// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #import #include #include #include #include #include #include #include #include #include "base/cxx17_backports.h" #include "base/logging.h" #include "base/mac/mach_logging.h" #include "base/mac/scoped_cftyperef.h" #include "base/mac/scoped_mach_port.h" #include "base/notreached.h" #include "base/numerics/safe_conversions.h" #include "base/time/time_override.h" #include "build/build_config.h" #if defined(OS_IOS) #include #include "base/ios/ios_util.h" #endif namespace { #if defined(OS_MAC) // Returns a pointer to the initialized Mach timebase info struct. mach_timebase_info_data_t* MachTimebaseInfoInternal() { static mach_timebase_info_data_t timebase_info = []() { mach_timebase_info_data_t info; kern_return_t kr = mach_timebase_info(&info); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; DCHECK(info.numer); DCHECK(info.denom); return info; }(); return &timebase_info; } int64_t MachTimeToMicroseconds(uint64_t mach_time) { // timebase_info gives us the conversion factor between absolute time tick // units and nanoseconds. mach_timebase_info_data_t* timebase_info = MachTimebaseInfoInternal(); // Take the fast path when the conversion is 1:1. The result will for sure fit // into an int_64 because we're going from nanoseconds to microseconds. if (timebase_info->numer == timebase_info->denom) { return static_cast(mach_time / base::Time::kNanosecondsPerMicrosecond); } // If there isn't a 1:1 conversion, divide first to reduce the chance of // overflow. uint64_t microseconds = mach_time / (timebase_info->denom * base::Time::kNanosecondsPerMicrosecond); // Only multiply if numer is something other than unity. if (timebase_info->numer != 1) { CHECK(!__builtin_umulll_overflow(microseconds, timebase_info->numer, µseconds)); } // Don't bother with the rollover handling that the Windows version does. On // Intel we expect numer == denom == 1, in which case the 64-bit absolute time // reported in nanoseconds is enough to last nearly 585 years. For M1 // we can expect each tick to be about 42 nanoseconds which is almost // 24,565 years of headroom. return base::checked_cast(microseconds); } #endif // defined(OS_MAC) // Returns monotonically growing number of ticks in microseconds since some // unspecified starting point. int64_t ComputeCurrentTicks() { #if defined(OS_IOS) // iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is // around 15 times faster than sysctl() call. Use it if possible; // otherwise, fall back to sysctl(). if (__builtin_available(iOS 10, *)) { struct timespec tp; if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000; } } // On iOS mach_absolute_time stops while the device is sleeping. Instead use // now - KERN_BOOTTIME to get a time difference that is not impacted by clock // changes. KERN_BOOTTIME will be updated by the system whenever the system // clock change. struct timeval boottime; int mib[2] = {CTL_KERN, KERN_BOOTTIME}; size_t size = sizeof(boottime); int kr = sysctl(mib, base::size(mib), &boottime, &size, nullptr, 0); DCHECK_EQ(KERN_SUCCESS, kr); base::TimeDelta time_difference = base::subtle::TimeNowIgnoringOverride() - (base::Time::FromTimeT(boottime.tv_sec) + base::TimeDelta::FromMicroseconds(boottime.tv_usec)); return time_difference.InMicroseconds(); #else // mach_absolute_time is it when it comes to ticks on the Mac. Other calls // with less precision (such as TickCount) just call through to // mach_absolute_time. return MachTimeToMicroseconds(mach_absolute_time()); #endif // defined(OS_IOS) } int64_t ComputeThreadTicks() { #if defined(OS_IOS) NOTREACHED(); return 0; #else // The pthreads library keeps a cached reference to the thread port, which // does not have to be released like mach_thread_self() does. mach_port_t thread_port = pthread_mach_thread_np(pthread_self()); if (thread_port == MACH_PORT_NULL) { DLOG(ERROR) << "Failed to get pthread_mach_thread_np()"; return 0; } mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; kern_return_t kr = thread_info( thread_port, THREAD_BASIC_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; base::CheckedNumeric absolute_micros( thread_info_data.user_time.seconds + thread_info_data.system_time.seconds); absolute_micros *= base::Time::kMicrosecondsPerSecond; absolute_micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return absolute_micros.ValueOrDie(); #endif // defined(OS_IOS) } } // namespace namespace base { // The Time routines in this file use Mach and CoreFoundation APIs, since the // POSIX definition of time_t in Mac OS X wraps around after 2038--and // there are already cookie expiration dates, etc., past that time out in // the field. Using CFDate prevents that problem, and using mach_absolute_time // for TimeTicks gives us nice high-resolution interval timing. // Time ----------------------------------------------------------------------- namespace subtle { Time TimeNowIgnoringOverride() { return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); } Time TimeNowFromSystemTimeIgnoringOverride() { // Just use TimeNowIgnoringOverride() because it returns the system time. return TimeNowIgnoringOverride(); } } // namespace subtle // static Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (t == 0) return Time(); // Consider 0 as a null Time. return (t == std::numeric_limits::infinity()) ? Max() : (UnixEpoch() + TimeDelta::FromSecondsD(double{ t + kCFAbsoluteTimeIntervalSince1970})); } CFAbsoluteTime Time::ToCFAbsoluteTime() const { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (is_null()) return 0; // Consider 0 as a null Time. return is_max() ? std::numeric_limits::infinity() : (CFAbsoluteTime{(*this - UnixEpoch()).InSecondsF()} - kCFAbsoluteTimeIntervalSince1970); } // static Time Time::FromNSDate(NSDate* date) { DCHECK(date); return FromCFAbsoluteTime(date.timeIntervalSinceReferenceDate); } NSDate* Time::ToNSDate() const { return [NSDate dateWithTimeIntervalSinceReferenceDate:ToCFAbsoluteTime()]; } // TimeDelta ------------------------------------------------------------------ #if defined(OS_MAC) // static TimeDelta TimeDelta::FromMachTime(uint64_t mach_time) { return TimeDelta::FromMicroseconds(MachTimeToMicroseconds(mach_time)); } #endif // defined(OS_MAC) // TimeTicks ------------------------------------------------------------------ namespace subtle { TimeTicks TimeTicksNowIgnoringOverride() { return TimeTicks() + TimeDelta::FromMicroseconds(ComputeCurrentTicks()); } } // namespace subtle // static bool TimeTicks::IsHighResolution() { return true; } // static bool TimeTicks::IsConsistentAcrossProcesses() { return true; } #if defined(OS_MAC) // static TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { return TimeTicks(MachTimeToMicroseconds(mach_absolute_time)); } // static mach_timebase_info_data_t* TimeTicks::MachTimebaseInfo() { return MachTimebaseInfoInternal(); } #endif // defined(OS_MAC) // static TimeTicks::Clock TimeTicks::GetClock() { #if defined(OS_IOS) return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; #else return Clock::MAC_MACH_ABSOLUTE_TIME; #endif // defined(OS_IOS) } // ThreadTicks ---------------------------------------------------------------- namespace subtle { ThreadTicks ThreadTicksNowIgnoringOverride() { return ThreadTicks() + TimeDelta::FromMicroseconds(ComputeThreadTicks()); } } // namespace subtle } // namespace base