// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/video_frame.h" #include #include #include #include "base/bind.h" #include "base/callback_helpers.h" #include "base/format_macros.h" #include "base/memory/aligned_memory.h" #include "base/memory/read_only_shared_memory_region.h" #include "base/memory/shared_memory.h" #include "base/memory/unsafe_shared_memory_region.h" #include "base/stl_util.h" #include "base/strings/stringprintf.h" #include "build/build_config.h" #include "gpu/command_buffer/common/mailbox_holder.h" #include "media/base/simple_sync_token_client.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/libyuv/include/libyuv.h" namespace { // Creates the backing storage for a frame suitable for WrapExternalData. Note // that this is currently used only to test frame creation and tear-down, and so // may not have alignment or other properties correct further video processing. // |memory| must be at least 2 * coded_size.width() * coded_size.height() in // bytes. void CreateTestY16Frame(const gfx::Size& coded_size, const gfx::Rect& visible_rect, void* memory) { const int offset_x = visible_rect.x(); const int offset_y = visible_rect.y(); const int stride = coded_size.width(); // In the visible rect, fill upper byte with [0-255] and lower with [255-0]. uint16_t* data = static_cast(memory); for (int j = 0; j < visible_rect.height(); j++) { for (int i = 0; i < visible_rect.width(); i++) { const int value = i + j * visible_rect.width(); data[(stride * (j + offset_y)) + i + offset_x] = ((value & 0xFF) << 8) | (~value & 0xFF); } } } } // namespace namespace media { using base::MD5DigestToBase16; // Helper function that initializes a YV12 frame with white and black scan // lines based on the |white_to_black| parameter. If 0, then the entire // frame will be black, if 1 then the entire frame will be white. void InitializeYV12Frame(VideoFrame* frame, double white_to_black) { EXPECT_EQ(PIXEL_FORMAT_YV12, frame->format()); const int first_black_row = static_cast(frame->coded_size().height() * white_to_black); uint8_t* y_plane = frame->data(VideoFrame::kYPlane); for (int row = 0; row < frame->coded_size().height(); ++row) { int color = (row < first_black_row) ? 0xFF : 0x00; memset(y_plane, color, frame->stride(VideoFrame::kYPlane)); y_plane += frame->stride(VideoFrame::kYPlane); } uint8_t* u_plane = frame->data(VideoFrame::kUPlane); uint8_t* v_plane = frame->data(VideoFrame::kVPlane); for (int row = 0; row < frame->coded_size().height(); row += 2) { memset(u_plane, 0x80, frame->stride(VideoFrame::kUPlane)); memset(v_plane, 0x80, frame->stride(VideoFrame::kVPlane)); u_plane += frame->stride(VideoFrame::kUPlane); v_plane += frame->stride(VideoFrame::kVPlane); } } // Given a |yv12_frame| this method converts the YV12 frame to RGBA and // makes sure that all the pixels of the RBG frame equal |expect_rgb_color|. void ExpectFrameColor(media::VideoFrame* yv12_frame, uint32_t expect_rgb_color) { ASSERT_EQ(PIXEL_FORMAT_YV12, yv12_frame->format()); ASSERT_EQ(yv12_frame->stride(VideoFrame::kUPlane), yv12_frame->stride(VideoFrame::kVPlane)); ASSERT_EQ( yv12_frame->coded_size().width() & (VideoFrame::kFrameSizeAlignment - 1), 0); ASSERT_EQ( yv12_frame->coded_size().height() & (VideoFrame::kFrameSizeAlignment - 1), 0); size_t bytes_per_row = yv12_frame->coded_size().width() * 4u; uint8_t* rgb_data = reinterpret_cast( base::AlignedAlloc(bytes_per_row * yv12_frame->coded_size().height() + VideoFrame::kFrameSizePadding, VideoFrame::kFrameAddressAlignment)); libyuv::I420ToARGB(yv12_frame->data(VideoFrame::kYPlane), yv12_frame->stride(VideoFrame::kYPlane), yv12_frame->data(VideoFrame::kUPlane), yv12_frame->stride(VideoFrame::kUPlane), yv12_frame->data(VideoFrame::kVPlane), yv12_frame->stride(VideoFrame::kVPlane), rgb_data, bytes_per_row, yv12_frame->coded_size().width(), yv12_frame->coded_size().height()); for (int row = 0; row < yv12_frame->coded_size().height(); ++row) { uint32_t* rgb_row_data = reinterpret_cast(rgb_data + (bytes_per_row * row)); for (int col = 0; col < yv12_frame->coded_size().width(); ++col) { SCOPED_TRACE(base::StringPrintf("Checking (%d, %d)", row, col)); EXPECT_EQ(expect_rgb_color, rgb_row_data[col]); } } base::AlignedFree(rgb_data); } // Fill each plane to its reported extents and verify accessors report non // zero values. Additionally, for the first plane verify the rows and // row_bytes values are correct. void ExpectFrameExtents(VideoPixelFormat format, const char* expected_hash) { const unsigned char kFillByte = 0x80; const int kWidth = 61; const int kHeight = 31; const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337); gfx::Size size(kWidth, kHeight); scoped_refptr frame = VideoFrame::CreateFrame( format, size, gfx::Rect(size), size, kTimestamp); ASSERT_TRUE(frame.get()); int planes = VideoFrame::NumPlanes(format); for (int plane = 0; plane < planes; plane++) { SCOPED_TRACE(base::StringPrintf("Checking plane %d", plane)); EXPECT_TRUE(frame->data(plane)); EXPECT_TRUE(frame->stride(plane)); EXPECT_TRUE(frame->rows(plane)); EXPECT_TRUE(frame->row_bytes(plane)); memset(frame->data(plane), kFillByte, frame->stride(plane) * frame->rows(plane)); } base::MD5Context context; base::MD5Init(&context); VideoFrame::HashFrameForTesting(&context, *frame.get()); base::MD5Digest digest; base::MD5Final(&digest, &context); EXPECT_EQ(MD5DigestToBase16(digest), expected_hash); } TEST(VideoFrame, CreateFrame) { const int kWidth = 64; const int kHeight = 48; const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337); // Create a YV12 Video Frame. gfx::Size size(kWidth, kHeight); scoped_refptr frame = VideoFrame::CreateFrame( media::PIXEL_FORMAT_YV12, size, gfx::Rect(size), size, kTimestamp); ASSERT_TRUE(frame.get()); // Test VideoFrame implementation. EXPECT_EQ(media::PIXEL_FORMAT_YV12, frame->format()); { SCOPED_TRACE(""); InitializeYV12Frame(frame.get(), 0.0f); ExpectFrameColor(frame.get(), 0xFF000000); } base::MD5Digest digest; base::MD5Context context; base::MD5Init(&context); VideoFrame::HashFrameForTesting(&context, *frame.get()); base::MD5Final(&digest, &context); EXPECT_EQ(MD5DigestToBase16(digest), "9065c841d9fca49186ef8b4ef547e79b"); { SCOPED_TRACE(""); InitializeYV12Frame(frame.get(), 1.0f); ExpectFrameColor(frame.get(), 0xFFFFFFFF); } base::MD5Init(&context); VideoFrame::HashFrameForTesting(&context, *frame.get()); base::MD5Final(&digest, &context); EXPECT_EQ(MD5DigestToBase16(digest), "911991d51438ad2e1a40ed5f6fc7c796"); // Test single planar frame. frame = VideoFrame::CreateFrame(media::PIXEL_FORMAT_ARGB, size, gfx::Rect(size), size, kTimestamp); EXPECT_EQ(media::PIXEL_FORMAT_ARGB, frame->format()); EXPECT_GE(frame->stride(VideoFrame::kARGBPlane), frame->coded_size().width()); // Test double planar frame. frame = VideoFrame::CreateFrame(media::PIXEL_FORMAT_NV12, size, gfx::Rect(size), size, kTimestamp); EXPECT_EQ(media::PIXEL_FORMAT_NV12, frame->format()); // Test an empty frame. frame = VideoFrame::CreateEOSFrame(); EXPECT_TRUE( frame->metadata()->IsTrue(VideoFrameMetadata::END_OF_STREAM)); } TEST(VideoFrame, CreateZeroInitializedFrame) { const