_underflow = true; } if (first_ack_block_underflow) { set_detailed_error( quiche::QuicheStrCat("Underflow with first ack block length ", first_block_length, " largest acked is ", largest_acked, ".") .c_str()); return false; } uint64_t first_received = largest_acked + 1 - first_block_length; if (!visitor_->OnAckRange(QuicPacketNumber(first_received), QuicPacketNumber(largest_acked + 1))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ack frame, set_detailed_error("Visitor suppresses further processing of ack frame."); return false; } if (num_ack_blocks > 0) { for (size_t i = 0; i < num_ack_blocks; ++i) { uint8_t gap = 0; if (!reader->ReadUInt8(&gap)) { set_detailed_error("Unable to read gap to next ack block."); return false; } uint64_t current_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { set_detailed_error("Unable to ack block length."); return false; } bool ack_block_underflow = first_received < gap + current_block_length; if (first_received < gap + current_block_length + first_sending_packet_number_.ToUint64()) { ack_block_underflow = true; } if (ack_block_underflow) { set_detailed_error( quiche::QuicheStrCat("Underflow with ack block length ", current_block_length, ", end of block is ", first_received - gap, ".") .c_str()); return false; } first_received -= (gap + current_block_length); if (current_block_length > 0) { if (!visitor_->OnAckRange( QuicPacketNumber(first_received), QuicPacketNumber(first_received) + current_block_length)) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ack frame, set_detailed_error( "Visitor suppresses further processing of ack frame."); return false; } } } } if (!reader->ReadUInt8(&num_received_packets)) { set_detailed_error("Unable to read num received packets."); return false; } if (!ProcessTimestampsInAckFrame(num_received_packets, QuicPacketNumber(largest_acked), reader)) { return false; } // Done processing the ACK frame. if (!visitor_->OnAckFrameEnd(QuicPacketNumber(first_received))) { set_detailed_error( "Error occurs when visitor finishes processing the ACK frame."); return false; } return true; } bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, QuicPacketNumber largest_acked, QuicDataReader* reader) { if (num_received_packets == 0) { return true; } uint8_t delta_from_largest_observed; if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error("Unable to read sequence delta in received packets."); return false; } if (largest_acked.ToUint64() <= delta_from_largest_observed) { set_detailed_error( quiche::QuicheStrCat("delta_from_largest_observed too high: ", delta_from_largest_observed, ", largest_acked: ", largest_acked.ToUint64()) .c_str()); return false; } // Time delta from the framer creation. uint32_t time_delta_us; if (!reader->ReadUInt32(&time_delta_us)) { set_detailed_error("Unable to read time delta in received packets."); return false; } QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; if (process_timestamps_) { last_timestamp_ = CalculateTimestampFromWire(time_delta_us); visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); } for (uint8_t i = 1; i < num_received_packets; ++i) { if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error("Unable to read sequence delta in received packets."); return false; } if (largest_acked.ToUint64() <= delta_from_largest_observed) { set_detailed_error( quiche::QuicheStrCat("delta_from_largest_observed too high: ", delta_from_largest_observed, ", largest_acked: ", largest_acked.ToUint64()) .c_str()); return false; } seq_num = largest_acked - delta_from_largest_observed; // Time delta from the previous timestamp. uint64_t incremental_time_delta_us; if (!reader->ReadUFloat16(&incremental_time_delta_us)) { set_detailed_error( "Unable to read incremental time delta in received packets."); return false; } if (process_timestamps_) { last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( incremental_time_delta_us); visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); } } return true; } bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, uint64_t frame_type, QuicAckFrame* ack_frame) { uint64_t largest_acked; if (!reader->ReadVarInt62(&largest_acked)) { set_detailed_error("Unable to read largest acked."); return false; } if (largest_acked < first_sending_packet_number_.ToUint64()) { // Connection always sends packet starting from kFirstSendingPacketNumber > // 0, peer has observed an unsent packet. set_detailed_error("Largest acked is 0."); return false; } ack_frame->largest_acked = static_cast(largest_acked); uint64_t ack_delay_time_in_us; if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { set_detailed_error("Unable to read ack delay time."); return false; } if (ack_delay_time_in_us >= (kVarInt62MaxValue >> peer_ack_delay_exponent_)) { ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); } else { ack_delay_time_in_us = (ack_delay_time_in_us << peer_ack_delay_exponent_); ack_frame->ack_delay_time = QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); } if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), ack_frame->ack_delay_time)) { // The visitor suppresses further processing of the packet. Although this is // not a parsing error, returns false as this is in middle of processing an // ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } // Get number of ACK blocks from the packet. uint64_t ack_block_count; if (!reader->ReadVarInt62(&ack_block_count)) { set_detailed_error("Unable to read ack block count."); return false; } // There always is a first ACK block, which is the (number of packets being // acked)-1, up to and including the packet at largest_acked. Therefore if the // value is 0, then only largest is acked. If it is 1, then largest-1, // largest] are acked, etc uint64_t ack_block_value; if (!reader->ReadVarInt62(&ack_block_value)) { set_detailed_error("Unable to read first ack block length."); return false; } // Calculate the packets being acked in the first block. // +1 because AddRange implementation requires [low,high) uint64_t block_high = largest_acked + 1; uint64_t block_low = largest_acked - ack_block_value; // ack_block_value is the number of packets preceding the // largest_acked packet which are in the block being acked. Thus, // its maximum value is largest_acked-1. Test this, reporting an // error if the value is wrong. if (ack_block_value + first_sending_packet_number_.ToUint64() > largest_acked) { set_detailed_error( quiche::QuicheStrCat("Underflow with first ack block length ", ack_block_value + 1, " largest acked is ", largest_acked, ".") .c_str()); return false; } if (!visitor_->OnAckRange(QuicPacketNumber(block_low), QuicPacketNumber(block_high))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } while (ack_block_count != 0) { uint64_t gap_block_value; // Get the sizes of the gap and ack blocks, if (!reader->ReadVarInt62(&gap_block_value)) { set_detailed_error("Unable to read gap block value."); return false; } // It's an error if the gap is larger than the space from packet // number 0 to the start of the block that's just been acked, PLUS // there must be space for at least 1 packet to be acked. For // example, if block_low is 10 and gap_block_value is 9, it means // the gap block is 10 packets long, leaving no room for a packet // to be acked. Thus, gap_block_value+2 can not be larger than // block_low. // The test is written this way to detect wrap-arounds. if ((gap_block_value + 2) > block_low) { set_detailed_error( quiche::QuicheStrCat("Underflow with gap block length ", gap_block_value + 1, " previous ack block start is ", block_low, ".") .c_str()); return false; } // Adjust block_high to be the top of the next ack block. // There is a gap of |gap_block_value| packets between the bottom // of ack block N and top of block N+1. Note that gap_block_value // is he size of the gap minus 1 (per the QUIC protocol), and // block_high is the packet number of the first packet of the gap // (per the implementation of OnAckRange/AddAckRange, below). block_high = block_low - 1 - gap_block_value; if (!reader->ReadVarInt62(&ack_block_value)) { set_detailed_error("Unable to read ack block value."); return false; } if (ack_block_value + first_sending_packet_number_.ToUint64() > (block_high - 1)) { set_detailed_error( quiche::QuicheStrCat("Underflow with ack block length ", ack_block_value + 1, " latest ack block end is ", block_high - 1, ".") .c_str()); return false; } // Calculate the low end of the new nth ack block. The +1 is // because the encoded value is the blocksize-1. block_low = block_high - 1 - ack_block_value; if (!visitor_->OnAckRange(QuicPacketNumber(block_low), QuicPacketNumber(block_high))) { // The visitor suppresses further processing of the packet. Although // this is not a parsing error, returns false as this is in middle // of processing an ACK frame. set_detailed_error("Visitor suppresses further processing of ACK frame."); return false; } // Another one done. ack_block_count--; } if (frame_type == IETF_ACK_ECN) { ack_frame->ecn_counters_populated = true; if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { set_detailed_error("Unable to read ack ect_0_count."); return false; } if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { set_detailed_error("Unable to read ack ect_1_count."); return false; } if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { set_detailed_error("Unable to read ack ecn_ce_count."); return false; } } else { ack_frame->ecn_counters_populated = false; ack_frame->ect_0_count = 0; ack_frame->ect_1_count = 0; ack_frame->ecn_ce_count = 0; } // TODO(fayang): Report ECN counts to visitor when they are actually used. if (!visitor_->OnAckFrameEnd(QuicPacketNumber(block_low))) { set_detailed_error( "Error occurs when visitor finishes processing the ACK frame."); return false; } return true; } bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, const QuicPacketHeader& header, QuicStopWaitingFrame* stop_waiting) { uint64_t least_unacked_delta; if (!reader->ReadBytesToUInt64(header.packet_number_length, &least_unacked_delta)) { set_detailed_error("Unable to read least unacked delta."); return false; } if (header.packet_number.ToUint64() <= least_unacked_delta) { set_detailed_error("Invalid unacked delta."); return false; } stop_waiting->least_unacked = header.packet_number - least_unacked_delta; return true; } bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, QuicRstStreamFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } if (error_code >= QUIC_STREAM_LAST_ERROR) { // Ignore invalid stream error code if any. error_code = QUIC_STREAM_LAST_ERROR; } frame->error_code = static_cast(error_code); return true; } bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, QuicConnectionCloseFrame* frame) { uint32_t error_code; frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read connection close error code."); return false; } if (GetQuicReloadableFlag(quic_do_not_clip_received_error_code)) { QUIC_CODE_COUNT_N(quic_do_not_clip_received_error_code, 1, 2); } else { if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } } // For Google QUIC connection closes, |wire_error_code| and |quic_error_code| // must have the same value. frame->wire_error_code = error_code; frame->quic_error_code = static_cast(error_code); absl::string_view