// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/base/math_util.h" #include #include #include #include "cc/test/geometry_test_utils.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/geometry/quad_f.h" #include "ui/gfx/geometry/rect.h" #include "ui/gfx/geometry/rect_f.h" #include "ui/gfx/transform.h" namespace cc { namespace { TEST(MathUtilTest, ProjectionOfPerpendicularPlane) { // In this case, the m33() element of the transform becomes zero, which could // cause a divide-by-zero when projecting points/quads. gfx::Transform transform; transform.MakeIdentity(); transform.matrix().set(2, 2, 0); gfx::RectF rect = gfx::RectF(0, 0, 1, 1); gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); EXPECT_EQ(0, projected_rect.x()); EXPECT_EQ(0, projected_rect.y()); EXPECT_TRUE(projected_rect.IsEmpty()); } TEST(MathUtilTest, ProjectionOfAlmostPerpendicularPlane) { // In this case, the m33() element of the transform becomes almost zero, which // could cause a divide-by-zero when projecting points/quads. gfx::Transform transform; // The transform is from an actual test page: // [ +1.0000 +0.0000 -1.0000 +3144132.0000 // +0.0000 +1.0000 +0.0000 +0.0000 // +16331238407143424.0000 +0.0000 -0.0000 +51346917453137000267776.0000 // +0.0000 +0.0000 +0.0000 +1.0000 ] transform.MakeIdentity(); transform.matrix().set(0, 2, static_cast(-1)); transform.matrix().set(0, 3, static_cast(3144132.0)); transform.matrix().set(2, 0, static_cast(16331238407143424.0)); transform.matrix().set(2, 2, static_cast(-1e-33)); transform.matrix().set(2, 3, static_cast(51346917453137000267776.0)); gfx::RectF rect = gfx::RectF(0, 0, 1, 1); gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); EXPECT_EQ(0, projected_rect.x()); EXPECT_EQ(0, projected_rect.y()); EXPECT_TRUE(projected_rect.IsEmpty()) << projected_rect.ToString(); } TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityY) { HomogeneousCoordinate h1(100, 10, 0, 1); HomogeneousCoordinate h2(10, 10, 0, 1); HomogeneousCoordinate h3(-10, -1, 0, -1); HomogeneousCoordinate h4(-100, -1, 0, -1); // The bounds of the enclosing clipped rect should be 100 to 10 for x // and 10 to infinity for y. However, if there is a bug where the result // is set so big as to destroy the precision of ymin, we can't deal well // with the resulting rect. gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); EXPECT_FALSE(result.IsEmpty()); EXPECT_TRUE(result.Contains(50.0f, 50.0f)); EXPECT_TRUE(result.Contains(10.1f, 10.1f)); EXPECT_TRUE(result.Contains(50.0f, 50000.0f)); EXPECT_FALSE(result.Contains(100.1f, 50.0f)); EXPECT_FALSE(result.Contains(9.9f, 50.0f)); EXPECT_FALSE(result.Contains(50.0f, 9.9f)); } TEST(MathUtilTest, EnclosingClippedRectHandlesNegativeInfinityX) { HomogeneousCoordinate h1(100, 10, 0, 1); HomogeneousCoordinate h2(-110, -10, 0, -1); HomogeneousCoordinate h3(-110, -100, 0, -1); HomogeneousCoordinate h4(100, 100, 0, 1); // The bounds of the enclosing clipped rect should be 100 to -infinity for x // and 10 to 100 for y. However, if there is a bug where the result // is set so big as to destroy the precision of ymin, we can't deal well // with the resulting rect. gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); EXPECT_FALSE(result.IsEmpty()); EXPECT_TRUE(result.Contains(50.0f, 50.0f)); EXPECT_TRUE(result.Contains(10.1f, 10.1f)); EXPECT_TRUE(result.Contains(0.0f, 99.9f)); EXPECT_FALSE(result.Contains(100.1f, 50.0f)); EXPECT_FALSE(result.Contains(50.0f, 100.1f)); EXPECT_FALSE(result.Contains(50.0f, 9.9f)); } TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityXY) { HomogeneousCoordinate h1(10, 10, 0, 1); HomogeneousCoordinate h2(0, 0, 0, -1); HomogeneousCoordinate h3(20, -10, 0, 1); HomogeneousCoordinate h4(10, -10, 0, 1); // The bounds of the enclosing clipped rect should be 10 to infinity for x // and -infinity to infinity for y. // It would be quite easy for this result to not include anything useful. gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); // Notes: (A) In the mapped shape, (B) In the enclosing rect, but not the // mapped shape, (C) In the mapped