int kWidth = 2; const int kHeight = 2; const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337); // Create a YV12 Video Frame. gfx::Size size(kWidth, kHeight); scoped_refptr frame = VideoFrame::CreateZeroInitializedFrame(media::PIXEL_FORMAT_YV12, size, gfx::Rect(size), size, kTimestamp); ASSERT_TRUE(frame.get()); EXPECT_TRUE(frame->IsMappable()); // Verify that frame is initialized with zeros. // TODO(emircan): Check all the contents when we know the exact size of the // allocated buffer. for (size_t i = 0; i < VideoFrame::NumPlanes(frame->format()); ++i) EXPECT_EQ(0, frame->data(i)[0]); } TEST(VideoFrame, CreateBlackFrame) { const int kWidth = 2; const int kHeight = 2; const uint8_t kExpectedYRow[] = {0, 0}; const uint8_t kExpectedUVRow[] = {128}; scoped_refptr frame = VideoFrame::CreateBlackFrame(gfx::Size(kWidth, kHeight)); ASSERT_TRUE(frame.get()); EXPECT_TRUE(frame->IsMappable()); // Test basic properties. EXPECT_EQ(0, frame->timestamp().InMicroseconds()); EXPECT_FALSE( frame->metadata()->IsTrue(VideoFrameMetadata::END_OF_STREAM)); // Test |frame| properties. EXPECT_EQ(PIXEL_FORMAT_I420, frame->format()); EXPECT_EQ(kWidth, frame->coded_size().width()); EXPECT_EQ(kHeight, frame->coded_size().height()); // Test frames themselves. uint8_t* y_plane = frame->data(VideoFrame::kYPlane); for (int y = 0; y < frame->coded_size().height(); ++y) { EXPECT_EQ(0, memcmp(kExpectedYRow, y_plane, base::size(kExpectedYRow))); y_plane += frame->stride(VideoFrame::kYPlane); } uint8_t* u_plane = frame->data(VideoFrame::kUPlane); uint8_t* v_plane = frame->data(VideoFrame::kVPlane); for (int y = 0; y < frame->coded_size().height() / 2; ++y) { EXPECT_EQ(0, memcmp(kExpectedUVRow, u_plane, base::size(kExpectedUVRow))); EXPECT_EQ(0, memcmp(kExpectedUVRow, v_plane, base::size(kExpectedUVRow))); u_plane += frame->stride(VideoFrame::kUPlane); v_plane += frame->stride(VideoFrame::kVPlane); } } static void FrameNoLongerNeededCallback( const scoped_refptr& frame, bool* triggered) { *triggered = true; } TEST(VideoFrame, WrapVideoFrame) { const int kWidth = 4; const int kHeight = 4; const base::TimeDelta kFrameDuration = base::TimeDelta::FromMicroseconds(42); scoped_refptr frame; bool done_callback_was_run = false; { scoped_refptr wrapped_frame = VideoFrame::CreateBlackFrame(gfx::Size(kWidth, kHeight)); ASSERT_TRUE(wrapped_frame.get()); gfx::Rect visible_rect(1, 1, 1, 1); gfx::Size natural_size = visible_rect.size(); wrapped_frame->metadata()->SetTimeDelta( media::VideoFrameMetadata::FRAME_DURATION, kFrameDuration); frame = media::VideoFrame::WrapVideoFrame( wrapped_frame, wrapped_frame->format(), visible_rect, natural_size); frame->AddDestructionObserver(base::Bind( &FrameNoLongerNeededCallback, wrapped_frame, &done_callback_was_run)); EXPECT_EQ(wrapped_frame->coded_size(), frame->coded_size()); EXPECT_EQ(wrapped_frame->data(media::VideoFrame::kYPlane), frame->data(media::VideoFrame::kYPlane)); EXPECT_NE(wrapped_frame->visible_rect(), frame->visible_rect()); EXPECT_EQ(visible_rect, frame->visible_rect()); EXPECT_NE(wrapped_frame->natural_size(), frame->natural_size()); EXPECT_EQ(natural_size, frame->natural_size()); // Verify metadata was copied to the wrapped frame. base::TimeDelta frame_duration; ASSERT_TRUE(frame->metadata()->GetTimeDelta( media::VideoFrameMetadata::FRAME_DURATION, &frame_duration)); EXPECT_EQ(frame_duration, kFrameDuration); // Verify the metadata copy was a deep