error_details; if (!reader->ReadStringPiece16(&error_details)) { set_detailed_error("Unable to read connection close error details."); return false; } frame->error_details = std::string(error_details); return true; } bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, QuicGoAwayFrame* frame) { uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read go away error code."); return false; } if (GetQuicReloadableFlag(quic_do_not_clip_received_error_code)) { QUIC_CODE_COUNT_N(quic_do_not_clip_received_error_code, 2, 2); } else { if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } } frame->error_code = static_cast(error_code); uint32_t stream_id; if (!reader->ReadUInt32(&stream_id)) { set_detailed_error("Unable to read last good stream id."); return false; } frame->last_good_stream_id = static_cast(stream_id); absl::string_view reason_phrase; if (!reader->ReadStringPiece16(&reason_phrase)) { set_detailed_error("Unable to read goaway reason."); return false; } frame->reason_phrase = std::string(reason_phrase); return true; } bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader->ReadUInt64(&frame->max_data)) { set_detailed_error("Unable to read window byte_offset."); return false; } return true; } bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) << "Attempt to process non-IETF QUIC frames in an IETF QUIC version."; if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } return true; } void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, QuicPaddingFrame* frame) { // Type byte has been read. frame->num_padding_bytes = 1; uint8_t next_byte; while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { reader->ReadBytes(&next_byte, 1); DCHECK_EQ(0x00, next_byte); ++frame->num_padding_bytes; } } bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, bool no_message_length, QuicMessageFrame* frame) { if (no_message_length) { absl::string_view remaining(reader->ReadRemainingPayload()); frame->data = remaining.data(); frame->message_length = remaining.length(); return true; } uint64_t message_length; if (!reader->ReadVarInt62(&message_length)) { set_detailed_error("Unable to read message length"); return false; } absl::string_view message_piece; if (!reader->ReadStringPiece(&message_piece, message_length)) { set_detailed_error("Unable to read message data"); return false; } frame->data = message_piece.data(); frame->message_length = message_length; return true; } // static absl::string_view QuicFramer::GetAssociatedDataFromEncryptedPacket( QuicTransportVersion version, const QuicEncryptedPacket& encrypted, QuicConnectionIdLength destination_connection_id_length, QuicConnectionIdLength source_connection_id_length, bool includes_version, bool includes_diversification_nonce, QuicPacketNumberLength packet_number_length, QuicVariableLengthIntegerLength retry_token_length_length, uint64_t retry_token_length, QuicVariableLengthIntegerLength length_length) { // TODO(ianswett): This is identical to QuicData::AssociatedData. return absl::string_view( encrypted.data(), GetStartOfEncryptedData(version, destination_connection_id_length, source_connection_id_length, includes_version, includes_diversification_nonce, packet_number_length, retry_token_length_length, retry_token_length, length_length)); } void QuicFramer::SetDecrypter(EncryptionLevel level, std::unique_ptr decrypter) { DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS); DCHECK_GE(level, decrypter_level_); DCHECK(!version_.KnowsWhichDecrypterToUse()); QUIC_DVLOG(1) << ENDPOINT << "Setting decrypter from level " << decrypter_level_ << " to " << level; decrypter_[decrypter_level_] = nullptr; decrypter_[level] = std::move(decrypter); decrypter_level_ = level; } void QuicFramer::SetAlternativeDecrypter( EncryptionLevel level, std::unique_ptr decrypter, bool latch_once_used) { DCHECK_NE(level, decrypter_level_); DCHECK(!version_.KnowsWhichDecrypterToUse()); QUIC_DVLOG(1) << ENDPOINT << "Setting alternative decrypter from level " << alternative_decrypter_level_ << " to " << level; if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { decrypter_[alternative_decrypter_level_] = nullptr; } decrypter_[level] = std::move(decrypter); alternative_decrypter_level_ = level; alternative_decrypter_latch_ = latch_once_used; } void QuicFramer::InstallDecrypter(EncryptionLevel level, std::unique_ptr decrypter) { DCHECK(version_.KnowsWhichDecrypterToUse()); QUIC_DVLOG(1) << ENDPOINT << "Installing decrypter at level " << level; decrypter_[level] = std::move(decrypter); } void QuicFramer::RemoveDecrypter(EncryptionLevel level) { DCHECK(version_.KnowsWhichDecrypterToUse()); QUIC_DVLOG(1) << ENDPOINT << "Removing decrypter at level " << level; decrypter_[level] = nullptr; } void QuicFramer::SetKeyUpdateSupportForConnection(bool enabled) { QUIC_DVLOG(1) << ENDPOINT << "SetKeyUpdateSupportForConnection: " << enabled; support_key_update_for_connection_ = enabled; if (enabled) { QUIC_RELOADABLE_FLAG_COUNT(quic_key_update_supported); } } void QuicFramer::DiscardPreviousOneRttKeys() { DCHECK(support_key_update_for_connection_); QUIC_DVLOG(1) << ENDPOINT << "Discarding previous set of 1-RTT keys"; previous_decrypter_ = nullptr; } bool QuicFramer::DoKeyUpdate(KeyUpdateReason reason) { DCHECK(support_key_update_for_connection_); if (!next_decrypter_) { // If key update is locally initiated, next decrypter might not be created // yet. next_decrypter_ = visitor_->AdvanceKeysAndCreateCurrentOneRttDecrypter(); } std::unique_ptr next_encrypter = visitor_->CreateCurrentOneRttEncrypter(); if (!next_decrypter_ || !next_encrypter) { QUIC_BUG << "Failed to create next crypters"; return false; } current_key_phase_bit_ = !current_key_phase_bit_; QUIC_DLOG(INFO) << ENDPOINT << "DoKeyUpdate: new current_key_phase_bit_=" << current_key_phase_bit_; current_key_phase_first_received_packet_number_.Clear(); previous_decrypter_ = std::move(decrypter_[ENCRYPTION_FORWARD_SECURE]); decrypter_[ENCRYPTION_FORWARD_SECURE] = std::move(next_decrypter_); encrypter_[ENCRYPTION_FORWARD_SECURE] = std::move(next_encrypter); visitor_->OnKeyUpdate(reason); return true; } QuicPacketCount QuicFramer::PotentialPeerKeyUpdateAttemptCount() const { return potential_peer_key_update_attempt_count_; } const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const { DCHECK(version_.KnowsWhichDecrypterToUse()); return decrypter_[level].get(); } const QuicDecrypter* QuicFramer::decrypter() const { return decrypter_[decrypter_level_].get(); } const QuicDecrypter* QuicFramer::alternative_decrypter() const { if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) { return nullptr; } return decrypter_[alternative_decrypter_level_].get(); } void QuicFramer::SetEncrypter(EncryptionLevel level, std::unique_ptr encrypter) { DCHECK_GE(level, 0); DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); QUIC_DVLOG(1) << ENDPOINT << "Setting encrypter at level " << level; encrypter_[level] = std::move(encrypter); } void QuicFramer::RemoveEncrypter(EncryptionLevel level) { QUIC_DVLOG(1) << ENDPOINT << "Removing encrypter of " << level; encrypter_[level] = nullptr; } void QuicFramer::SetInitialObfuscators(QuicConnectionId connection_id) { CrypterPair crypters; CryptoUtils::CreateInitialObfuscators(perspective_, version_, connection_id, &crypters); encrypter_[ENCRYPTION_INITIAL] = std::move(crypters.encrypter); decrypter_[ENCRYPTION_INITIAL] = std::move(crypters.decrypter); } size_t QuicFramer::EncryptInPlace(EncryptionLevel level, QuicPacketNumber packet_number, size_t ad_len, size_t total_len, size_t buffer_len, char* buffer) { DCHECK(packet_number.IsInitialized()); if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to encrypt in place without encrypter at level " << level; RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( packet_number.ToUint64(), absl::string_view(buffer, ad_len), // Associated data absl::string_view(buffer + ad_len, total_len - ad_len), // Plaintext buffer + ad_len, // Destination buffer &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } if (version_.HasHeaderProtection() && !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { QUIC_DLOG(ERROR) << "Applying header protection failed."; RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } namespace { const size_t kHPSampleLen = 16; constexpr bool IsLongHeader(uint8_t type_byte) { return (type_byte & FLAGS_LONG_HEADER) != 0; } } // namespace bool QuicFramer::ApplyHeaderProtection(EncryptionLevel level, char* buffer, size_t buffer_len, size_t ad_len) { QuicDataReader buffer_reader(buffer, buffer_len); QuicDataWriter buffer_writer(buffer_len, buffer); // The sample starts 4 bytes after the start of the packet number. if (ad_len < last_written_packet_number_length_) { return false; } size_t pn_offset = ad_len - last_written_packet_number_length_; // Sample the ciphertext and generate the mask to use for header protection. size_t sample_offset = pn_offset + 4; QuicDataReader sample_reader(buffer, buffer_len); absl::string_view sample; if (!sample_reader.Seek(sample_offset) || !sample_reader.ReadStringPiece(&sample, kHPSampleLen)) { QUIC_BUG << "Not enough bytes to sample: sample_offset " << sample_offset << ", sample len: " << kHPSampleLen << ", buffer len: " << buffer_len; return false; } if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to apply header protection without encrypter at level " << level << " using " << version_; return false; } std::string mask = encrypter_[level]->GenerateHeaderProtectionMask(sample); if (mask.empty()) { QUIC_BUG << "Unable to generate header protection mask."; return false; } QuicDataReader mask_reader(mask.data(), mask.size()); // Apply the mask to the 4 or 5 least significant bits of the first byte. uint8_t bitmask = 0x1f; uint8_t type_byte; if (!buffer_reader.ReadUInt8(&type_byte)) { return false; } QuicLongHeaderType header_type; if (IsLongHeader(type_byte)) { bitmask = 0x0f; if (!GetLongHeaderType(type_byte, &header_type)) { return false; } } uint8_t mask_byte; if (!mask_reader.ReadUInt8(&mask_byte) || !buffer_writer.WriteUInt8(type_byte ^ (mask_byte & bitmask))) { return false; } // Adjust |pn_offset| to account for the diversification nonce. if (IsLongHeader(type_byte) && header_type == ZERO_RTT_PROTECTED && perspective_ == Perspective::IS_SERVER && version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { if (pn_offset <= kDiversificationNonceSize) { QUIC_BUG << "Expected diversification nonce, but not enough bytes"; return false; } pn_offset -= kDiversificationNonceSize; } // Advance the reader and writer to the packet number. Both the reader and // writer have each read/written one byte. if (!buffer_writer.Seek(pn_offset - 1) || !buffer_reader.Seek(pn_offset - 1)) { return false; } // Apply the rest of the mask to the packet number. for (size_t i = 0; i < last_written_packet_number_length_; ++i) { uint8_t buffer_byte; uint8_t mask_byte; if (!mask_reader.ReadUInt8(&mask_byte) || !buffer_reader.ReadUInt8(&buffer_byte) || !buffer_writer.WriteUInt8(buffer_byte ^ mask_byte)) { return false; } } return true; } bool QuicFramer::RemoveHeaderProtection(QuicDataReader* reader, const QuicEncryptedPacket& packet, QuicPacketHeader* header, uint64_t* full_packet_number, std::vector* associated_data) { EncryptionLevel expected_decryption_level = GetEncryptionLevel(*header); QuicDecrypter* decrypter = decrypter_[expected_decryption_level].get(); if (decrypter == nullptr) { QUIC_DVLOG(1) << ENDPOINT << "No decrypter available for removing header protection at level " << expected_decryption_level; return false; } bool has_diversification_nonce = header->form == IETF_QUIC_LONG_HEADER_PACKET && header->long_packet_type == ZERO_RTT_PROTECTED && perspective_ == Perspective::IS_CLIENT && version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO; // Read a sample from the ciphertext and compute the mask to use for header // protection. absl::string_view remaining_packet = reader->PeekRemainingPayload(); QuicDataReader sample_reader(remaining_packet); // The sample starts 4 bytes after the start of the packet number. absl::string_view pn; if (!sample_reader.ReadStringPiece(&pn, 4)) { QUIC_DVLOG(1) << "Not enough data to sample"; return false; } if (has_diversification_nonce) { // In Google QUIC, the diversification nonce comes between the packet number // and the sample. if (!sample_reader.Seek(kDiversificationNonceSize)) { QUIC_DVLOG(1) << "No diversification nonce to skip over"; return false; } } std::string mask = decrypter->GenerateHeaderProtectionMask(&sample_reader); QuicDataReader mask_reader(mask.data(), mask.size()); if (mask.empty()) { QUIC_DVLOG(1) << "Failed to compute mask"; return false; } // Unmask the rest of the type byte. uint8_t bitmask = 0x1f; if (IsLongHeader(header->type_byte)) { bitmask = 0x0f; } uint8_t mask_byte; if (!mask_reader.ReadUInt8(&mask_byte)) { QUIC_DVLOG(1) << "No first byte to read from mask"; return false; } header->type_byte ^= (mask_byte & bitmask); // Compute the packet number length. header->packet_number_length = static_cast((header->type_byte & 0x03) + 1); char pn_buffer[IETF_MAX_PACKET_NUMBER_LENGTH] = {}; QuicDataWriter pn_writer(ABSL_ARRAYSIZE(pn_buffer), pn_buffer); // Read the (protected) packet number from the reader and unmask the packet // number. for (size_t i = 0; i < header->packet_number_length; ++i) { uint8_t protected_pn_byte, mask_byte; if (!mask_reader.ReadUInt8(&mask_byte) || !reader->ReadUInt8(&protected_pn_byte) || !pn_writer.WriteUInt8(protected_pn_byte ^ mask_byte)) { QUIC_DVLOG(1) << "Failed to unmask packet number"; return false; } } QuicDataReader packet_number_reader(pn_writer.data(), pn_writer.length()); QuicPacketNumber base_packet_number; if (supports_multiple_packet_number_spaces_) { PacketNumberSpace pn_space = GetPacketNumberSpace(*header); if (pn_space == NUM_PACKET_NUMBER_SPACES) { return false; } base_packet_number = largest_decrypted_packet_numbers_[pn_space]; } else { base_packet_number = largest_packet_number_; } if (!ProcessAndCalculatePacketNumber( &packet_number_reader, header->packet_number_length, base_packet_number, full_packet_number)) { return false; } // Get the associated data, and apply the same unmasking operations to it. absl::string_view ad = GetAssociatedDataFromEncryptedPacket( version_.transport_version, packet, GetIncludedDestinationConnectionIdLength(*header), GetIncludedSourceConnectionIdLength(*header), header->version_flag, has_diversification_nonce, header->packet_number_length, header->retry_token_length_length, header->retry_token.length(), header->length_length); *associated_data = std::vector(ad.begin(), ad.end()); QuicDataWriter ad_writer(associated_data->size(), associated_data->data()); // Apply the unmasked type byte and packet number to |associated_data|. if (!ad_writer.WriteUInt8(header->type_byte)) { return false; } // Put the packet number at the end of the AD, or if there's a diversification // nonce, before that (which is at the end of the AD). size_t seek_len = ad_writer.remaining() - header->packet_number_length; if (has_diversification_nonce) { seek_len -= kDiversificationNonceSize; } if (!ad_writer.Seek(seek_len) || !ad_writer.WriteBytes(pn_writer.data(), pn_writer.length())) { QUIC_DVLOG(1) << "Failed to apply unmasking operations to AD"; return false; } return true; } size_t QuicFramer::EncryptPayload(EncryptionLevel level, QuicPacketNumber packet_number, const QuicPacket& packet, char* buffer, size_t buffer_len) { DCHECK(packet_number.IsInitialized()); if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level " << level; RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } absl::string_view associated_data = packet.AssociatedData(version_.transport_version); // Copy in the header, because the encrypter only populates the encrypted // plaintext content. const size_t ad_len = associated_data.length(); if (packet.length() < ad_len) { QUIC_BUG << ENDPOINT << "packet is shorter than associated data length. version:" << version() << ", packet length:" << packet.length() << ", associated data length:" << ad_len; RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } memmove(buffer, associated_data.data(), ad_len); // Encrypt the plaintext into the buffer. size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( packet_number.ToUint64(), associated_data, packet.Plaintext(version_.transport_version), buffer + ad_len, &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } if (version_.HasHeaderProtection() && !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { QUIC_DLOG(ERROR) << "Applying header protection failed."; RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, size_t plaintext_size) const { if (encrypter_[level] == nullptr) { QUIC_BUG << ENDPOINT << "Attempted to get ciphertext size without encrypter at level " << level << " using " << version_; return plaintext_size; } return encrypter_[level]->GetCiphertextSize(plaintext_size); } size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { // In order to keep the code simple, we don't have the current encryption // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. size_t min_plaintext_size = ciphertext_size; for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) { if (encrypter_[i] != nullptr) { size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); if (size < min_plaintext_size) { min_plaintext_size = size; } } } return min_plaintext_size; } QuicPacketCount QuicFramer::GetOneRttEncrypterConfidentialityLimit() const { if (!encrypter_[ENCRYPTION_FORWARD_SECURE]) { QUIC_BUG << "1-RTT encrypter not set"; return 0; } return encrypter_[ENCRYPTION_FORWARD_SECURE]->GetConfidentialityLimit(); } bool QuicFramer::DecryptPayload(absl::string_view encrypted, absl::string_view associated_data, const QuicPacketHeader& header, char* decrypted_buffer, size_t buffer_length, size_t* decrypted_length, EncryptionLevel* decrypted_level) { if (!EncryptionLevelIsValid(decrypter_level_)) { QUIC_BUG << "Attempted to decrypt with bad decrypter_level_"; return false; } EncryptionLevel level = decrypter_level_; QuicDecrypter* decrypter = decrypter_[level].get(); QuicDecrypter* alternative_decrypter = nullptr; bool key_phase_parsed = false; bool key_phase; bool attempt_key_update = false; if (version().KnowsWhichDecrypterToUse()) { if (header.form == GOOGLE_QUIC_PACKET) { QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that " "knows which decrypter to use"; return false; } level = GetEncryptionLevel(header); if (!EncryptionLevelIsValid(level)) { QUIC_BUG << "Attempted to decrypt with bad level"; return false; } decrypter = decrypter_[level].get(); if (decrypter == nullptr) { return false; } if (level == ENCRYPTION_ZERO_RTT && perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) { decrypter->SetDiversificationNonce(*header.nonce); } if (support_key_update_for_connection_ && header.form == IETF_QUIC_SHORT_HEADER_PACKET) { DCHECK(version().UsesTls()); DCHECK_EQ(level, ENCRYPTION_FORWARD_SECURE); key_phase = (header.type_byte & FLAGS_KEY_PHASE_BIT) != 0; key_phase_parsed = true; QUIC_DVLOG(1) << ENDPOINT << "packet " << header.packet_number << " received key_phase=" << key_phase << " current_key_phase_bit_=" << current_key_phase_bit_; if (key_phase != current_key_phase_bit_) { if (current_key_phase_first_received_packet_number_.IsInitialized() && header.packet_number > current_key_phase_first_received_packet_number_) { if (!next_decrypter_) { next_decrypter_ = visitor_->AdvanceKeysAndCreateCurrentOneRttDecrypter(); if (!next_decrypter_) { QUIC_BUG << "Failed to create next_decrypter"; return false; } } QUIC_DVLOG(1) << ENDPOINT << "packet " << header.packet_number << " attempt_key_update=true"; attempt_key_update = true; potential_peer_key_update_attempt_count_++; decrypter = next_decrypter_.get(); } else { if (previous_decrypter_) { QUIC_DVLOG(1) << ENDPOINT << "trying previous_decrypter_ for packet " << header.packet_number; decrypter = previous_decrypter_.get(); } else { QUIC_DVLOG(1) << ENDPOINT << "dropping packet " << header.packet_number << " with old key phase"; return false; } } } } } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_"; return false; } alternative_decrypter = decrypter_[alternative_decrypter_level_].get(); } if (decrypter == nullptr) { QUIC_BUG << "Attempting to decrypt without decrypter, encryption level:" << level << " version:" << version(); return false; } bool success = decrypter->DecryptPacket( header.packet_number.ToUint64(), associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); if (success) { visitor_->OnDecryptedPacket(level); *decrypted_level = level; potential_peer_key_update_attempt_count_ = 0; if (attempt_key_update) { if (!DoKeyUpdate(KeyUpdateReason::kRemote)) { set_detailed_error("Key update failed due to internal error"); return RaiseError(QUIC_INTERNAL_ERROR); } DCHECK_EQ(current_key_phase_bit_, key_phase); } if (key_phase_parsed && !current_key_phase_first_received_packet_number_.IsInitialized() && key_phase == current_key_phase_bit_) { // Set packet number for current key phase if it hasn't been initialized // yet. This is set outside of attempt_key_update since the key update // may have been initiated locally, and in that case we don't know yet // which packet number from the remote side to use until we receive a // packet with that phase. QUIC_DVLOG(1) << ENDPOINT << "current_key_phase_first_received_packet_number_ = " << header.packet_number; current_key_phase_first_received_packet_number_ = header.packet_number; visitor_->OnDecryptedFirstPacketInKeyPhase(); } } else if (alternative_decrypter != nullptr) { if (header.nonce != nullptr) { DCHECK_EQ(perspective_, Perspective::IS_CLIENT); alternative_decrypter->SetDiversificationNonce(*header.nonce); } bool try_alternative_decryption = true; if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { if (perspective_ == Perspective::IS_CLIENT) { if (header.nonce == nullptr) { // Can not use INITIAL decryption without a diversification nonce. try_alternative_decryption = false; } } else { DCHECK(header.nonce == nullptr); } } if (try_alternative_decryption) { success = alternative_decrypter->DecryptPacket( header.packet_number.ToUint64(), associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); } if (success) { visitor_->OnDecryptedPacket(alternative_decrypter_level_); *decrypted_level = decrypter_level_; if (alternative_decrypter_latch_) { if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { QUIC_BUG << "Attempted to latch alternate decrypter with bad " "alternative_decrypter_level_"; return false; } // Switch to the alternative decrypter and latch so that we cannot // switch back. decrypter_level_ = alternative_decrypter_level_; alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS; } else { // Switch the alternative decrypter so that we use it first next time. EncryptionLevel level = alternative_decrypter_level_; alternative_decrypter_level_ = decrypter_level_; decrypter_level_ = level; } } } if (!success) { QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for: " << header; return false; } return true; } size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { // Type byte, largest_acked, and delay_time are straight-forward. size_t ack_frame_size = kQuicFrameTypeSize; QuicPacketNumber largest_acked = LargestAcked(frame); ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); uint64_t ack_delay_time_us; ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { QUIC_BUG << "Malformed ack frame"; // ACK frame serialization will fail and connection will be closed. return ack_frame_size; } // Ack block count. ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.packets.NumIntervals() - 1); // First Ack range. auto iter = frame.packets.rbegin(); ack_frame_size += QuicDataWriter::GetVarInt62Len(iter->Length() - 1); QuicPacketNumber previous_smallest = iter->min(); ++iter; // Ack blocks. for (; iter != frame.packets.rend(); ++iter) { const uint64_t gap = previous_smallest - iter->max() - 1; const uint64_t ack_range = iter->Length() - 1; ack_frame_size += (QuicDataWriter::GetVarInt62Len(gap) + QuicDataWriter::GetVarInt62Len(ack_range)); previous_smallest = iter->min(); } // ECN counts. if (frame.ecn_counters_populated && (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); } return ack_frame_size; } size_t QuicFramer::GetAckFrameSize( const QuicAckFrame& ack, QuicPacketNumberLength /*packet_number_length*/) { DCHECK(!ack.packets.Empty()); size_t ack_size = 0; if (VersionHasIetfQuicFrames(version_.transport_version)) { return GetIetfAckFrameSize(ack); } AckFrameInfo ack_info = GetAckFrameInfo(ack); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(QuicPacketNumber(ack_info.max_block_length)); ack_size = GetMinAckFrameSize(version_.transport_version, ack, local_ack_delay_exponent_); // First ack block length. ack_size += ack_block_length; if (ack_info.num_ack_blocks != 0) { ack_size += kNumberOfAckBlocksSize; ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); } // Include timestamps. if (process_timestamps_) { ack_size += GetAckFrameTimeStampSize(ack); } return ack_size; } size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { if (ack.received_packet_times.empty()) { return 0; } return kQuicNumTimestampsLength + kQuicFirstTimestampLength + (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * (ack.received_packet_times.size() - 1); } size_t QuicFramer::ComputeFrameLength( const QuicFrame& frame, bool last_frame_in_packet, QuicPacketNumberLength packet_number_length) { switch (frame.type) { case STREAM_FRAME: return GetMinStreamFrameSize( version_.transport_version, frame.stream_frame.stream_id, frame.stream_frame.offset, last_frame_in_packet, frame.stream_frame.data_length) + frame.stream_frame.data_length; case CRYPTO_FRAME: return GetMinCryptoFrameSize(frame.crypto_frame->offset, frame.crypto_frame->data_length) + frame.crypto_frame->data_length; case ACK_FRAME: { return GetAckFrameSize(*frame.ack_frame, packet_number_length); } case STOP_WAITING_FRAME: return GetStopWaitingFrameSize(packet_number_length); case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. return kQuicFrameTypeSize; case MESSAGE_FRAME: return GetMessageFrameSize(version_.transport_version, last_frame_in_packet, frame.message_frame->message_length); case PADDING_FRAME: DCHECK(false); return 0; default: return GetRetransmittableControlFrameSize(version_.transport_version, frame); } } bool QuicFramer::AppendTypeByte(const QuicFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(version_.transport_version)) { return AppendIetfFrameType(frame, last_frame_in_packet, writer); } uint8_t type_byte = 0; switch (frame.type) { case STREAM_FRAME: type_byte = GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); break; case ACK_FRAME: return true; case MTU_DISCOVERY_FRAME: type_byte = static_cast(PING_FRAME); break; case NEW_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case RETIRE_CONNECTION_ID_FRAME: set_detailed_error( "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case NEW_TOKEN_FRAME: set_detailed_error( "Attempt to append NEW_TOKEN frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case MAX_STREAMS_FRAME: set_detailed_error( "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case STREAMS_BLOCKED_FRAME: set_detailed_error( "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_RESPONSE_FRAME: set_detailed_error( "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case PATH_CHALLENGE_FRAME: set_detailed_error( "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case STOP_SENDING_FRAME: set_detailed_error( "Attempt to append STOP_SENDING frame and not in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case MESSAGE_FRAME: return true; default: type_byte = static_cast(frame.type); break; } return writer->WriteUInt8(type_byte); } bool QuicFramer::AppendIetfFrameType(const QuicFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { uint8_t type_byte = 0; switch (frame.type) { case PADDING_FRAME: type_byte = IETF_PADDING; break; case RST_STREAM_FRAME: type_byte = IETF_RST_STREAM; break; case CONNECTION_CLOSE_FRAME: switch (frame.connection_close_frame->close_type) { case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: type_byte = IETF_APPLICATION_CLOSE; break; case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: type_byte = IETF_CONNECTION_CLOSE; break; default: set_detailed_error(quiche::QuicheStrCat( "Invalid QuicConnectionCloseFrame type: ", static_cast(frame.connection_close_frame->close_type))); return RaiseError(QUIC_INTERNAL_ERROR); } break; case GOAWAY_FRAME: set_detailed_error( "Attempt to create non-IETF QUIC GOAWAY frame in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case WINDOW_UPDATE_FRAME: // Depending on whether there is a stream ID or not, will be either a // MAX_STREAM_DATA frame or a MAX_DATA frame. if (frame.window_update_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { type_byte = IETF_MAX_DATA; } else { type_byte = IETF_MAX_STREAM_DATA; } break; case BLOCKED_FRAME: if (frame.blocked_frame->stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { type_byte = IETF_DATA_BLOCKED; } else { type_byte = IETF_STREAM_DATA_BLOCKED; } break; case STOP_WAITING_FRAME: set_detailed_error( "Attempt to append type byte of STOP WAITING frame in IETF QUIC."); return RaiseError(QUIC_INTERNAL_ERROR); case PING_FRAME: type_byte = IETF_PING; break; case STREAM_FRAME: type_byte = GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); break; case ACK_FRAME: // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte // in the buffer. return true; case MTU_DISCOVERY_FRAME: // The path MTU discovery frame is encoded as a PING frame on the wire. type_byte = IETF_PING; break; case NEW_CONNECTION_ID_FRAME: type_byte = IETF_NEW_CONNECTION_ID; break; case RETIRE_CONNECTION_ID_FRAME: type_byte = IETF_RETIRE_CONNECTION_ID; break; case NEW_TOKEN_FRAME: type_byte = IETF_NEW_TOKEN; break; case MAX_STREAMS_FRAME: if (frame.max_streams_frame.unidirectional) { type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; } else { type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; } break; case STREAMS_BLOCKED_FRAME: if (frame.streams_blocked_frame.unidirectional) { type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; } else { type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; } break; case PATH_RESPONSE_FRAME: type_byte = IETF_PATH_RESPONSE; break; case PATH_CHALLENGE_FRAME: type_byte = IETF_PATH_CHALLENGE; break; case STOP_SENDING_FRAME: type_byte = IETF_STOP_SENDING; break; case MESSAGE_FRAME: return true; case CRYPTO_FRAME: type_byte = IETF_CRYPTO; break; case HANDSHAKE_DONE_FRAME: type_byte = IETF_HANDSHAKE_DONE; break; case ACK_FREQUENCY_FRAME: type_byte = IETF_ACK_FREQUENCY; break; default: QUIC_BUG << "Attempt to generate a frame type for an unsupported value: " << frame.type; return false; } return writer->WriteVarInt62(type_byte); } // static bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, QuicPacketNumber packet_number, QuicDataWriter* writer) { DCHECK(packet_number.IsInitialized()); if (!IsValidPacketNumberLength(packet_number_length)) { QUIC_BUG << "Invalid packet_number_length: " << packet_number_length; return false; } return writer->WriteBytesToUInt64(packet_number_length, packet_number.ToUint64()); } // static bool QuicFramer::AppendStreamId(size_t stream_id_length, QuicStreamId stream_id, QuicDataWriter* writer) { if (stream_id_length == 0 || stream_id_length > 4) { QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; return false; } return writer->WriteBytesToUInt64(stream_id_length, stream_id); } // static bool QuicFramer::AppendStreamOffset(size_t offset_length, QuicStreamOffset offset, QuicDataWriter* writer) { if (offset_length == 1 || offset_length > 8) { QUIC_BUG << "Invalid stream_offset_length: " << offset_length; return false; } return writer->WriteBytesToUInt64(offset_length, offset); } // static bool QuicFramer::AppendAckBlock(uint8_t gap, QuicPacketNumberLength length_length, uint64_t length, QuicDataWriter* writer) { if (length == 0) { if (!IsValidPacketNumberLength(length_length)) { QUIC_BUG << "Invalid packet_number_length: " << length_length; return false; } return writer->WriteUInt8(gap) && writer->WriteBytesToUInt64(length_length, length); } return writer->WriteUInt8(gap) && AppendPacketNumber(length_length, QuicPacketNumber(length), writer); } bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, bool no_stream_frame_length, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(version_.transport_version)) { return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); } if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, writer)) { QUIC_BUG << "Writing stream id size failed."; return false; } if (!AppendStreamOffset(GetStreamOffsetSize(frame.offset), frame.offset, writer)) { QUIC_BUG << "Writing offset size failed."; return false; } if (!no_stream_frame_length) { static_assert( std::numeric_limits::max() <= std::numeric_limits::max(), "If frame.data_length can hold more than a uint16_t than we need to " "check that frame.data_length <= std::numeric_limits::max()"); if (!writer->WriteUInt16(static_cast(frame.data_length))) { QUIC_BUG << "Writing stream frame length failed"; return false; } } if (data_producer_ != nullptr) { DCHECK_EQ(nullptr, frame.data_buffer); if (frame.data_length == 0) { return true; } if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, frame.data_length, writer) != WRITE_SUCCESS) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.token.length()))) { set_detailed_error("Writing token length failed."); return false; } if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { set_detailed_error("Writing token buffer failed."); return false; } return true; } bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, QuicNewTokenFrame* frame) { uint64_t