shape, but clipped. EXPECT_FALSE(result.IsEmpty()); EXPECT_TRUE(result.Contains(10.0f, 10.0f)); // Note (A) EXPECT_TRUE(result.Contains(10.11f, 10.1f)); // Note (A) EXPECT_TRUE(result.Contains(10.1f, 10.11f)); // Note (B) EXPECT_TRUE(result.Contains(1000.1f, 1000.2f)); // Note (B) EXPECT_TRUE(result.Contains(20.0f, -10.0f)); // Note (A) EXPECT_TRUE(result.Contains(20.1f, -10.0f)); // Note (A) EXPECT_TRUE(result.Contains(20.0f, -10.1f)); // Note (B) EXPECT_TRUE(result.Contains(10.0f, -10.0f)); // Note (A) EXPECT_TRUE(result.Contains(10.0f, -10.1f)); // Note (B) EXPECT_FALSE(result.Contains(0.0f, 0.0f)); // Note (C) EXPECT_FALSE(result.Contains(0.0f, -9.9f)); // Note (C) } TEST(MathUtilTest, EnclosingClippedRectUsesCorrectInitialBounds) { HomogeneousCoordinate h1(-100, -100, 0, 1); HomogeneousCoordinate h2(-10, -10, 0, 1); HomogeneousCoordinate h3(10, 10, 0, -1); HomogeneousCoordinate h4(100, 100, 0, -1); // The bounds of the enclosing clipped rect should be -100 to -10 for both x // and y. However, if there is a bug where the initial xmin/xmax/ymin/ymax are // initialized to numeric_limits::min() (which is zero, not -flt_max) // then the enclosing clipped rect will be computed incorrectly. gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); // Due to floating point math in ComputeClippedPointForEdge this result // is fairly imprecise. 0.15f was empirically determined. EXPECT_RECT_NEAR( gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result, 0.15f); } TEST(MathUtilTest, EnclosingClippedRectHandlesSmallPositiveW) { // When all homogeneous coordinates have w > 0, no clipping against the w = 0 // plane is performed and the projected points are sent to gfx::QuadF's // bounding box function. w can be made arbitrarily close to 0 on the positive // side and cause precision problems later on unless it's handled properly. // Coordinates inspired by a real test page. One edge maps to approximately // negative infinity, and the other is at x~109. HomogeneousCoordinate h1(-154.0f, -109.0f, 0.0f, 6e-8f); HomogeneousCoordinate h2(152.0f, 44.0f, 0.0f, 1.4f); HomogeneousCoordinate h3(152.0f, 261.0f, 0.0f, 1.4f); HomogeneousCoordinate h4(-154.0f, 108.0f, 0.0f, 6e-8f); // Confirm original behavior is problematic if we just divide by w. gfx::QuadF naiveQuad = {{h1.x() / h1.w(), h1.y() / h1.w()}, {h2.x() / h2.w(), h2.y() / h2.w()}, {h3.x() / h3.w(), h3.y() / h3.w()}, {h4.x() / h4.w(), h4.y() / h4.w()}}; // The calculated min and max coordinates differ by ~2^31, well outside a // floats ability to represent onscreen pixel coordinates and in this case, // the projected bounds fail to represent that one edge is still on screen. gfx::RectF naiveBounds = naiveQuad.BoundingBox(); EXPECT_TRUE(naiveBounds.right() <= 0.0f); // The bounds of the enclosing clipped rect should be neg. infinity to ~109 // for x, and neg. infinity to pos. infinity for y. gfx::RectF goodBounds = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); EXPECT_FALSE(goodBounds.IsEmpty()); EXPECT_FLOAT_EQ(-HomogeneousCoordinate::kInfiniteCoordinate, goodBounds.y()); EXPECT_FLOAT_EQ(HomogeneousCoordinate::kInfiniteCoordinate, goodBounds.bottom()); EXPECT_FLOAT_EQ(-HomogeneousCoordinate::kInfiniteCoordinate, goodBounds.x()); // 0.01f was empirically determined. EXPECT_NEAR(152.0f / 1.4f, goodBounds.right(), 0.01f); } TEST(MathUtilTest, EnclosingRectOfVerticesUsesCorrectInitialBounds) { gfx::PointF vertices[3]; int num_vertices = 3; vertices[0] = gfx::PointF(-10, -100); vertices[1] = gfx::PointF(-100, -10); vertices[2] = gfx::PointF(-30, -30); // The bounds of the enclosing rect should be -100 to -10 for both x and y. // However, if there is a bug where the initial xmin/xmax/ymin/ymax are // initialized to numeric_limits::min() (which is zero, not -flt_max) // then the enclosing clipped rect will be computed incorrectly. gfx::RectF result = MathUtil::ComputeEnclosingRectOfVertices(vertices, num_vertices); EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result); } TEST(MathUtilTest, SmallestAngleBetweenVectors) { gfx::Vector2dF x(1, 0); gfx::Vector2dF