copy. wrapped_frame->metadata()->Clear(); EXPECT_NE( wrapped_frame->metadata()->HasKey( media::VideoFrameMetadata::FRAME_DURATION), frame->metadata()->HasKey(media::VideoFrameMetadata::FRAME_DURATION)); } EXPECT_FALSE(done_callback_was_run); frame = NULL; EXPECT_TRUE(done_callback_was_run); } // Create a frame that wraps unowned memory. TEST(VideoFrame, WrapExternalData) { uint8_t memory[2 * 256 * 256]; gfx::Size coded_size(256, 256); gfx::Rect visible_rect(coded_size); CreateTestY16Frame(coded_size, visible_rect, memory); auto timestamp = base::TimeDelta::FromMilliseconds(1); auto frame = VideoFrame::WrapExternalData(media::PIXEL_FORMAT_Y16, coded_size, visible_rect, visible_rect.size(), memory, sizeof(memory), timestamp); EXPECT_EQ(frame->coded_size(), coded_size); EXPECT_EQ(frame->visible_rect(), visible_rect); EXPECT_EQ(frame->timestamp(), timestamp); EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff); } // Create a frame that wraps read-only shared memory. TEST(VideoFrame, WrapExternalReadOnlySharedMemory) { const size_t kDataSize = 2 * 256 * 256; auto mapped_region = base::ReadOnlySharedMemoryRegion::Create(kDataSize); gfx::Size coded_size(256, 256); gfx::Rect visible_rect(coded_size); CreateTestY16Frame(coded_size, visible_rect, mapped_region.mapping.memory()); auto timestamp = base::TimeDelta::FromMilliseconds(1); auto frame = VideoFrame::WrapExternalReadOnlySharedMemory( media::PIXEL_FORMAT_Y16, coded_size, visible_rect, visible_rect.size(), static_cast(mapped_region.mapping.memory()), kDataSize, &mapped_region.region, 0, timestamp); EXPECT_EQ(frame->coded_size(), coded_size); EXPECT_EQ(frame->visible_rect(), visible_rect); EXPECT_EQ(frame->timestamp(), timestamp); EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff); } // Create a frame that wraps unsafe shared memory. TEST(VideoFrame, WrapExternalUnsafeSharedMemory) { const size_t kDataSize = 2 * 256 * 256; auto region = base::UnsafeSharedMemoryRegion::Create(kDataSize); auto mapping = region.Map(); gfx::Size coded_size(256, 256); gfx::Rect visible_rect(coded_size); CreateTestY16Frame(coded_size, visible_rect, mapping.memory()); auto timestamp = base::TimeDelta::FromMilliseconds(1); auto frame = VideoFrame::WrapExternalUnsafeSharedMemory( media::PIXEL_FORMAT_Y16, coded_size, visible_rect, visible_rect.size(), static_cast(mapping.memory()), kDataSize, ®ion, 0, timestamp); EXPECT_EQ(frame->coded_size(), coded_size); EXPECT_EQ(frame->visible_rect(), visible_rect); EXPECT_EQ(frame->timestamp(), timestamp); EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff); } // Create a frame that wraps a legacy shared memory handle. TEST(VideoFrame, WrapExternalSharedMemory) { const size_t kDataSize = 2 * 256 * 256; base::SharedMemory shm; ASSERT_TRUE(shm.CreateAndMapAnonymous(kDataSize)); gfx::Size coded_size(256, 256); gfx::Rect visible_rect(coded_size); CreateTestY16Frame(coded_size, visible_rect, shm.memory()); auto timestamp = base::TimeDelta::FromMilliseconds(1); auto frame = VideoFrame::WrapExternalSharedMemory( media::PIXEL_FORMAT_Y16, coded_size, visible_rect, visible_rect.size(), static_cast(shm.memory()), kDataSize, shm.handle(), 0, timestamp); EXPECT_EQ(frame->coded_size(), coded_size); EXPECT_EQ(frame->visible_rect(), visible_rect); EXPECT_EQ(frame->timestamp(), timestamp); EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff); } #if defined(OS_LINUX) TEST(VideoFrame, WrapExternalDmabufs) { gfx::Size coded_size = gfx::Size(256, 256); gfx::Rect visible_rect(coded_size); std::vector strides = {384, 192, 192}; std::vector offsets = {0, 100, 200}; std::vector buffer_sizes = {73728, 18432, 18432}; std::vector planes(strides.size()); for (size_t i = 0; i < planes.size(); i++) { planes[i].stride = strides[i]; planes[i].offset = offsets[i]; } auto timestamp = base::TimeDelta::FromMilliseconds(1); auto layout = VideoFrameLayout::CreateWithPlanes( PIXEL_FORMAT_I420, coded_size, planes, buffer_sizes); ASSERT_TRUE(layout); std::vector dmabuf_fds(3u); auto frame = VideoFrame::WrapExternalDmabufs( *layout, visible_rect, visible_rect.size(), std::move(dmabuf_fds), timestamp); EXPECT_EQ(frame->layout().format(), PIXEL_FORMAT_I420); EXPECT_EQ(frame->layout().coded_size(), coded_size); EXPECT_EQ(frame->layout().num_planes(), 3u); EXPECT_EQ(frame->layout().num_buffers(), 3u); EXPECT_EQ(frame->layout().GetTotalBufferSize(), 110592u); for (size_t i = 0; i < 3; ++i) { EXPECT_EQ(frame->layout().planes()[i].stride, strides[i]); EXPECT_EQ(frame->layout().planes()[i].offset, offsets[i]); EXPECT_EQ(frame->layout().buffer_sizes()[i], buffer_sizes[i]); } EXPECT_TRUE(frame->HasDmaBufs()); EXPECT_EQ(frame->DmabufFds().size(), 3u); EXPECT_EQ(frame->coded_size(), coded_size); EXPECT_EQ(frame->visible_rect(), visible_rect); EXPECT_EQ(frame->timestamp(), timestamp); } #endif // Ensure each frame is properly sized and allocated. Will trigger OOB reads // and writes as well as incorrect frame hashes otherwise. TEST(VideoFrame, CheckFrameExtents) { // Each call consists of a Format and the expected hash of all // planes if filled with kFillByte (defined in ExpectFrameExtents). ExpectFrameExtents(PIXEL_FORMAT_YV12, "8e5d54cb23cd0edca111dd35ffb6ff05"); ExpectFrameExtents(PIXEL_FORMAT_I422, "cce408a044b212db42a10dfec304b3ef"); } static void TextureCallback(gpu::SyncToken* called_sync_token, const gpu::SyncToken& release_sync_token) { *called_sync_token = release_sync_token; } // Verify the gpu::MailboxHolder::ReleaseCallback is called when VideoFrame is // destroyed with the default release sync point. TEST(VideoFrame, TextureNoLongerNeededCallbackIsCalled) { gpu::SyncToken called_sync_token(gpu::CommandBufferNamespace::GPU_IO, gpu::CommandBufferId::FromUnsafeValue(1), 1); { gpu::MailboxHolder holders[media::VideoFrame::kMaxPlanes] = { gpu::MailboxHolder(gpu::Mailbox::Generate(), gpu::SyncToken(), 5)}; scoped_refptr frame = VideoFrame::WrapNativeTextures( PIXEL_FORMAT_ARGB, holders, base::Bind(&TextureCallback, &called_sync_token), gfx::Size(10, 10), // coded_size gfx::Rect(10, 10), // visible_rect gfx::Size(10, 10), // natural_size base::TimeDelta()); // timestamp EXPECT_EQ(PIXEL_FORMAT_ARGB, frame->format()); EXPECT_EQ(VideoFrame::STORAGE_OPAQUE, frame->storage_type()); EXPECT_TRUE(frame->HasTextures()); } // Nobody set a sync point to |frame|, so |frame| set |called_sync_token| // cleared to default value. EXPECT_FALSE(called_sync_token.HasData()); } // Verify the gpu::MailboxHolder::ReleaseCallback is called when VideoFrame is // destroyed with the release sync point, which was updated by clients. // (i.e. the compositor, webgl). TEST(VideoFrame, TexturesNoLongerNeededCallbackAfterTakingAndReleasingMailboxes) { const int kPlanesNum = 3; const gpu::CommandBufferNamespace kNamespace = gpu::CommandBufferNamespace::GPU_IO; const gpu::CommandBufferId kCommandBufferId = gpu::CommandBufferId::FromUnsafeValue(0x123); gpu::Mailbox mailbox[kPlanesNum]; for (int i = 0; i < kPlanesNum; ++i) { mailbox[i].name[0] = 50 + 1; } gpu::SyncToken sync_token(kNamespace, kCommandBufferId, 7); sync_token.SetVerifyFlush(); uint32_t target = 9; gpu::SyncToken release_sync_token(kNamespace, kCommandBufferId, 111); release_sync_token.SetVerifyFlush(); gpu::SyncToken