length; if (!reader->ReadVarInt62(&length)) { set_detailed_error("Unable to read new token length."); return false; } if (length > kMaxNewTokenTokenLength) { set_detailed_error("Token length larger than maximum."); return false; } // TODO(ianswett): Don't use absl::string_view as an intermediary. absl::string_view data; if (!reader->ReadStringPiece(&data, length)) { set_detailed_error("Unable to read new token data."); return false; } frame->token = std::string(data); return true; } // Add a new ietf-format stream frame. // Bits controlling whether there is a frame-length and frame-offset // are in the QuicStreamFrame. bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.stream_id))) { set_detailed_error("Writing stream id failed."); return false; } if (frame.offset != 0) { if (!writer->WriteVarInt62(static_cast(frame.offset))) { set_detailed_error("Writing data offset failed."); return false; } } if (!last_frame_in_packet) { if (!writer->WriteVarInt62(frame.data_length)) { set_detailed_error("Writing data length failed."); return false; } } if (frame.data_length == 0) { return true; } if (data_producer_ == nullptr) { if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { set_detailed_error("Writing frame data failed."); return false; } } else { DCHECK_EQ(nullptr, frame.data_buffer); if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, frame.data_length, writer) != WRITE_SUCCESS) { set_detailed_error("Writing frame data failed."); return false; } } return true; } bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.offset))) { set_detailed_error("Writing data offset failed."); return false; } if (!writer->WriteVarInt62(static_cast(frame.data_length))) { set_detailed_error("Writing data length failed."); return false; } if (data_producer_ == nullptr) { if (frame.data_buffer == nullptr || !writer->WriteBytes(frame.data_buffer, frame.data_length)) { set_detailed_error("Writing frame data failed."); return false; } } else { DCHECK_EQ(nullptr, frame.data_buffer); if (!data_producer_->WriteCryptoData(frame.level, frame.offset, frame.data_length, writer)) { return false; } } return true; } bool QuicFramer::AppendAckFrequencyFrame(const QuicAckFrequencyFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.sequence_number)) { set_detailed_error("Writing sequence number failed."); return false; } if (!writer->WriteVarInt62(frame.packet_tolerance)) { set_detailed_error("Writing packet tolerance failed."); return false; } if (!writer->WriteVarInt62( static_cast(frame.max_ack_delay.ToMicroseconds()))) { set_detailed_error("Writing max_ack_delay_us failed."); return false; } if (!writer->WriteUInt8(static_cast(frame.ignore_order))) { set_detailed_error("Writing ignore_order failed."); return false; } return true; } void QuicFramer::set_version(const ParsedQuicVersion version) { DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); version_ = version; } bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(transport_version())) { return AppendIetfAckFrameAndTypeByte(frame, writer); } const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); QuicPacketNumber largest_acked = LargestAcked(frame); QuicPacketNumberLength largest_acked_length = GetMinPacketNumberLength(largest_acked); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(QuicPacketNumber(new_ack_info.max_block_length)); // Calculate available bytes for timestamps and ack blocks. int32_t available_timestamp_and_ack_block_bytes = writer->capacity() - writer->length() - ack_block_length - GetMinAckFrameSize(version_.transport_version, frame, local_ack_delay_exponent_) - (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); DCHECK_LE(0, available_timestamp_and_ack_block_bytes); uint8_t type_byte = 0; SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, kQuicHasMultipleAckBlocksOffset); SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); type_byte |= kQuicFrameTypeAckMask; if (!writer->WriteUInt8(type_byte)) { return false; } size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); // Number of ack blocks. size_t num_ack_blocks = std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); if (num_ack_blocks > std::numeric_limits::max()) { num_ack_blocks = std::numeric_limits::max(); } // Largest acked. if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { return false; } // Largest acked delta time. uint64_t ack_delay_time_us = kUFloat16MaxValue; if (!frame.ack_delay_time.IsInfinite()) { DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); } if (!writer->WriteUFloat16(ack_delay_time_us)) { return false; } if (num_ack_blocks > 0) { if (!writer->WriteBytes(&num_ack_blocks, 1)) { return false; } } // First ack block length. if (!AppendPacketNumber(ack_block_length, QuicPacketNumber(new_ack_info.first_block_length), writer)) { return false; } // Ack blocks. if (num_ack_blocks > 0) { size_t num_ack_blocks_written = 0; // Append, in descending order from the largest ACKed packet, a series of // ACK blocks that represents the successfully acknoweldged packets. Each // appended gap/block length represents a descending delta from the previous // block. i.e.: // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| // For gaps larger than can be represented by a single encoded gap, a 0 // length gap of the maximum is used, i.e.: // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); ++itr; for (; itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; previous_start = itr->min(), ++itr) { const auto& interval = *itr; const uint64_t total_gap = previous_start - interval.max(); const size_t num_encoded_gaps = (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); // Append empty ACK blocks because the gap is longer than a single gap. for (size_t i = 1; i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; ++i) { if (!AppendAckBlock(std::numeric_limits::max(), ack_block_length, 0, writer)) { return false; } ++num_ack_blocks_written; } if (num_ack_blocks_written >= num_ack_blocks) { if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { QUIC_BUG << "Wrote " << num_ack_blocks_written << ", expected to write " << num_ack_blocks; } break; } const uint8_t last_gap = total_gap - (num_encoded_gaps - 1) * std::numeric_limits::max(); // Append the final ACK block with a non-empty size. if (!AppendAckBlock(last_gap, ack_block_length, interval.Length(), writer)) { return false; } ++num_ack_blocks_written; } DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); } // Timestamps. // If we don't process timestamps or if we don't have enough available space // to append all the timestamps, don't append any of them. if (process_timestamps_ && writer->capacity() - writer->length() >= GetAckFrameTimeStampSize(frame)) { if (!AppendTimestampsToAckFrame(frame, writer)) { return false; } } else { uint8_t num_received_packets = 0; if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } } return true; } bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, QuicDataWriter* writer) { DCHECK_GE(std::numeric_limits::max(), frame.received_packet_times.size()); // num_received_packets is only 1 byte. if (frame.received_packet_times.size() > std::numeric_limits::max()) { return false; } uint8_t num_received_packets = frame.received_packet_times.size(); if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } if (num_received_packets == 0) { return true; } auto it = frame.received_packet_times.begin(); QuicPacketNumber packet_number = it->first; uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; DCHECK_GE(std::numeric_limits::max(), delta_from_largest_observed); if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } // Use the lowest 4 bytes of the time delta from the creation_time_. const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; uint32_t time_delta_us = static_cast((it->second - creation_time_).ToMicroseconds() & (time_epoch_delta_us - 1)); if (!writer->WriteUInt32(time_delta_us)) { return false; } QuicTime prev_time = it->second; for (++it; it != frame.received_packet_times.end(); ++it) { packet_number = it->first; delta_from_largest_observed = LargestAcked(frame) - packet_number; if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); prev_time = it->second; if (!writer->WriteUFloat16(frame_time_delta_us)) { return false; } } return true; } bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, const QuicStopWaitingFrame& frame, QuicDataWriter* writer) { DCHECK(!VersionHasIetfInvariantHeader(version_.transport_version)); DCHECK(frame.least_unacked.IsInitialized()); DCHECK_GE(header.packet_number, frame.least_unacked); const uint64_t least_unacked_delta = header.packet_number - frame.least_unacked; const uint64_t length_shift = header.packet_number_length * 8; if (least_unacked_delta >> length_shift > 0) { QUIC_BUG << "packet_number_length " << header.packet_number_length << " is too small for least_unacked_delta: " << least_unacked_delta << " packet_number:" << header.packet_number << " least_unacked:" << frame.least_unacked << " version:" << version_.transport_version; return false; } if (least_unacked_delta == 0) { return writer->WriteBytesToUInt64(header.packet_number_length, least_unacked_delta); } if (!AppendPacketNumber(header.packet_number_length, QuicPacketNumber(least_unacked_delta), writer)) { QUIC_BUG << " seq failed: " << header.packet_number_length; return false; } return true; } bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, QuicDataWriter* writer) { uint8_t type = IETF_ACK; uint64_t ecn_size = 0; if (frame.ecn_counters_populated && (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { // Change frame type to ACK_ECN if any ECN count is available. type = IETF_ACK_ECN; ecn_size = (QuicDataWriter::GetVarInt62Len(frame.ect_0_count) + QuicDataWriter::GetVarInt62Len(frame.ect_1_count) + QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count)); } if (!writer->WriteVarInt62(type)) { set_detailed_error("No room for frame-type"); return false; } QuicPacketNumber largest_acked = LargestAcked(frame); if (!writer->WriteVarInt62(largest_acked.ToUint64())) { set_detailed_error("No room for largest-acked in ack frame"); return false; } uint64_t ack_delay_time_us = kVarInt62MaxValue; if (!frame.ack_delay_time.IsInfinite()) { DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; } if (!writer->WriteVarInt62(ack_delay_time_us)) { set_detailed_error("No room for ack-delay in ack frame"); return false; } if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { QUIC_BUG << "Malformed ack frame: " << frame; set_detailed_error("Malformed ack frame"); return false; } // Latch ack_block_count for potential truncation. const uint64_t ack_block_count = frame.packets.NumIntervals() - 1; QuicDataWriter count_writer(QuicDataWriter::GetVarInt62Len(ack_block_count), writer->data() + writer->length()); if (!writer->WriteVarInt62(ack_block_count)) { set_detailed_error("No room for ack block count in ack frame"); return false; } auto iter = frame.packets.rbegin(); if (!writer->WriteVarInt62(iter->Length() - 1)) { set_detailed_error("No room for first ack block in ack frame"); return false; } QuicPacketNumber previous_smallest = iter->min(); ++iter; // Append remaining ACK blocks. uint64_t appended_ack_blocks = 0; for (; iter != frame.packets.rend(); ++iter) { const uint64_t gap = previous_smallest - iter->max() - 1; const uint64_t ack_range = iter->Length() - 1; if (writer->remaining() < ecn_size || writer->remaining() - ecn_size < static_cast(QuicDataWriter::GetVarInt62Len(gap) + QuicDataWriter::GetVarInt62Len(ack_range))) { // ACK range does not fit, truncate it. break; } const bool success = writer->WriteVarInt62(gap) && writer->WriteVarInt62(ack_range); DCHECK(success); previous_smallest = iter->min(); ++appended_ack_blocks; } if (appended_ack_blocks < ack_block_count) { // Truncation is needed, rewrite the ack block count. if (QuicDataWriter::GetVarInt62Len(appended_ack_blocks) != QuicDataWriter::GetVarInt62Len(ack_block_count) || !count_writer.WriteVarInt62(appended_ack_blocks)) { // This should never happen as ack_block_count is limited by // max_ack_ranges_. QUIC_BUG << "Ack frame truncation fails. ack_block_count: " << ack_block_count << ", appended count: " << appended_ack_blocks; set_detailed_error("ACK frame truncation fails"); return false; } QUIC_DLOG(INFO) << ENDPOINT << "ACK ranges get truncated from " << ack_block_count << " to " << appended_ack_blocks; } if (type == IETF_ACK_ECN) { // Encode the ECN counts. if (!writer->WriteVarInt62(frame.ect_0_count)) { set_detailed_error("No room for ect_0_count in ack frame"); return false; } if (!writer->WriteVarInt62(frame.ect_1_count)) { set_detailed_error("No room for ect_1_count in ack frame"); return false; } if (!writer->WriteVarInt62(frame.ecn_ce_count)) { set_detailed_error("No room for ecn_ce_count in ack frame"); return false; } } return true; } bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(version_.transport_version)) { return AppendIetfResetStreamFrame(frame, writer); } if (!writer->WriteUInt32(frame.stream_id)) { return false; } if (!writer->WriteUInt64(frame.byte_offset)) { return false; } uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } return true; } bool QuicFramer::AppendConnectionCloseFrame( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(version_.transport_version)) { return AppendIetfConnectionCloseFrame(frame, writer); } uint32_t error_code = static_cast(frame.wire_error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { return false; } return true; } bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, QuicDataWriter* writer) { uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } uint32_t stream_id = static_cast(frame.last_good_stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { return false; } return true; } bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteUInt64(frame.max_data)) { return false; } return true; } bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (VersionHasIetfQuicFrames(version_.transport_version)) { if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { return AppendDataBlockedFrame(frame, writer); } return AppendStreamDataBlockedFrame(frame, writer); } uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } return true; } bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, QuicDataWriter* writer) { if (frame.num_padding_bytes == 0) { return false; } if (frame.num_padding_bytes < 0) { QUIC_BUG_IF(frame.num_padding_bytes != -1); writer->WritePadding(); return true; } // Please note, num_padding_bytes includes type byte which has been written. return writer->WritePaddingBytes(frame.num_padding_bytes - 1); } bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, bool last_frame_in_packet, QuicDataWriter* writer) { uint8_t type_byte; if (VersionHasIetfQuicFrames(version_.transport_version)) { type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH_V99 : IETF_EXTENSION_MESSAGE_V99; } else { type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH : IETF_EXTENSION_MESSAGE; } if (!writer->WriteUInt8(type_byte)) { return false; } if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { return false; } for (const auto& slice : frame.message_data) { if (!writer->WriteBytes(slice.data(), slice.length())) { return false; } } return true; } bool QuicFramer::RaiseError(QuicErrorCode error) { QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) << " detail: " << detailed_error_; set_error(error); if (visitor_) { visitor_->OnError(this); } return false; } bool QuicFramer::IsVersionNegotiation( const QuicPacketHeader& header, bool packet_has_ietf_packet_header) const { if (!packet_has_ietf_packet_header && perspective_ == Perspective::IS_CLIENT) { return header.version_flag; } if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { return false; } return header.long_packet_type == VERSION_NEGOTIATION; } bool QuicFramer::AppendIetfConnectionCloseFrame( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE."; set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE."); return false; } if (!writer->WriteVarInt62(frame.wire_error_code)) { set_detailed_error("Can not write connection close frame error code"); return false; } if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { // Write the frame-type of the frame causing the error only // if it's a CONNECTION_CLOSE/Transport. if (!writer->WriteVarInt62(frame.transport_close_frame_type)) { set_detailed_error("Writing frame type failed."); return false; } } // There may be additional error information available in the extracted error // code. Encode the error information in the reason phrase and serialize the // result. std::string final_error_string = GenerateErrorString(frame.error_details, frame.quic_error_code); if (!writer->WriteStringPieceVarInt62( TruncateErrorString(final_error_string))) { set_detailed_error("Can not write connection close phrase"); return false; } return true; } bool QuicFramer::ProcessIetfConnectionCloseFrame( QuicDataReader* reader, QuicConnectionCloseType type, QuicConnectionCloseFrame* frame) { frame->close_type = type; uint64_t error_code; if (!reader->ReadVarInt62(&error_code)) { set_detailed_error("Unable to read connection close error code."); return false; } frame->wire_error_code = error_code; if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { // The frame-type of the frame causing the error is present only // if it's a CONNECTION_CLOSE/Transport. if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) { set_detailed_error("Unable to read connection close frame type."); return false; } } uint64_t phrase_length; if (!reader->ReadVarInt62(&phrase_length)) { set_detailed_error("Unable to read connection close error details."); return false; } absl::string_view phrase; if (!reader->ReadStringPiece(&phrase, static_cast(phrase_length))) { set_detailed_error("Unable to read connection close error details."); return false; } frame->error_details = std::string(phrase); // The frame may have an extracted error code in it. Look for it and // extract it. If it's not present, MaybeExtract will return // QUIC_IETF_GQUIC_ERROR_MISSING. MaybeExtractQuicErrorCode(frame); return true; } // IETF Quic Path Challenge/Response frames. bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, QuicPathChallengeFrame* frame) { if (!reader->ReadBytes(frame->data_buffer.data(), frame->data_buffer.size())) { set_detailed_error("Can not read path challenge data."); return false; } return true; } bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, QuicPathResponseFrame* frame) { if (!reader->ReadBytes(frame->data_buffer.data(), frame->data_buffer.size())) { set_detailed_error("Can not read path response data."); return false; } return true; } bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, QuicDataWriter* writer) { if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { set_detailed_error("Writing Path Challenge data failed."); return false; } return true; } bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, QuicDataWriter* writer) { if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { set_detailed_error("Writing Path Response data failed."); return false; } return true; } // Add a new ietf-format stream reset frame. // General format is // stream id // application error code // final offset bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(static_cast(frame.stream_id))) { set_detailed_error("Writing reset-stream stream id failed."); return false; } if (!writer->WriteVarInt62(static_cast(frame.ietf_error_code))) { set_detailed_error("Writing reset-stream error code failed."); return false; } if (!writer->WriteVarInt62(static_cast(frame.byte_offset))) { set_detailed_error("Writing reset-stream final-offset failed."); return false; } return true; } bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, QuicRstStreamFrame* frame) { // Get Stream ID from frame. ReadVarIntStreamID returns false // if either A) there is a read error or B) the resulting value of // the Stream ID is larger than the maximum allowed value. if (!ReadUint32FromVarint62(reader, IETF_RST_STREAM, &frame->stream_id)) { return false; } if (!reader->ReadVarInt62(&frame->ietf_error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } frame->error_code = IetfResetStreamErrorCodeToRstStreamErrorCode(frame->ietf_error_code); if (!reader->ReadVarInt62(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } return true; } bool QuicFramer::ProcessStopSendingFrame( QuicDataReader* reader, QuicStopSendingFrame* stop_sending_frame) { if (!ReadUint32FromVarint62(reader, IETF_STOP_SENDING, &stop_sending_frame->stream_id)) { return false; } if (!reader->ReadVarInt62(&stop_sending_frame->ietf_error_code)) { set_detailed_error("Unable to read stop sending application error code."); return false; } if (GetQuicReloadableFlag(quic_stop_sending_uses_ietf_error_code)) { QUIC_RELOADABLE_FLAG_COUNT_N(quic_stop_sending_uses_ietf_error_code, 2, 2); stop_sending_frame->error_code = IetfResetStreamErrorCodeToRstStreamErrorCode( stop_sending_frame->ietf_error_code); return true; } // TODO(fkastenholz): when error codes go to uint64_t, remove this. if (stop_sending_frame->ietf_error_code > 0xffff) { stop_sending_frame->error_code = static_cast(0xffff); QUIC_DLOG(ERROR) << "Stop sending error code (" << stop_sending_frame->ietf_error_code << ") > 0xffff"; } else { stop_sending_frame->error_code = static_cast( stop_sending_frame->ietf_error_code); } return true; } bool QuicFramer::AppendStopSendingFrame( const QuicStopSendingFrame& stop_sending_frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { set_detailed_error("Can not write stop sending stream id"); return false; } if (!writer->WriteVarInt62( static_cast(stop_sending_frame.ietf_error_code))) { set_detailed_error("Can not write application error code"); return false; } return true; } // Append/process IETF-Format MAX_DATA Frame bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.max_data)) { set_detailed_error("Can not write MAX_DATA byte-offset"); return false; } return true; } bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); if (!reader->ReadVarInt62(&frame->max_data)) { set_detailed_error("Can not read MAX_DATA byte-offset"); return false; } return true; } // Append/process IETF-Format MAX_STREAM_DATA Frame bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_id)) { set_detailed_error("Can not write MAX_STREAM_DATA stream id"); return false; } if (!writer->WriteVarInt62(frame.max_data)) { set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); return