// Copyright 2011 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/system/sys_info.h" #include #include #include #include #include #include #include #include #include #include "base/files/file_util.h" #include "base/lazy_instance.h" #include "base/notreached.h" #include "base/numerics/safe_conversions.h" #include "base/strings/utf_string_conversions.h" #include "base/system/sys_info_internal.h" #include "base/threading/scoped_blocking_call.h" #include "build/build_config.h" #if BUILDFLAG(IS_ANDROID) #include #define statvfs statfs // Android uses a statvfs-like statfs struct and call. #else #include #endif #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) #include #include #endif #if BUILDFLAG(IS_MAC) #include #include "base/feature_list.h" #include "base/system/sys_info_internal.h" #endif namespace { #if BUILDFLAG(IS_MAC) bool is_cpu_security_mitigation_enabled = false; #endif uint64_t AmountOfVirtualMemory() { struct rlimit limit; int result = getrlimit(RLIMIT_DATA, &limit); if (result != 0) { NOTREACHED(); return 0; } return limit.rlim_cur == RLIM_INFINITY ? 0 : limit.rlim_cur; } base::LazyInstance< base::internal::LazySysInfoValue>::Leaky g_lazy_virtual_memory = LAZY_INSTANCE_INITIALIZER; #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) bool IsStatsZeroIfUnlimited(const base::FilePath& path) { struct statfs stats; if (HANDLE_EINTR(statfs(path.value().c_str(), &stats)) != 0) return false; switch (stats.f_type) { case TMPFS_MAGIC: case static_cast(HUGETLBFS_MAGIC): case static_cast(RAMFS_MAGIC): return true; } return false; } #endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) bool GetDiskSpaceInfo(const base::FilePath& path, int64_t* available_bytes, int64_t* total_bytes) { struct statvfs stats; if (HANDLE_EINTR(statvfs(path.value().c_str(), &stats)) != 0) return false; #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) const bool zero_size_means_unlimited = stats.f_blocks == 0 && IsStatsZeroIfUnlimited(path); #else const bool zero_size_means_unlimited = false; #endif if (available_bytes) { *available_bytes = zero_size_means_unlimited ? std::numeric_limits::max() : base::saturated_cast(stats.f_bavail * stats.f_frsize); } if (total_bytes) { *total_bytes = zero_size_means_unlimited ? std::numeric_limits::max() : base::saturated_cast(stats.f_blocks * stats.f_frsize); } return true; } } // namespace namespace base { namespace internal { int NumberOfProcessors() { #if BUILDFLAG(IS_MAC) // When CPU security mitigation is enabled, return number of "physical" // cores and not the number of "logical" cores. CPU security mitigations // disables hyper-threading for the current application, which effectively // limits the number of concurrently executing threads to the number of // physical cores. if (base::FeatureList::IsEnabled( base::kNumberOfCoresWithCpuSecurityMitigation) && is_cpu_security_mitigation_enabled) { absl::optional number_of_physical_cores = internal::NumberOfPhysicalProcessors(); if (number_of_physical_cores.has_value()) return number_of_physical_cores.value(); } #endif // BUILDFLAG(IS_MAC) // sysconf returns the number of "logical" (not "physical") processors on both // Mac and Linux. So we get the number of max available "logical" processors. // // Note that the number of "currently online" processors may be fewer than the // returned value of NumberOfProcessors(). On some platforms, the kernel may // make some processors offline intermittently, to save power when system // loading is low. // // One common use case that needs to know the processor count is to create // optimal number of threads for optimization. It should make plan according // to the number of "max available" processors instead of "currently online" // ones. The kernel should be smart enough to make all processors online when // it has sufficient number of threads waiting to run. long res = sysconf(_SC_NPROCESSORS_CONF); if (res == -1) { NOTREACHED(); return 1; } int num_cpus = static_cast(res); #if BUILDFLAG(IS_LINUX) // Restrict the CPU count based on the process's CPU affinity mask, if // available. cpu_set_t* cpu_set = CPU_ALLOC(num_cpus); size_t cpu_set_size = CPU_ALLOC_SIZE(num_cpus); int ret = sched_getaffinity(0, cpu_set_size, cpu_set); if (ret == 0) { num_cpus = CPU_COUNT_S(cpu_set_size, cpu_set); } CPU_FREE(cpu_set); #endif // BUILDFLAG(IS_LINUX) return num_cpus; } #if BUILDFLAG(IS_MAC) absl::optional NumberOfPhysicalProcessors() { uint32_t sysctl_value = 0; size_t length = sizeof(sysctl_value); if (sysctlbyname("hw.physicalcpu_max", &sysctl_value, &length, nullptr, 0) == 0) { return static_cast(sysctl_value); } return absl::nullopt; } #endif // BUILDFLAG(IS_LINUX) } // namespace internal #if !BUILDFLAG(IS_OPENBSD) int SysInfo::NumberOfProcessors() { static int number_of_processors = internal::NumberOfProcessors(); return number_of_processors; } #endif // !BUILDFLAG(IS_OPENBSD) // static uint64_t SysInfo::AmountOfVirtualMemory() { return g_lazy_virtual_memory.Get().value(); } // static int64_t SysInfo::AmountOfFreeDiskSpace(const FilePath& path) { base::ScopedBlockingCall scoped_blocking_call(FROM_HERE, base::BlockingType::MAY_BLOCK); int64_t available; if (!GetDiskSpaceInfo(path, &available, nullptr)) return -1; return available; } // static int64_t SysInfo::AmountOfTotalDiskSpace(const FilePath& path) { base::ScopedBlockingCall scoped_blocking_call(FROM_HERE, base::BlockingType::MAY_BLOCK); int64_t total; if (!GetDiskSpaceInfo(path, nullptr, &total)) return -1; return total; } #if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) // static std::string SysInfo::OperatingSystemName() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } return std::string(info.sysname); } #endif //! BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) #if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_CHROMEOS) // static std::string SysInfo::OperatingSystemVersion() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } return std::string(info.release); } #endif #if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_CHROMEOS) // static void SysInfo::OperatingSystemVersionNumbers(int32_t* major_version, int32_t* minor_version, int32_t* bugfix_version) { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); *major_version = 0; *minor_version = 0; *bugfix_version = 0; return; } int num_read = sscanf(info.release, "%d.%d.%d", major_version, minor_version, bugfix_version); if (num_read < 1) *major_version = 0; if (num_read < 2) *minor_version = 0; if (num_read < 3) *bugfix_version = 0; } #endif #if !BUILDFLAG(IS_MAC) && !BUILDFLAG(IS_IOS) // static std::string SysInfo::OperatingSystemArchitecture() { struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } std::string arch(info.machine); if (arch == "i386" || arch == "i486" || arch == "i586" || arch == "i686") { arch = "x86"; } else if (arch == "amd64") { arch = "x86_64"; } else if (std::string(info.sysname) == "AIX") { arch = "ppc64"; } return arch; } #endif // !BUILDFLAG(IS_MAC) && !BUILDFLAG(IS_IOS) // static size_t SysInfo::VMAllocationGranularity() { return checked_cast(getpagesize()); } #if BUILDFLAG(IS_MAC) BASE_FEATURE(kNumberOfCoresWithCpuSecurityMitigation, "NumberOfCoresWithCpuSecurityMitigation", base::FEATURE_DISABLED_BY_DEFAULT); void SysInfo::SetIsCpuSecurityMitigationsEnabled(bool is_enabled) { is_cpu_security_mitigation_enabled = is_enabled; } #endif // BUILDFLAG(IS_MAC) } // namespace base