called_sync_token; { gpu::MailboxHolder holders[media::VideoFrame::kMaxPlanes] = { gpu::MailboxHolder(mailbox[VideoFrame::kYPlane], sync_token, target), gpu::MailboxHolder(mailbox[VideoFrame::kUPlane], sync_token, target), gpu::MailboxHolder(mailbox[VideoFrame::kVPlane], sync_token, target), }; scoped_refptr frame = VideoFrame::WrapNativeTextures( PIXEL_FORMAT_I420, holders, base::Bind(&TextureCallback, &called_sync_token), gfx::Size(10, 10), // coded_size gfx::Rect(10, 10), // visible_rect gfx::Size(10, 10), // natural_size base::TimeDelta()); // timestamp EXPECT_EQ(VideoFrame::STORAGE_OPAQUE, frame->storage_type()); EXPECT_EQ(PIXEL_FORMAT_I420, frame->format()); EXPECT_EQ(3u, VideoFrame::NumPlanes(frame->format())); EXPECT_TRUE(frame->HasTextures()); for (size_t i = 0; i < VideoFrame::NumPlanes(frame->format()); ++i) { const gpu::MailboxHolder& mailbox_holder = frame->mailbox_holder(i); EXPECT_EQ(mailbox[i].name[0], mailbox_holder.mailbox.name[0]); EXPECT_EQ(target, mailbox_holder.texture_target); EXPECT_EQ(sync_token, mailbox_holder.sync_token); } SimpleSyncTokenClient client(release_sync_token); frame->UpdateReleaseSyncToken(&client); EXPECT_EQ(sync_token, frame->mailbox_holder(VideoFrame::kYPlane).sync_token); } EXPECT_EQ(release_sync_token, called_sync_token); } TEST(VideoFrame, IsValidConfig_OddCodedSize) { // Odd sizes are valid for all formats. Odd formats may be internally rounded // in VideoFrame::CreateFrame because VideoFrame owns the allocation and can // pad the requested coded_size to ensure the UV sample boundaries line up // with the Y plane after subsample scaling. See CreateFrame_OddWidth. gfx::Size odd_size(677, 288); // First choosing a format with sub-sampling for UV. EXPECT_TRUE(VideoFrame::IsValidConfig( PIXEL_FORMAT_I420, VideoFrame::STORAGE_OWNED_MEMORY, odd_size, gfx::Rect(odd_size), odd_size)); // Next try a format with no sub-sampling for UV. EXPECT_TRUE(VideoFrame::IsValidConfig( PIXEL_FORMAT_I444, VideoFrame::STORAGE_OWNED_MEMORY, odd_size, gfx::Rect(odd_size), odd_size)); } TEST(VideoFrame, CreateFrame_OddWidth) { // Odd sizes are non-standard for YUV formats that subsample the UV, but they // do exist in the wild and should be gracefully handled by VideoFrame in // situations where VideoFrame allocates the YUV memory. See discussion in // crrev.com/1240833003 const gfx::Size odd_size(677, 288); const base::TimeDelta kTimestamp = base::TimeDelta(); // First create a frame that sub-samples UV. scoped_refptr frame = VideoFrame::CreateFrame( PIXEL_FORMAT_I420, odd_size, gfx::Rect(odd_size), odd_size, kTimestamp); ASSERT_TRUE(frame.get()); // I420 aligns UV to every 2 Y pixels. Hence, 677 should be rounded to 678 // which is the nearest value such that width % 2 == 0 EXPECT_EQ(678, frame->coded_size().width()); // Next create a frame that does not sub-sample UV. frame = VideoFrame::CreateFrame(PIXEL_FORMAT_I444, odd_size, gfx::Rect(odd_size), odd_size, kTimestamp); ASSERT_TRUE(frame.get()); // No sub-sampling for YV24 will mean odd width can remain odd since any pixel // in the Y plane has a a corresponding pixel in the UV planes at the same // index. EXPECT_EQ(677, frame->coded_size().width()); } TEST(VideoFrame, AllocationSize_OddSize) { const gfx::Size size(3, 5); for (unsigned int i = 1u; i <= PIXEL_FORMAT_MAX; ++i) { const VideoPixelFormat format = static_cast(i); switch (format) { case PIXEL_FORMAT_YUV444P9: case PIXEL_FORMAT_YUV444P10: case PIXEL_FORMAT_YUV444P12: EXPECT_EQ(144u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_YUV422P9: case PIXEL_FORMAT_YUV422P10: case PIXEL_FORMAT_YUV422P12: EXPECT_EQ(96u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_I444: case PIXEL_FORMAT_YUV420P9: case PIXEL_FORMAT_YUV420P10: case PIXEL_FORMAT_YUV420P12: EXPECT_EQ(72u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_UYVY: case PIXEL_FORMAT_YUY2: case PIXEL_FORMAT_I422: EXPECT_EQ(48u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_YV12: case PIXEL_FORMAT_I420: case PIXEL_FORMAT_NV12: case PIXEL_FORMAT_NV21: case PIXEL_FORMAT_MT21: EXPECT_EQ(36u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_ARGB: case PIXEL_FORMAT_XRGB: case PIXEL_FORMAT_I420A: case PIXEL_FORMAT_RGB32: case PIXEL_FORMAT_ABGR: case PIXEL_FORMAT_XBGR: case PIXEL_FORMAT_P016LE: EXPECT_EQ(60u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_RGB24: EXPECT_EQ(45u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_Y16: EXPECT_EQ(30u, VideoFrame::AllocationSize(format, size)) << VideoPixelFormatToString(format); break; case PIXEL_FORMAT_MJPEG: case PIXEL_FORMAT_UNKNOWN: continue; } } } TEST(VideoFrameMetadata, SetAndThenGetAllKeysForAllTypes) { VideoFrameMetadata metadata; for (int i = 0; i < VideoFrameMetadata::NUM_KEYS; ++i) { const VideoFrameMetadata::Key key = static_cast(i); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetBoolean(key, true); EXPECT_TRUE(metadata.HasKey(key)); bool bool_value = false; EXPECT_TRUE(metadata.GetBoolean(key, &bool_value)); EXPECT_EQ(true, bool_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetInteger(key, i); EXPECT_TRUE(metadata.HasKey(key)); int int_value = -999; EXPECT_TRUE(metadata.GetInteger(key, &int_value)); EXPECT_EQ(i, int_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetDouble(key, 3.14 * i); EXPECT_TRUE(metadata.HasKey(key)); double double_value = -999.99; EXPECT_TRUE(metadata.GetDouble(key, &double_value)); EXPECT_EQ(3.14 * i, double_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetString(key, base::StringPrintf("\xfe%d\xff", i)); EXPECT_TRUE(metadata.HasKey(key)); std::string string_value; EXPECT_TRUE(metadata.GetString(key, &string_value)); EXPECT_EQ(base::StringPrintf("\xfe%d\xff", i), string_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetTimeDelta(key, base::TimeDelta::FromInternalValue(42 + i)); EXPECT_TRUE(metadata.HasKey(key)); base::TimeDelta delta_value; EXPECT_TRUE(metadata.GetTimeDelta(key, &delta_value)); EXPECT_EQ(base::TimeDelta::FromInternalValue(42 + i), delta_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetTimeTicks(key, base::TimeTicks::FromInternalValue(~(0LL) + i)); EXPECT_TRUE(metadata.HasKey(key)); base::TimeTicks ticks_value; EXPECT_TRUE(metadata.GetTimeTicks(key, &ticks_value)); EXPECT_EQ(base::TimeTicks::FromInternalValue(~(0LL) + i), ticks_value); metadata.Clear(); EXPECT_FALSE(metadata.HasKey(key)); metadata.SetValue(key, std::make_unique()); EXPECT_TRUE(metadata.HasKey(key)); const base::Value* const null_value = metadata.GetValue(key); EXPECT_TRUE(null_value); EXPECT_EQ(base::Value::Type::NONE, null_value->type()); metadata.Clear(); } } TEST(VideoFrameMetadata, PassMetadataViaIntermediary) { VideoFrameMetadata expected; for (int i = 0; i < VideoFrameMetadata::NUM_KEYS; ++i) { const VideoFrameMetadata::Key key = static_cast(i); expected.SetInteger(key, i); } VideoFrameMetadata result; result.MergeMetadataFrom(&expected); for (int i = 0; i < VideoFrameMetadata::NUM_KEYS; ++i) { const VideoFrameMetadata::Key key = static_cast(i); int value = -1; EXPECT_TRUE(result.GetInteger(key, &value)); EXPECT_EQ(i, value); } } } // namespace media