false; } return true; } bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { if (!ReadUint32FromVarint62(reader, IETF_MAX_STREAM_DATA, &frame->stream_id)) { return false; } if (!reader->ReadVarInt62(&frame->max_data)) { set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); return false; } return true; } bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_count)) { set_detailed_error("Can not write MAX_STREAMS stream count"); return false; } return true; } bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, QuicMaxStreamsFrame* frame, uint64_t frame_type) { if (!ReadUint32FromVarint62(reader, static_cast(frame_type), &frame->stream_count)) { return false; } frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL); return true; } bool QuicFramer::AppendDataBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.offset)) { set_detailed_error("Can not write blocked offset."); return false; } return true; } bool QuicFramer::ProcessDataBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Can not read blocked offset."); return false; } return true; } bool QuicFramer::AppendStreamDataBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_id)) { set_detailed_error("Can not write stream blocked stream id."); return false; } if (!writer->WriteVarInt62(frame.offset)) { set_detailed_error("Can not write stream blocked offset."); return false; } return true; } bool QuicFramer::ProcessStreamDataBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { if (!ReadUint32FromVarint62(reader, IETF_STREAM_DATA_BLOCKED, &frame->stream_id)) { return false; } if (!reader->ReadVarInt62(&frame->offset)) { set_detailed_error("Can not read stream blocked offset."); return false; } return true; } bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.stream_count)) { set_detailed_error("Can not write STREAMS_BLOCKED stream count"); return false; } return true; } bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, QuicStreamsBlockedFrame* frame, uint64_t frame_type) { if (!ReadUint32FromVarint62(reader, static_cast(frame_type), &frame->stream_count)) { return false; } if (frame->stream_count > QuicUtils::GetMaxStreamCount()) { // If stream count is such that the resulting stream ID would exceed our // implementation limit, generate an error. set_detailed_error( "STREAMS_BLOCKED stream count exceeds implementation limit."); return false; } frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL); return true; } bool QuicFramer::AppendNewConnectionIdFrame( const QuicNewConnectionIdFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.sequence_number)) { set_detailed_error("Can not write New Connection ID sequence number"); return false; } if (!writer->WriteVarInt62(frame.retire_prior_to)) { set_detailed_error("Can not write New Connection ID retire_prior_to"); return false; } if (!writer->WriteLengthPrefixedConnectionId(frame.connection_id)) { set_detailed_error("Can not write New Connection ID frame connection ID"); return false; } if (!writer->WriteBytes( static_cast(&frame.stateless_reset_token), sizeof(frame.stateless_reset_token))) { set_detailed_error("Can not write New Connection ID Reset Token"); return false; } return true; } bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, QuicNewConnectionIdFrame* frame) { if (!reader->ReadVarInt62(&frame->sequence_number)) { set_detailed_error( "Unable to read new connection ID frame sequence number."); return false; } if (!reader->ReadVarInt62(&frame->retire_prior_to)) { set_detailed_error( "Unable to read new connection ID frame retire_prior_to."); return false; } if (frame->retire_prior_to > frame->sequence_number) { set_detailed_error("Retire_prior_to > sequence_number."); return false; } if (!reader->ReadLengthPrefixedConnectionId(&frame->connection_id)) { set_detailed_error("Unable to read new connection ID frame connection id."); return false; } if (!QuicUtils::IsConnectionIdValidForVersion(frame->connection_id, transport_version())) { set_detailed_error("Invalid new connection ID length for version."); return false; } if (!reader->ReadBytes(&frame->stateless_reset_token, sizeof(frame->stateless_reset_token))) { set_detailed_error("Can not read new connection ID frame reset token."); return false; } return true; } bool QuicFramer::AppendRetireConnectionIdFrame( const QuicRetireConnectionIdFrame& frame, QuicDataWriter* writer) { if (!writer->WriteVarInt62(frame.sequence_number)) { set_detailed_error("Can not write Retire Connection ID sequence number"); return false; } return true; } bool QuicFramer::ProcessRetireConnectionIdFrame( QuicDataReader* reader, QuicRetireConnectionIdFrame* frame) { if (!reader->ReadVarInt62(&frame->sequence_number)) { set_detailed_error( "Unable to read retire connection ID frame sequence number."); return false; } return true; } bool QuicFramer::ReadUint32FromVarint62(QuicDataReader* reader, QuicIetfFrameType type, QuicStreamId* id) { uint64_t temp_uint64; if (!reader->ReadVarInt62(&temp_uint64)) { set_detailed_error("Unable to read " + QuicIetfFrameTypeString(type) + " frame stream id/count."); return false; } if (temp_uint64 > kMaxQuicStreamId) { set_detailed_error("Stream id/count of " + QuicIetfFrameTypeString(type) + "frame is too large."); return false; } *id = static_cast(temp_uint64); return true; } uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, bool last_frame_in_packet) const { if (VersionHasIetfQuicFrames(version_.transport_version)) { return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); } uint8_t type_byte = 0; // Fin bit. type_byte |= frame.fin ? kQuicStreamFinMask : 0; // Data Length bit. type_byte <<= kQuicStreamDataLengthShift; type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; // Offset 3 bits. type_byte <<= kQuicStreamShift; const size_t offset_len = GetStreamOffsetSize(frame.offset); if (offset_len > 0) { type_byte |= offset_len - 1; } // stream id 2 bits. type_byte <<= kQuicStreamIdShift; type_byte |= GetStreamIdSize(frame.stream_id) - 1; type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. return type_byte; } uint8_t QuicFramer::GetIetfStreamFrameTypeByte( const QuicStreamFrame& frame, bool last_frame_in_packet) const { DCHECK(VersionHasIetfQuicFrames(version_.transport_version)); uint8_t type_byte = IETF_STREAM; if (!last_frame_in_packet) { type_byte |= IETF_STREAM_FRAME_LEN_BIT; } if (frame.offset != 0) { type_byte |= IETF_STREAM_FRAME_OFF_BIT; } if (frame.fin) { type_byte |= IETF_STREAM_FRAME_FIN_BIT; } return type_byte; } void QuicFramer::InferPacketHeaderTypeFromVersion() { // This function should only be called when server connection negotiates the // version. DCHECK_EQ(perspective_, Perspective::IS_SERVER); DCHECK(!infer_packet_header_type_from_version_); infer_packet_header_type_from_version_ = true; } void QuicFramer::EnableMultiplePacketNumberSpacesSupport() { if (supports_multiple_packet_number_spaces_) { QUIC_BUG << "Multiple packet number spaces has already been enabled"; return; } if (largest_packet_number_.IsInitialized()) { QUIC_BUG << "Try to enable multiple packet number spaces support after any " "packet has been received."; return; } supports_multiple_packet_number_spaces_ = true; } // static QuicErrorCode QuicFramer::ParsePublicHeaderDispatcher( const QuicEncryptedPacket& packet, uint8_t expected_destination_connection_id_length, PacketHeaderFormat* format, QuicLongHeaderType* long_packet_type, bool* version_present, bool* has_length_prefix, QuicVersionLabel* version_label, ParsedQuicVersion* parsed_version, QuicConnectionId* destination_connection_id, QuicConnectionId* source_connection_id, bool* retry_token_present, absl::string_view* retry_token, std::string* detailed_error) { QuicDataReader reader(packet.data(), packet.length()); if (reader.IsDoneReading()) { *detailed_error = "Unable to read first byte."; return QUIC_INVALID_PACKET_HEADER; } const uint8_t first_byte = reader.PeekByte(); const bool ietf_format = QuicUtils::IsIetfPacketHeader(first_byte); uint8_t unused_first_byte; QuicVariableLengthIntegerLength retry_token_length_length; QuicErrorCode error_code = ParsePublicHeader( &reader, expected_destination_connection_id_length, ietf_format, &unused_first_byte, format, version_present, has_length_prefix, version_label, parsed_version, destination_connection_id, source_connection_id, long_packet_type, &retry_token_length_length, retry_token, detailed_error); *retry_token_present = retry_token_length_length != VARIABLE_LENGTH_INTEGER_LENGTH_0; return error_code; } // static QuicErrorCode QuicFramer::ParsePublicHeaderGoogleQuic( QuicDataReader* reader, uint8_t* first_byte, PacketHeaderFormat* format, bool* version_present, QuicVersionLabel* version_label, ParsedQuicVersion* parsed_version, QuicConnectionId* destination_connection_id, std::string* detailed_error) { *format = GOOGLE_QUIC_PACKET; *version_present = (*first_byte & PACKET_PUBLIC_FLAGS_VERSION) != 0; uint8_t destination_connection_id_length = 0; if ((*first_byte & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) != 0) { destination_connection_id_length = kQuicDefaultConnectionIdLength; } if (!reader->ReadConnectionId(destination_connection_id, destination_connection_id_length)) { *detailed_error = "Unable to read ConnectionId."; return QUIC_INVALID_PACKET_HEADER; } if (*version_present) { if (!ProcessVersionLabel(reader, version_label)) { *detailed_error = "Unable to read protocol version."; return QUIC_INVALID_PACKET_HEADER; } *parsed_version = ParseQuicVersionLabel(*version_label); } return QUIC_NO_ERROR; } namespace { const QuicVersionLabel kProxVersionLabel = 0x50524F58; // "PROX" inline bool PacketHasLengthPrefixedConnectionIds( const QuicDataReader& reader, ParsedQuicVersion parsed_version, QuicVersionLabel version_label, uint8_t first_byte) { if (parsed_version.IsKnown()) { return parsed_version.HasLengthPrefixedConnectionIds(); } // Received unsupported version, check known old unsupported versions. if (QuicVersionLabelUses4BitConnectionIdLength(version_label)) { return false; } // Received unknown version, check connection ID length byte. if (reader.IsDoneReading()) { // This check is required to safely peek the connection ID length byte. return true; } const uint8_t connection_id_length_byte = reader.PeekByte(); // Check for packets produced by older versions of // QuicFramer::WriteClientVersionNegotiationProbePacket if (first_byte == 0xc0 && (connection_id_length_byte & 0x0f) == 0 && connection_id_length_byte >= 0x50 && version_label == 0xcabadaba) { return false; } // Check for munged packets with version tag PROX. if ((connection_id_length_byte & 0x0f) == 0 && connection_id_length_byte >= 0x20 && version_label == kProxVersionLabel) { return false; } return true; } inline bool ParseLongHeaderConnectionIds( QuicDataReader* reader, bool has_length_prefix, QuicVersionLabel version_label, QuicConnectionId* destination_connection_id, QuicConnectionId* source_connection_id, std::string* detailed_error) { if (has_length_prefix) { if (!reader->ReadLengthPrefixedConnectionId(destination_connection_id)) { *detailed_error = "Unable to read destination connection ID."; return false; } if (!reader->ReadLengthPrefixedConnectionId(source_connection_id)) { if (version_label == kProxVersionLabel) { // The "PROX" version