// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/ip_endpoint.h" #include #include #include #include "base/check_op.h" #include "base/notreached.h" #include "base/numerics/safe_conversions.h" #include "base/strings/string_number_conversions.h" #include "base/sys_byteorder.h" #include "build/build_config.h" #include "net/base/ip_address.h" #include "net/base/sockaddr_storage.h" #include "net/base/sys_addrinfo.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/platform_test.h" #if BUILDFLAG(IS_WIN) #include #include #include "base/test/gtest_util.h" // For EXPECT_DCHECK_DEATH #include "net/base/winsock_util.h" // For kBluetoothAddressSize #elif BUILDFLAG(IS_POSIX) #include #endif namespace net { namespace { // Retuns the port field of the |sockaddr|. const uint16_t* GetPortFieldFromSockaddr(const struct sockaddr* address, socklen_t address_len) { if (address->sa_family == AF_INET) { DCHECK_LE(sizeof(sockaddr_in), static_cast(address_len)); const struct sockaddr_in* sockaddr = reinterpret_cast(address); return &sockaddr->sin_port; } else if (address->sa_family == AF_INET6) { DCHECK_LE(sizeof(sockaddr_in6), static_cast(address_len)); const struct sockaddr_in6* sockaddr = reinterpret_cast(address); return &sockaddr->sin6_port; } else { NOTREACHED(); return nullptr; } } // Returns the value of port in |sockaddr| (in host byte ordering). int GetPortFromSockaddr(const struct sockaddr* address, socklen_t address_len) { const uint16_t* port_field = GetPortFieldFromSockaddr(address, address_len); if (!port_field) return -1; return base::NetToHost16(*port_field); } struct TestData { std::string host; std::string host_normalized; bool ipv6; IPAddress ip_address; } tests[] = { { "127.0.00.1", "127.0.0.1", false}, { "192.168.1.1", "192.168.1.1", false }, { "::1", "[::1]", true }, { "2001:db8:0::42", "[2001:db8::42]", true }, }; class IPEndPointTest : public PlatformTest { public: void SetUp() override { // This is where we populate the TestData. for (auto& test : tests) { EXPECT_TRUE(test.ip_address.AssignFromIPLiteral(test.host)); } } }; TEST_F(IPEndPointTest, Constructor) { { IPEndPoint endpoint; EXPECT_EQ(0, endpoint.port()); } for (const auto& test : tests) { IPEndPoint endpoint(test.ip_address, 80); EXPECT_EQ(80, endpoint.port()); EXPECT_EQ(test.ip_address, endpoint.address()); } } TEST_F(IPEndPointTest, Assignment) { uint16_t port = 0; for (const auto& test : tests) { IPEndPoint src(test.ip_address, ++port); IPEndPoint dest = src; EXPECT_EQ(src.port(), dest.port()); EXPECT_EQ(src.address(), dest.address()); } } TEST_F(IPEndPointTest, Copy) { uint16_t port = 0; for (const auto& test : tests) { IPEndPoint src(test.ip_address, ++port); IPEndPoint dest(src); EXPECT_EQ(src.port(), dest.port()); EXPECT_EQ(src.address(), dest.address()); } } TEST_F(IPEndPointTest, ToFromSockAddr) { uint16_t port = 0; for (const auto& test : tests) { IPEndPoint ip_endpoint(test.ip_address, ++port); // Convert to a sockaddr. SockaddrStorage storage; EXPECT_TRUE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len)); // Basic verification. socklen_t expected_size = test.ipv6 ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in); EXPECT_EQ(expected_size, storage.addr_len); EXPECT_EQ(ip_endpoint.port(), GetPortFromSockaddr(storage.addr, storage.addr_len)); // And convert back to an IPEndPoint. IPEndPoint ip_endpoint2; EXPECT_TRUE(ip_endpoint2.FromSockAddr(storage.addr, storage.addr_len)); EXPECT_EQ(ip_endpoint.port(), ip_endpoint2.port()); EXPECT_EQ(ip_endpoint.address(), ip_endpoint2.address()); } } TEST_F(IPEndPointTest, ToSockAddrBufTooSmall) { uint16_t port = 0; for (const auto& test : tests) { IPEndPoint ip_endpoint(test.ip_address, port); SockaddrStorage storage; storage.addr_len = 3; // size is too small! EXPECT_FALSE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len)); } } TEST_F(IPEndPointTest, FromSockAddrBufTooSmall) { struct sockaddr_in addr; memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; IPEndPoint