y(0, 1); gfx::Vector2dF test_vector(0.5, 0.5); // Orthogonal vectors are at an angle of 90 degress. EXPECT_EQ(90, MathUtil::SmallestAngleBetweenVectors(x, y)); // A vector makes a zero angle with itself. EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(x, x)); EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(y, y)); EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(test_vector, test_vector)); // Parallel but reversed vectors are at 180 degrees. EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(x, -x)); EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(y, -y)); EXPECT_FLOAT_EQ( 180, MathUtil::SmallestAngleBetweenVectors(test_vector, -test_vector)); // The test vector is at a known angle. EXPECT_FLOAT_EQ( 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, x))); EXPECT_FLOAT_EQ( 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, y))); } TEST(MathUtilTest, VectorProjection) { gfx::Vector2dF x(1, 0); gfx::Vector2dF y(0, 1); gfx::Vector2dF test_vector(0.3f, 0.7f); // Orthogonal vectors project to a zero vector. EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(x, y)); EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(y, x)); // Projecting a vector onto the orthonormal basis gives the corresponding // component of the vector. EXPECT_VECTOR_EQ(gfx::Vector2dF(test_vector.x(), 0), MathUtil::ProjectVector(test_vector, x)); EXPECT_VECTOR_EQ(gfx::Vector2dF(0, test_vector.y()), MathUtil::ProjectVector(test_vector, y)); // Finally check than an arbitrary vector projected to another one gives a // vector parallel to the second vector. gfx::Vector2dF target_vector(0.5, 0.2f); gfx::Vector2dF projected_vector = MathUtil::ProjectVector(test_vector, target_vector); EXPECT_EQ(projected_vector.x() / target_vector.x(), projected_vector.y() / target_vector.y()); } TEST(MathUtilTest, MapEnclosedRectWith2dAxisAlignedTransform) { gfx::Rect input(1, 2, 3, 4); gfx::Rect output; gfx::Transform transform; // Identity. output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(input, output); // Integer translate. transform.Translate(2.0, 3.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(3, 5, 3, 4), output); // Non-integer translate. transform.Translate(0.5, 0.5); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(4, 6, 2, 3), output); // Scale. transform = gfx::Transform(); transform.Scale(2.0, 3.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(2, 6, 6, 12), output); // Rotate Z. transform = gfx::Transform(); transform.Translate(1.0, 2.0); transform.RotateAboutZAxis(90.0); transform.Translate(-1.0, -2.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(-3, 2, 4, 3), output); // Rotate X. transform = gfx::Transform(); transform.RotateAboutXAxis(90.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_TRUE(output.IsEmpty()); transform = gfx::Transform(); transform.RotateAboutXAxis(180.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(1, -6, 3, 4), output); // Rotate Y. transform = gfx::Transform(); transform.RotateAboutYAxis(90.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_TRUE(output.IsEmpty()); transform = gfx::Transform(); transform.RotateAboutYAxis(180.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(-4, 2, 3, 4), output); // Translate Z. transform = gfx::Transform(); transform.ApplyPerspectiveDepth(10.0); transform.Translate3d(0.0, 0.0, 5.0); output = MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); EXPECT_EQ(gfx::Rect(2, 4, 6, 8), output); } TEST(MathUtilTest, MapEnclosingRectWithLargeTransforms) { gfx::Rect input(1, 2, 100, 200); gfx::Rect output; gfx::Transform large_x_scale; large_x_scale.Scale(SkDoubleToScalar(1e37), 1.0); gfx::Transform infinite_x_scale; infinite_x_scale = large_x_scale * large_x_scale; gfx::Transform large_y_scale; large_y_scale.Scale(1.0, SkDoubleToScalar(1e37)); gfx::Transform infinite_y_scale; infinite_y_scale = large_y_scale * large_y_scale; gfx::Transform rotation; rotation.RotateAboutYAxis(170.0); int max_int = std::numeric_limits::max(); output = MathUtil::MapEnclosingClippedRect(large_x_scale, input); EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); output = MathUtil::MapEnclosingClippedRect(large_x_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); output = MathUtil::MapEnclosingClippedRect(infinite_x_scale, input); EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); output = MathUtil::MapEnclosingClippedRect(infinite_x_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); output = MathUtil::MapEnclosingClippedRect(large_y_scale, input); EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); output = MathUtil::MapEnclosingClippedRect(large_y_scale * rotation, input); EXPECT_EQ(gfx::Rect(-100, max_int, 100, 0), output); output = MathUtil::MapEnclosingClippedRect(infinite_y_scale, input); EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); output = MathUtil::MapEnclosingClippedRect(infinite_y_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); } TEST(MathUtilTest, MapEnclosingRectIgnoringError) { float scale = 2.00001; gfx::Rect input(0, 0, 1000, 500); gfx::Rect output; gfx::Transform transform; transform.Scale(SkDoubleToScalar(scale), SkDoubleToScalar(scale)); output = MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.f); EXPECT_EQ(gfx::Rect(0, 0, 2001, 1001), output); output = MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.002f); EXPECT_EQ(gfx::Rect(0, 0, 2001, 1001), output); output = MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.02f); EXPECT_EQ(gfx::Rect(0, 0, 2000, 1000), output); } TEST(MathUtilTest, ProjectEnclosingRectWithLargeTransforms) { gfx::Rect input(1, 2, 100, 200); gfx::Rect output; gfx::Transform large_x_scale; large_x_scale.Scale(SkDoubleToScalar(1e37), 1.0); gfx::Transform infinite_x_scale; infinite_x_scale = large_x_scale * large_x_scale; gfx::Transform large_y_scale; large_y_scale.Scale(1.0, SkDoubleToScalar(1e37)); gfx::Transform infinite_y_scale; infinite_y_scale = large_y_scale * large_y_scale; gfx::Transform rotation; rotation.RotateAboutYAxis(170.0); int max_int = std::numeric_limits::max(); output = MathUtil::ProjectEnclosingClippedRect(large_x_scale, input); EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); output = MathUtil::ProjectEnclosingClippedRect(large_x_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); output = MathUtil::ProjectEnclosingClippedRect(infinite_x_scale, input); EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); output = MathUtil::ProjectEnclosingClippedRect(infinite_x_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); output = MathUtil::ProjectEnclosingClippedRect(large_y_scale, input); EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); output = MathUtil::ProjectEnclosingClippedRect(large_y_scale * rotation, input); EXPECT_EQ(gfx::Rect(-103, max_int, 102, 0), output); output = MathUtil::ProjectEnclosingClippedRect(infinite_y_scale, input); EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); output = MathUtil::ProjectEnclosingClippedRect(infinite_y_scale * rotation, input); EXPECT_EQ(gfx::Rect(), output); } TEST(MathUtilTest, RoundUp) { for (int multiplier = 1; multiplier <= 10; ++multiplier) { // Try attempts in descending order, so that we can // determine the correct value before it's needed. int correct; for (int attempt = 5 * multiplier; attempt >= -5 * multiplier; --attempt) { if ((attempt % multiplier) == 0) correct = attempt; EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) << "attempt=" << attempt << " multiplier=" << multiplier; } } for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { // Try attempts in descending order, so that we can // determine the correct value before it's needed. unsigned correct; for (unsigned attempt = 5 * multiplier; attempt > 0; --attempt) { if ((attempt % multiplier) == 0) correct = attempt; EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) << "attempt=" << attempt << " multiplier=" << multiplier; } EXPECT_EQ(0u, MathUtil::UncheckedRoundUp(0u, multiplier)) << "attempt=0 multiplier=" << multiplier; } } TEST(MathUtilTest, RoundUpOverflow) { // Rounding up 123 by 50 is 150, which overflows int8_t, but fits in