does not follow the length-prefixed invariants, // and can therefore attempt to read a payload byte and interpret it // as the source connection ID length, which could fail to parse. // In that scenario we keep the source connection ID empty but mark // parsing as successful. return true; } *detailed_error = "Unable to read source connection ID."; return false; } } else { // Parse connection ID lengths. uint8_t connection_id_lengths_byte; if (!reader->ReadUInt8(&connection_id_lengths_byte)) { *detailed_error = "Unable to read connection ID lengths."; return false; } uint8_t destination_connection_id_length = (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; if (destination_connection_id_length != 0) { destination_connection_id_length += kConnectionIdLengthAdjustment; } uint8_t source_connection_id_length = connection_id_lengths_byte & kSourceConnectionIdLengthMask; if (source_connection_id_length != 0) { source_connection_id_length += kConnectionIdLengthAdjustment; } // Read destination connection ID. if (!reader->ReadConnectionId(destination_connection_id, destination_connection_id_length)) { *detailed_error = "Unable to read destination connection ID."; return false; } // Read source connection ID. if (!reader->ReadConnectionId(source_connection_id, source_connection_id_length)) { *detailed_error = "Unable to read source connection ID."; return false; } } return true; } } // namespace // static QuicErrorCode QuicFramer::ParsePublicHeader( QuicDataReader* reader, uint8_t expected_destination_connection_id_length, bool ietf_format, uint8_t* first_byte, PacketHeaderFormat* format, bool* version_present, bool* has_length_prefix, QuicVersionLabel* version_label, ParsedQuicVersion* parsed_version, QuicConnectionId* destination_connection_id, QuicConnectionId* source_connection_id, QuicLongHeaderType* long_packet_type, QuicVariableLengthIntegerLength* retry_token_length_length, absl::string_view* retry_token, std::string* detailed_error) { *version_present = false; *has_length_prefix = false; *version_label = 0; *parsed_version = UnsupportedQuicVersion(); *source_connection_id = EmptyQuicConnectionId(); *long_packet_type = INVALID_PACKET_TYPE; *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; *retry_token = absl::string_view(); *detailed_error = ""; if (!reader->ReadUInt8(first_byte)) { *detailed_error = "Unable to read first byte."; return QUIC_INVALID_PACKET_HEADER; } if (!ietf_format) { return ParsePublicHeaderGoogleQuic( reader, first_byte, format, version_present, version_label, parsed_version, destination_connection_id, detailed_error); } *format = GetIetfPacketHeaderFormat(*first_byte); if (*format == IETF_QUIC_SHORT_HEADER_PACKET) { // Read destination connection ID using // expected_destination_connection_id_length to determine its length. if (!reader->ReadConnectionId(destination_connection_id, expected_destination_connection_id_length)) { *detailed_error = "Unable to read destination connection ID."; return QUIC_INVALID_PACKET_HEADER; } return QUIC_NO_ERROR; } DCHECK_EQ(IETF_QUIC_LONG_HEADER_PACKET, *format); *version_present = true; if (!ProcessVersionLabel(reader, version_label)) { *detailed_error = "Unable to read protocol version."; return QUIC_INVALID_PACKET_HEADER; } if (*version_label == 0) { *long_packet_type = VERSION_NEGOTIATION; } // Parse version. *parsed_version = ParseQuicVersionLabel(*version_label); // Figure out which IETF QUIC invariants this packet follows. *has_length_prefix = PacketHasLengthPrefixedConnectionIds( *reader, *parsed_version, *version_label, *first_byte); // Parse connection IDs. if (!ParseLongHeaderConnectionIds(reader, *has_length_prefix, *version_label, destination_connection_id, source_connection_id, detailed_error)) { return QUIC_INVALID_PACKET_HEADER; } if (!parsed_version->IsKnown()) { // Skip parsing of long packet type and retry token for unknown versions. return QUIC_NO_ERROR; } // Parse long packet type. if (!GetLongHeaderType(*first_byte, long_packet_type)) { *detailed_error = "Unable to parse long packet type."; return QUIC_INVALID_PACKET_HEADER; } if (!parsed_version->SupportsRetry() || *long_packet_type != INITIAL) { // Retry token is only present on initial packets for some versions. return QUIC_NO_ERROR; } *retry_token_length_length = reader->PeekVarInt62Length(); uint64_t retry_token_length; if (!reader->ReadVarInt62(&retry_token_length)) { *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; *detailed_error = "Unable to read retry token length."; return QUIC_INVALID_PACKET_HEADER; } if (!reader->ReadStringPiece(retry_token, retry_token_length)) { *detailed_error = "Unable to read retry token."; return QUIC_INVALID_PACKET_HEADER; } return QUIC_NO_ERROR; } // static bool QuicFramer::WriteClientVersionNegotiationProbePacket( char* packet_bytes, QuicByteCount packet_length, const char* destination_connection_id_bytes, uint8_t destination_connection_id_length) { if (packet_bytes == nullptr) { QUIC_BUG << "Invalid packet_bytes"; return false; } if (packet_length < kMinPacketSizeForVersionNegotiation || packet_length > 65535) { QUIC_BUG << "Invalid packet_length"; return false; } if (destination_connection_id_length > kQuicMaxConnectionId4BitLength || destination_connection_id_length < kQuicDefaultConnectionIdLength) { QUIC_BUG << "Invalid connection_id_length"; return false; } // clang-format off const unsigned char packet_start_bytes[] = { // IETF long header with fixed bit set, type initial, all-0 encrypted bits. 0xc0, // Version, part of the IETF space reserved for negotiation. // This intentionally differs from QuicVersionReservedForNegotiation() // to allow differentiating them over the wire. 0xca, 0xba, 0xda, 0xda, }; // clang-format on static_assert(sizeof(packet_start_bytes) == 5, "bad packet_start_bytes size"); QuicDataWriter writer(packet_length, packet_bytes); if (!writer.WriteBytes(packet_start_bytes, sizeof(packet_start_bytes))) { QUIC_BUG << "Failed to write packet start"; return false; } QuicConnectionId destination_connection_id(destination_connection_id_bytes, destination_connection_id_length); if (!AppendIetfConnectionIds( /*version_flag=*/true, /*use_length_prefix=*/true, destination_connection_id, EmptyQuicConnectionId(), &writer)) { QUIC_BUG << "Failed to write connection IDs"; return false; } // Add 8 bytes of zeroes followed by 8 bytes of ones to ensure that this does // not parse with any known version. The zeroes make sure that packet numbers, // retry token lengths and payload lengths are parsed as zero, and if the // zeroes are treated as padding frames, 0xff is known to not parse as a // valid frame type. if (!writer.WriteUInt64(0) || !writer.WriteUInt64(std::numeric_limits::max())) { QUIC_BUG << "Failed to write 18 bytes"; return false; } // Make sure the polite greeting below is padded to a 16-byte boundary to // make it easier to read in tcpdump. while (writer.length() % 16 != 0) { if (!writer.WriteUInt8(0)) { QUIC_BUG << "Failed to write padding byte"; return false; } } // Add a polite greeting in case a human sees this in tcpdump. static const char polite_greeting[] = "This packet only exists to trigger IETF QUIC version negotiation. " "Please respond with a Version Negotiation packet indicating what " "versions you support. Thank you and have a nice day."; if (!writer.WriteBytes(polite_greeting, sizeof(polite_greeting))) { QUIC_BUG << "Failed to write polite greeting"; return false; } // Fill the rest of the packet with zeroes. writer.WritePadding(); DCHECK_EQ(0u, writer.remaining()); return true; } // static bool QuicFramer::ParseServerVersionNegotiationProbeResponse( const char* packet_bytes, QuicByteCount packet_length, char* source_connection_id_bytes, uint8_t* source_connection_id_length_out, std::string* detailed_error) { if (detailed_error == nullptr) { QUIC_BUG << "Invalid error_details"; return false; } *detailed_error = ""; if (packet_bytes == nullptr) { *detailed_error = "Invalid packet_bytes"; return false; } if (packet_length < 6) { *detailed_error = "Invalid packet_length"; return false; } if (source_connection_id_bytes == nullptr) { *detailed_error = "Invalid source_connection_id_bytes"; return false; } if (source_connection_id_length_out == nullptr) { *detailed_error = "Invalid source_connection_id_length_out"; return false; } QuicDataReader reader(packet_bytes, packet_length); uint8_t type_byte = 0; if (!reader.ReadUInt8(&type_byte)) { *detailed_error = "Failed to read type byte"; return false; } if ((type_byte & 0x80) == 0) { *detailed_error = "Packet does not have long header"; return false; } uint32_t version = 0; if (!reader.ReadUInt32(&version)) { *detailed_error = "Failed to read version"; return false; } if (version != 0) { *detailed_error = "Packet is not a version negotiation packet"; return false; } QuicConnectionId destination_connection_id, source_connection_id; if (!reader.ReadLengthPrefixedConnectionId(&destination_connection_id)) { *detailed_error = "Failed to read destination connection ID"; return false; } if (!reader.ReadLengthPrefixedConnectionId(&source_connection_id)) { *detailed_error = "Failed to read source connection ID"; return false; } if (destination_connection_id.length() != 0) { *detailed_error = "Received unexpected destination connection ID length"; return false; } if (*source_connection_id_length_out < source_connection_id.length()) { *detailed_error = quiche::QuicheStrCat( "*source_connection_id_length_out too small ", static_cast(*source_connection_id_length_out), " < ", static_cast(source_connection_id.length())); return false; } memcpy(source_connection_id_bytes, source_connection_id.data(), source_connection_id.length()); *source_connection_id_length_out = source_connection_id.length(); return true; } // Look for and parse the error code from the ":" text that // may be present at the start of the CONNECTION_CLOSE error details string. // This text, inserted by the peer if it's using Google's QUIC implementation, // contains additional error information that narrows down the exact error. If // the string is not found, or is not properly formed, it returns // ErrorCode::QUIC_IETF_GQUIC_ERROR_MISSING void MaybeExtractQuicErrorCode(QuicConnectionCloseFrame* frame) { std::vector ed = absl::StrSplit(frame->error_details, ':'); uint64_t extracted_error_code; if (ed.size() < 2 || !quiche::QuicheTextUtils::IsAllDigits(ed[0]) || !absl::SimpleAtoi(ed[0], &extracted_error_code)) { if (frame->close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && frame->wire_error_code == NO_IETF_QUIC_ERROR) { frame->quic_error_code = QUIC_NO_ERROR; } else { frame->quic_error_code = QUIC_IETF_GQUIC_ERROR_MISSING; } return; } // Return the error code (numeric) and the error details string without the // error code prefix. Note that Split returns everything up to, but not // including, the split character, so the length of ed[0] is just the number // of digits in the error number. In removing the prefix, 1 is added to the // length to account for the : absl::string_view x = absl::string_view(frame->error_details); x.remove_prefix(ed[0].length() + 1); frame->error_details = std::string(x); frame->quic_error_code = static_cast(extracted_error_code); } #undef ENDPOINT // undef for jumbo builds } // namespace quic