ip_endpoint; struct sockaddr* sockaddr = reinterpret_cast(&addr); EXPECT_FALSE(ip_endpoint.FromSockAddr(sockaddr, sizeof(addr) - 1)); } #if BUILDFLAG(IS_WIN) namespace { constexpr uint8_t kBluetoothAddrBytes[kBluetoothAddressSize] = {1, 2, 3, 4, 5, 6}; constexpr uint8_t kBluetoothAddrBytes2[kBluetoothAddressSize] = {1, 2, 3, 4, 5, 7}; const IPAddress kBluetoothAddress(kBluetoothAddrBytes); const IPAddress kBluetoothAddress2(kBluetoothAddrBytes2); // Select a Bluetooth port that does not fit in a uint16_t. constexpr uint32_t kBluetoothPort = std::numeric_limits::max() + 1; SOCKADDR_BTH BuildBluetoothSockAddr(const IPAddress& ip_address, uint32_t port) { SOCKADDR_BTH addr = {}; addr.addressFamily = AF_BTH; DCHECK_LE(ip_address.bytes().size(), sizeof(addr.btAddr)); memcpy(&addr.btAddr, ip_address.bytes().data(), ip_address.bytes().size()); addr.port = port; return addr; } } // namespace TEST_F(IPEndPointTest, WinBluetoothSockAddrCompareWithSelf) { IPEndPoint bt_endpoint; SOCKADDR_BTH addr = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort); EXPECT_TRUE(bt_endpoint.FromSockAddr( reinterpret_cast(&addr), sizeof(addr))); EXPECT_EQ(bt_endpoint.address(), kBluetoothAddress); EXPECT_EQ(bt_endpoint.GetFamily(), AddressFamily::ADDRESS_FAMILY_UNSPECIFIED); EXPECT_EQ(bt_endpoint.GetSockAddrFamily(), AF_BTH); // Comparison functions should agree that `bt_endpoint` equals itself. EXPECT_FALSE(bt_endpoint < bt_endpoint); EXPECT_FALSE(bt_endpoint != bt_endpoint); EXPECT_TRUE(bt_endpoint == bt_endpoint); // Test that IPv4/IPv6-only methods crash. EXPECT_DCHECK_DEATH(bt_endpoint.port()); SockaddrStorage storage; EXPECT_DCHECK_DEATH( std::ignore = bt_endpoint.ToSockAddr(storage.addr, &storage.addr_len)); EXPECT_DCHECK_DEATH(bt_endpoint.ToString()); EXPECT_DCHECK_DEATH(bt_endpoint.ToStringWithoutPort()); } TEST_F(IPEndPointTest, WinBluetoothSockAddrCompareWithNonBluetooth) { IPEndPoint bt_endpoint; SOCKADDR_BTH addr = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort); EXPECT_TRUE(bt_endpoint.FromSockAddr( reinterpret_cast(&addr), sizeof(addr))); // Compare `bt_endpoint` with non-Bluetooth endpoints. for (const auto& test : tests) { IPEndPoint endpoint(test.ip_address, 80); if (test.ip_address.IsIPv4()) { EXPECT_FALSE(bt_endpoint < endpoint); } else { EXPECT_TRUE(test.ip_address.IsIPv6()); EXPECT_TRUE(bt_endpoint < endpoint); } EXPECT_TRUE(bt_endpoint != endpoint); EXPECT_FALSE(bt_endpoint == endpoint); } } TEST_F(IPEndPointTest, WinBluetoothSockAddrCompareWithCopy) { IPEndPoint bt_endpoint; SOCKADDR_BTH addr = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort); EXPECT_TRUE(bt_endpoint.FromSockAddr( reinterpret_cast(&addr), sizeof(addr))); // Verify that a copy's accessors return the same values as the original's. IPEndPoint bt_endpoint_other(bt_endpoint); EXPECT_EQ(bt_endpoint.address(), bt_endpoint_other.address()); EXPECT_EQ(bt_endpoint.GetFamily(), bt_endpoint_other.GetFamily()); EXPECT_EQ(bt_endpoint.GetSockAddrFamily(), bt_endpoint_other.GetSockAddrFamily()); // Comparison functions should agree that the endpoints are equal. EXPECT_FALSE(bt_endpoint < bt_endpoint_other); EXPECT_FALSE(bt_endpoint != bt_endpoint_other); EXPECT_TRUE(bt_endpoint == bt_endpoint_other); // Test that IPv4/IPv6-only methods crash. EXPECT_DCHECK_DEATH(bt_endpoint_other.port()); SockaddrStorage storage; EXPECT_DCHECK_DEATH(std::ignore = bt_endpoint_other.ToSockAddr( storage.addr, &storage.addr_len)); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToString()); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToStringWithoutPort()); } TEST_F(IPEndPointTest, WinBluetoothSockAddrCompareWithDifferentPort) { IPEndPoint bt_endpoint; SOCKADDR_BTH addr = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort); EXPECT_TRUE(bt_endpoint.FromSockAddr( reinterpret_cast(&addr), sizeof(addr))); // Compare with another IPEndPoint that has a different port. IPEndPoint bt_endpoint_other; SOCKADDR_BTH addr2 = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort + 1); EXPECT_TRUE(bt_endpoint_other.FromSockAddr( reinterpret_cast(&addr2), sizeof(addr2))); EXPECT_EQ(bt_endpoint.address(), bt_endpoint_other.address()); EXPECT_EQ(bt_endpoint.GetFamily(), bt_endpoint_other.GetFamily()); EXPECT_EQ(bt_endpoint.GetSockAddrFamily(), bt_endpoint_other.GetSockAddrFamily()); // Comparison functions should agree that `bt_endpoint == bt_endpoint_other` // because they have the same address and Bluetooth ports are not considered // by comparison functions. EXPECT_FALSE(bt_endpoint < bt_endpoint_other); EXPECT_FALSE(bt_endpoint != bt_endpoint_other); EXPECT_TRUE(bt_endpoint == bt_endpoint_other); // Test that IPv4/IPv6-only methods crash. EXPECT_DCHECK_DEATH(bt_endpoint_other.port()); SockaddrStorage storage; EXPECT_DCHECK_DEATH(std::ignore = bt_endpoint_other.ToSockAddr( storage.addr, &storage.addr_len)); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToString()); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToStringWithoutPort()); } TEST_F(IPEndPointTest, WinBluetoothSockAddrCompareWithDifferentAddress) { IPEndPoint bt_endpoint; SOCKADDR_BTH addr = BuildBluetoothSockAddr(kBluetoothAddress, kBluetoothPort); EXPECT_TRUE(bt_endpoint.FromSockAddr( reinterpret_cast(&addr), sizeof(addr))); // Compare with another IPEndPoint that has a different address. IPEndPoint bt_endpoint_other; SOCKADDR_BTH addr2 = BuildBluetoothSockAddr(kBluetoothAddress2, kBluetoothPort); EXPECT_TRUE(bt_endpoint_other.FromSockAddr( reinterpret_cast(&addr2), sizeof(addr2))); EXPECT_LT(bt_endpoint.address(), bt_endpoint_other.address()); EXPECT_EQ(bt_endpoint.GetFamily(), bt_endpoint_other.GetFamily()); EXPECT_EQ(bt_endpoint.GetSockAddrFamily(), bt_endpoint_other.GetSockAddrFamily()); // Comparison functions should agree that `bt_endpoint < bt_endpoint_other` // due to lexicographic comparison of the address bytes. EXPECT_TRUE(bt_endpoint < bt_endpoint_other); EXPECT_TRUE(bt_endpoint != bt_endpoint_other); EXPECT_FALSE(bt_endpoint == bt_endpoint_other); // Test that IPv4/IPv6-only methods crash. EXPECT_DCHECK_DEATH(bt_endpoint_other.port()); SockaddrStorage storage; EXPECT_DCHECK_DEATH(std::ignore = bt_endpoint_other.ToSockAddr( storage.addr, &storage.addr_len)); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToString()); EXPECT_DCHECK_DEATH(bt_endpoint_other.ToStringWithoutPort()); } #endif TEST_F(IPEndPointTest, Equality) { uint16_t port = 0; for (const auto& test : tests) { IPEndPoint src(test.ip_address, ++port); IPEndPoint dest(src); EXPECT_TRUE(src == dest); } } TEST_F(IPEndPointTest, LessThan) { // Vary by port. IPEndPoint ip_endpoint1(tests[0].ip_address, 100); IPEndPoint ip_endpoint2(tests[0].ip_address, 1000); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv4 vs IPv6 ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[2].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv4 vs IPv4 ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[1].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // IPv6 vs IPv6 ip_endpoint1 = IPEndPoint(tests[2].ip_address, 81); ip_endpoint2 = IPEndPoint(tests[3].ip_address, 80); EXPECT_TRUE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); // Compare equivalent endpoints. ip_endpoint1 = IPEndPoint(tests[0].ip_address, 80); ip_endpoint2 = IPEndPoint(tests[0].ip_address, 80); EXPECT_FALSE(ip_endpoint1 < ip_endpoint2); EXPECT_FALSE(ip_endpoint2 < ip_endpoint1); } TEST_F(IPEndPointTest, ToString) { { IPEndPoint endpoint; EXPECT_EQ(0, endpoint.port()); } uint16_t port = 100; for (const auto& test : tests) { ++port; IPEndPoint endpoint(test.ip_address, port); const std::string result = endpoint.ToString(); EXPECT_EQ(test.host_normalized + ":" + base::NumberToString(port), result); } // ToString() shouldn't crash on invalid addresses. IPAddress invalid_address; IPEndPoint invalid_endpoint(invalid_address, 8080); EXPECT_EQ("", invalid_endpoint.ToString()); EXPECT_EQ("", invalid_endpoint.ToStringWithoutPort()); } } // namespace } // namespace net