uint8_t. EXPECT_FALSE(MathUtil::VerifyRoundup(123, 50)); EXPECT_TRUE(MathUtil::VerifyRoundup(123, 50)); } TEST(MathUtilTest, RoundDown) { for (int multiplier = 1; multiplier <= 10; ++multiplier) { // Try attempts in ascending order, so that we can // determine the correct value before it's needed. int correct; for (int attempt = -5 * multiplier; attempt <= 5 * multiplier; ++attempt) { if ((attempt % multiplier) == 0) correct = attempt; EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) << "attempt=" << attempt << " multiplier=" << multiplier; } } for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { // Try attempts in ascending order, so that we can // determine the correct value before it's needed. unsigned correct; for (unsigned attempt = 0; attempt <= 5 * multiplier; ++attempt) { if ((attempt % multiplier) == 0) correct = attempt; EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) << "attempt=" << attempt << " multiplier=" << multiplier; } } } TEST(MathUtilTest, RoundDownUnderflow) { // Rounding down -123 by 50 is -150, which underflows int8_t, but fits in // int16_t. EXPECT_FALSE(MathUtil::VerifyRoundDown(-123, 50)); EXPECT_TRUE(MathUtil::VerifyRoundDown(-123, 50)); } #define EXPECT_SIMILAR_VALUE(x, y) \ EXPECT_TRUE(MathUtil::IsFloatNearlyTheSame(x, y)) #define EXPECT_DISSIMILAR_VALUE(x, y) \ EXPECT_FALSE(MathUtil::IsFloatNearlyTheSame(x, y)) // Arbitrary point that shouldn't be different from zero. static const float zeroish = 1.0e-11f; TEST(MathUtilTest, Approximate) { // Same should be similar. EXPECT_SIMILAR_VALUE(1.0f, 1.0f); // Zero should not cause similarity issues. EXPECT_SIMILAR_VALUE(0.0f, 0.0f); // Chosen sensitivity makes hardware sense, whether small or large. EXPECT_SIMILAR_VALUE(0.0f, std::nextafter(0.0f, 1.0f)); EXPECT_SIMILAR_VALUE(1000000.0f, std::nextafter(1000000.0f, 0.0f)); // Make sure that neither the side you approach, nor the order of // parameters matter at the borderline case. EXPECT_SIMILAR_VALUE(std::nextafter(0.0f, 1.0f), 0.0f); EXPECT_SIMILAR_VALUE(std::nextafter(1000000.0f, 0.0f), 1000000.0f); EXPECT_SIMILAR_VALUE(0.0f, std::nextafter(0.0f, -1.0f)); EXPECT_SIMILAR_VALUE(1000000.0f, std::nextafter(1000000.0f, 1e9f)); EXPECT_SIMILAR_VALUE(std::nextafter(0.0f, -1.0f), 0.0f); EXPECT_SIMILAR_VALUE(std::nextafter(1000000.0f, 1e9f), 1000000.0f); // Double check our arbitrary constant. Mostly this is for the // following Point tests. EXPECT_SIMILAR_VALUE(0.0f, zeroish); // Arbitrary point that is different from one for Approximate tests. EXPECT_SIMILAR_VALUE(1.0f, 1.000001f); // Arbitrary (large) difference close to 1. EXPECT_SIMILAR_VALUE(10000000.0f, 10000001.0f); // Make sure one side being zero doesn't hide real differences. EXPECT_DISSIMILAR_VALUE(0.0f, 1.0f); EXPECT_DISSIMILAR_VALUE(1.0f, 0.0f); // Make sure visible differences don't disappear. EXPECT_DISSIMILAR_VALUE(1.0f, 2.0f); EXPECT_DISSIMILAR_VALUE(10000.0f, 10001.0f); } #define EXPECT_SIMILAR_POINT_F(x, y) \ EXPECT_TRUE(MathUtil::IsNearlyTheSameForTesting(gfx::PointF x, gfx::PointF y)) #define EXPECT_DISSIMILAR_POINT_F(x, y) \ EXPECT_FALSE( \ MathUtil::IsNearlyTheSameForTesting(gfx::PointF x, gfx::PointF y)) TEST(MathUtilTest, ApproximatePointF) { // Same is similar. EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (0.0f, 0.0f)); // Not over sensitive on each axis. EXPECT_SIMILAR_POINT_F((zeroish, 0.0f), (0.0f, 0.0f)); EXPECT_SIMILAR_POINT_F((0.0f, zeroish), (0.0f, 0.0f)); EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (zeroish, 0.0f)); EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (0.0f, zeroish)); // Still sensitive to any axis. EXPECT_DISSIMILAR_POINT_F((1.0f, 0.0f), (0.0f, 0.0f)); EXPECT_DISSIMILAR_POINT_F((0.0f, 1.0f), (0.0f, 0.0f)); EXPECT_DISSIMILAR_POINT_F((0.0f, 0.0f), (1.0f, 0.0f)); EXPECT_DISSIMILAR_POINT_F((0.0f, 0.0f), (0.0f, 1.0f)); // Not crossed over, sensitive on each side of each axis. EXPECT_SIMILAR_POINT_F((0.0f, 1.0f), (0.0f, 1.0f)); EXPECT_SIMILAR_POINT_F((1.0f, 2.0f), (1.0f, 2.0f)); EXPECT_DISSIMILAR_POINT_F((3.0f, 2.0f), (1.0f, 2.0f)); EXPECT_DISSIMILAR_POINT_F((1.0f, 3.0f), (1.0f, 1.0f)); EXPECT_DISSIMILAR_POINT_F((1.0f, 2.0f), (3.0f, 2.0f)); EXPECT_DISSIMILAR_POINT_F((1.0f, 2.0f), (1.0f, 3.0f)); } #define EXPECT_SIMILAR_POINT_3F(x, y) \ EXPECT_TRUE( \ MathUtil::IsNearlyTheSameForTesting(gfx::Point3F x, gfx::Point3F y)) #define EXPECT_DISSIMILAR_POINT_3F(x, y) \ EXPECT_FALSE( \ MathUtil::IsNearlyTheSameForTesting(gfx::Point3F x, gfx::Point3F y)) TEST(MathUtilTest, ApproximatePoint3F) { // Same same. EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, 0.0f, 0.0f)); EXPECT_SIMILAR_POINT_3F((zeroish, 0.0f, 0.0f), (0.0f, 0.0f, 0.0f)); EXPECT_SIMILAR_POINT_3F((0.0f, zeroish, 0.0f), (0.0f, 0.0f, 0.0f)); EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, zeroish), (0.0f, 0.0f, 0.0f)); EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (zeroish, 0.0f, 0.0f)); EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, zeroish, 0.0f)); EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, 0.0f, zeroish)); // Not crossed over, sensitive on each side of each axis. EXPECT_SIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 2.0f, 3.0f)); EXPECT_DISSIMILAR_POINT_3F((4.0f, 2.0f, 3.0f), (1.0f, 2.0f, 3.0f)); EXPECT_DISSIMILAR_POINT_3F((1.0f, 4.0f, 3.0f), (1.0f, 1.0f, 3.0f)); EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 4.0f), (1.0f, 2.0f, 1.0f)); EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (4.0f, 2.0f, 3.0f)); EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 4.0f, 3.0f)); EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 2.0f, 4.0f)); } // This takes a quad for which two points, (at x = -99) are behind and below // the eyepoint and checks to make sure we build a quad that doesn't include // anything from w<0 space. We used to build a degenerate quad. TEST(MathUtilTest, MapClippedQuadDuplicateTriangle) { gfx::Transform transform; transform.MakeIdentity(); transform.ApplyPerspectiveDepth(50.0); transform.RotateAboutYAxis(89.0); // We are almost looking along the X-Y plane from (-50, almost 0) gfx::QuadF src_quad(gfx::PointF(0.0f, -50.0f), gfx::PointF(0.0f, -100.0f), gfx::PointF(-99.0f, -300.0f), gfx::PointF(-99.0f, -100.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); // If we include anything from w<0 space, it will produce positive y // coordinates rather than negative ones. for (int i = 0; i < num_vertices_in_clipped_quad; ++i) { EXPECT_LE(clipped_quad[i].y(), 0); } EXPECT_EQ(num_vertices_in_clipped_quad, 4); } // This takes a quad for which two points are identical and checks to make // sure we build a triangle. TEST(MathUtilTest, MapClippedQuadDuplicatePoints) { gfx::Transform transform; transform.MakeIdentity(); transform.RotateAboutYAxis(45.0); gfx::QuadF src_quad(gfx::PointF(-99.0f, -50.0f), gfx::PointF(-99.0f, -50.0f), gfx::PointF(0.0f, 100.0f), gfx::PointF(0.0f, -100.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 3); } // This takes a quad for which two points are identical and checks to make // sure we build a triangle. The quirk here is that the two shared points are // first and last, not sequential. TEST(MathUtilTest, MapClippedQuadDuplicatePointsWrapped) { gfx::Transform transform; transform.MakeIdentity(); transform.RotateAboutYAxis(45.0); gfx::QuadF src_quad(gfx::PointF(-99.0f, -50.0f), gfx::PointF(0.0f, 100.0f), gfx::PointF(0.0f, -100.0f), gfx::PointF(-99.0f, -50.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 3); } // Here we map and clip a quad with only one point that disappears to infinity // behind us. We don't want two vertices at infinity crossing in and out // of w < 0 space. TEST(MathUtilTest, MapClippedQuadDuplicateQuad) { gfx::Transform transform; transform.MakeIdentity(); transform.ApplyPerspectiveDepth(50.0); transform.RotateAboutYAxis(89.0); gfx::QuadF src_quad(gfx::PointF(0.0f, -50.0f), gfx::PointF(400.0f, -50.0f), gfx::PointF(0.0f, -100.0f), gfx::PointF(-99.0f, -300.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); // If we include anything from w<0 space, it will produce positive y // coordinates rather than negative ones. for (int i = 0; i < num_vertices_in_clipped_quad; ++i) { EXPECT_LE(clipped_quad[i].y(), 0); } EXPECT_EQ(num_vertices_in_clipped_quad, 5); } #define EXPECT_LT_LT(a, b, c) \ do { \ auto b_evaluated = b; \ EXPECT_LT(a, b_evaluated); \ EXPECT_LT(b_evaluated, c); \ } while (0) #define EXPECT_LE_LT(a, b, c) \ do { \ auto b_evaluated = b; \ EXPECT_LE(a, b_evaluated); \ EXPECT_LT(b_evaluated, c); \ } while (0) #define EXPECT_LT_LE(a, b, c) \ do { \ auto b_evaluated = b; \ EXPECT_LT(a, b_evaluated); \ EXPECT_LE(b_evaluated, c); \ } while (0) #define EXPECT_LE_LE(a, b, c) \ do { \ auto b_evaluated = b; \ EXPECT_LE(a, b_evaluated); \ EXPECT_LE(b_evaluated, c); \ } while (0) // Here we map and clip a quad with a point that disappears to infinity behind // us while staying finite in one dimension (i.e., x goes to 0 as w goes to 0, // and x' is constant along the edge). TEST(MathUtilTest, MapClippedQuadInfiniteInSomeDimensions) { gfx::Transform transform; transform.MakeIdentity(); transform.ApplyPerspectiveDepth(50.0); transform.RotateAboutXAxis(89.0); gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 100.0f), gfx::PointF(100.0f, 100.0f), gfx::PointF(100.0f, 0.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 0.0f); EXPECT_EQ(clipped_quad[0].y(), 0.0f); EXPECT_EQ(clipped_quad[0].z(), 0.0f); EXPECT_EQ(clipped_quad[1].x(), 0.0f); EXPECT_LT_LT(17000.0f, clipped_quad[1].y(), 18000.0f); EXPECT_LT_LE(998000.0f, clipped_quad[1].z(), 1000000.0f); EXPECT_LT_LE(998000.0f, clipped_quad[2].x(), 1000000.0f); EXPECT_LT_LT(8500.0f, clipped_quad[2].y(), 9000.0f); EXPECT_LT_LE(499000.0f, clipped_quad[2].z(), 500000.0f); EXPECT_EQ(clipped_quad[3].x(), 100.0f); EXPECT_EQ(clipped_quad[3].y(), 0.0f); EXPECT_EQ(clipped_quad[3].z(), 0.0f); } // Here we map and clip a quad with a point that disappears to infinity behind // us while staying finite in one dimension (i.e., x goes to 0 as w goes to 0, // and x' is constant along the edge). This differs from the previous test // in that the edge with constant x' is at 100 rather than 0. TEST(MathUtilTest, MapClippedQuadInfiniteInSomeDimensionsNonZero) { gfx::Transform transform; transform.MakeIdentity(); transform.Translate(100.0, 0.0); transform.ApplyPerspectiveDepth(50.0); transform.RotateAboutXAxis(89.0); transform.Translate(-100.0, 0.0); gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 100.0f), gfx::PointF(100.0f, 100.0f), gfx::PointF(100.0f, 0.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 0.0f); EXPECT_EQ(clipped_quad[0].y(), 0.0f); EXPECT_EQ(clipped_quad[0].z(), 0.0f); EXPECT_LE_LT(-1000000.0f, clipped_quad[1].x(), -998000.0f); EXPECT_LT_LT(8500.0f, clipped_quad[1].y(), 9000.0f); EXPECT_LT_LE(499000.0f, clipped_quad[1].z(), 500000.0f); EXPECT_EQ(clipped_quad[2].x(), 100.0f); EXPECT_LT_LT(17000.0f, clipped_quad[2].y(), 18000.0f); EXPECT_LT_LE(996000.0f, clipped_quad[2].z(), 1000000.0f); EXPECT_EQ(clipped_quad[3].x(), 100.0f); EXPECT_EQ(clipped_quad[3].y(), 0.0f); EXPECT_EQ(clipped_quad[3].z(), 0.0f); } // Test that planes that are parallel to the z axis (other than those going // through the origin!) just fall through to clipping by points. TEST(MathUtilTest, MapClippedQuadClampInvisiblePlane) { gfx::Transform transform; gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 1000.0f), gfx::PointF(1000.0f, 1000.0f), gfx::PointF(1000.0f, 0.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; transform.MakeIdentity(); transform.Translate(100.0, 0.0); transform.RotateAboutYAxis(90.0); transform.Scale(10000.0f, 10000.0); MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 100.0f); EXPECT_EQ(clipped_quad[0].y(), 0.0f); EXPECT_EQ(clipped_quad[0].z(), 0.0f); EXPECT_EQ(clipped_quad[1].x(), 100.0f); EXPECT_EQ(clipped_quad[1].y(), 1000000.0f); EXPECT_EQ(clipped_quad[1].z(), 0.0f); EXPECT_EQ(clipped_quad[2].x(), 100.0f); EXPECT_EQ(clipped_quad[2].y(), 1000000.0f); EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); EXPECT_EQ(clipped_quad[3].x(), 100.0f); EXPECT_EQ(clipped_quad[3].y(), 0.0f); EXPECT_EQ(clipped_quad[3].z(), -1000000.0f); transform.MakeIdentity(); transform.Translate(0.0, -50.0); transform.RotateAboutXAxis(-90.0); transform.Scale(10000.0f, 10000.0); MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 0.0f); EXPECT_EQ(clipped_quad[0].y(), -50.0f); EXPECT_EQ(clipped_quad[0].z(), 0.0f); EXPECT_EQ(clipped_quad[1].x(), 0.0f); EXPECT_EQ(clipped_quad[1].y(), -50.0f); EXPECT_EQ(clipped_quad[1].z(), -1000000.0f); EXPECT_EQ(clipped_quad[2].x(), 1000000.0f); EXPECT_EQ(clipped_quad[2].y(), -50.0f); EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); EXPECT_EQ(clipped_quad[3].x(), 1000000.0f); EXPECT_EQ(clipped_quad[3].y(), -50.0f); EXPECT_EQ(clipped_quad[3].z(), 0.0f); transform.MakeIdentity(); transform.Translate(10.0, 10.0); transform.Rotate(30.0); transform.RotateAboutXAxis(90.0); transform.Scale(10000.0, 10000.0); MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 10.0f); EXPECT_EQ(clipped_quad[0].y(), 10.0f); EXPECT_EQ(clipped_quad[0].z(), 0.0f); EXPECT_EQ(clipped_quad[1].x(), 10.0f); EXPECT_EQ(clipped_quad[1].y(), 10.0f); EXPECT_EQ(clipped_quad[1].z(), 1000000.0f); EXPECT_EQ(clipped_quad[2].x(), 1000000.0f); EXPECT_EQ(clipped_quad[2].y(), 1000000.0f); EXPECT_EQ(clipped_quad[2].z(), 1000000.0f); EXPECT_EQ(clipped_quad[3].x(), 1000000.0f); EXPECT_EQ(clipped_quad[3].y(), 1000000.0f); EXPECT_EQ(clipped_quad[3].z(), 0.0f); } // Test that when the plane passes too far from the origin, we bring it closer // before clamping coordinates. TEST(MathUtilTest, MapClippedQuadClampWholePlane) { gfx::Transform transform; transform.MakeIdentity(); transform.Scale3d(1000.0, 1000.0, 1000.0); transform.Translate3d(0.0, 0.0, 10000.0); transform.RotateAboutXAxis(-45.0); gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 10000.0f), gfx::PointF(100.0f, 10000.0f), gfx::PointF(100.0f, -10000.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 0.0f); EXPECT_EQ(clipped_quad[0].y(), 0.0f); EXPECT_EQ(clipped_quad[0].z(), 750000.0f); EXPECT_EQ(clipped_quad[1].x(), 0.0f); EXPECT_EQ(clipped_quad[1].y(), 1000000.0f); EXPECT_LE_LE(-250001.0f, clipped_quad[1].z(), -249999.0f); EXPECT_LE_LE(14100.0f, clipped_quad[2].x(), 14200.0f); EXPECT_EQ(clipped_quad[2].y(), 1000000.0f); EXPECT_LE_LE(-250001.0f, clipped_quad[2].z(), -249999.0f); EXPECT_LE_LE(3500.0f, clipped_quad[3].x(), 3600.0f); EXPECT_LE_LE(-250001.0f, clipped_quad[3].y(), -249999.0f); EXPECT_EQ(clipped_quad[3].z(), 1000000.0f); } // Like the previous test, but with a plane with large negative z. TEST(MathUtilTest, MapClippedQuadClampWholePlaneBelow) { gfx::Transform transform; transform.MakeIdentity(); transform.Scale3d(1000.0, 1000.0, 1000.0); transform.Translate3d(0.0, 0.0, -5000.0); transform.RotateAboutYAxis(30.0); gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(-10000.0f, 100.0f), gfx::PointF(10000.0f, 100.0f), gfx::PointF(10000.0f, 0.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); EXPECT_EQ(num_vertices_in_clipped_quad, 4); EXPECT_EQ(clipped_quad[0].x(), 0.0f); EXPECT_EQ(clipped_quad[0].y(), 0.0f); EXPECT_LE_LE(-750001.0f, clipped_quad[0].z(), -750000.0f); EXPECT_EQ(clipped_quad[1].x(), -1000000.0f); EXPECT_LE_LE(11540.0f, clipped_quad[1].y(), 11550.0f); EXPECT_LE_LE(-172660.0f, clipped_quad[1].z(), -172640.0f); EXPECT_LE_LE(433000.0f, clipped_quad[2].x(), 433025.0f); EXPECT_LT_LT(4999.9f, clipped_quad[2].y(), 5000.1f); EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); EXPECT_LE_LE(433000.0f, clipped_quad[3].x(), 433025.0f); EXPECT_EQ(clipped_quad[3].y(), 0.0f); EXPECT_EQ(clipped_quad[3].z(), -1000000.0f); } TEST(MathUtilTest, MapClippedQuadInfiniteMatrix) { // clang-format off gfx::Transform transform( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -100.0f, 0.0f, std::numeric_limits::infinity(), 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); // clang-format on gfx::QuadF src_quad(gfx::PointF(0.0f, 1.0f), gfx::PointF(1.0f, 1.0f), gfx::PointF(1.0f, 2.0f), gfx::PointF(0.0f, 2.0f)); gfx::Point3F clipped_quad[8]; int num_vertices_in_clipped_quad; MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, &num_vertices_in_clipped_quad); // Nothing to test other than we don't fail DCHECK()s. } } // namespace } // namespace cc