// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_H_ #define BASE_BIND_H_ #include #include #include #include #include "base/bind_internal.h" #include "base/compiler_specific.h" #include "base/memory/raw_ptr.h" #include "build/build_config.h" #if BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc) #include "base/mac/scoped_block.h" #endif // ----------------------------------------------------------------------------- // Usage documentation // ----------------------------------------------------------------------------- // // Overview: // base::BindOnce() and base::BindRepeating() are helpers for creating // base::OnceCallback and base::RepeatingCallback objects respectively. // // For a runnable object of n-arity, the base::Bind*() family allows partial // application of the first m arguments. The remaining n - m arguments must be // passed when invoking the callback with Run(). // // // The first argument is bound at callback creation; the remaining // // two must be passed when calling Run() on the callback object. // base::OnceCallback cb = base::BindOnce( // [](short x, int y, long z) { return x * y * z; }, 42); // // When binding to a method, the receiver object must also be specified at // callback creation time. When Run() is invoked, the method will be invoked on // the specified receiver object. // // class C : public base::RefCounted { void F(); }; // auto instance = base::MakeRefCounted(); // auto cb = base::BindOnce(&C::F, instance); // std::move(cb).Run(); // Identical to instance->F() // // See //docs/callback.md for the full documentation. // // ----------------------------------------------------------------------------- // Implementation notes // ----------------------------------------------------------------------------- // // If you're reading the implementation, before proceeding further, you should // read the top comment of base/bind_internal.h for a definition of common // terms and concepts. namespace base { // Bind as OnceCallback. template inline OnceCallback> BindOnce( Functor&& functor, Args&&... args) { static_assert(!internal::IsOnceCallback>() || (std::is_rvalue_reference() && !std::is_const>()), "BindOnce requires non-const rvalue for OnceCallback binding." " I.e.: base::BindOnce(std::move(callback))."); static_assert( std::conjunction< internal::AssertBindArgIsNotBasePassed>...>::value, "Use std::move() instead of base::Passed() with base::BindOnce()"); return internal::BindImpl(std::forward(functor), std::forward(args)...); } // Bind as RepeatingCallback. template inline RepeatingCallback> BindRepeating(Functor&& functor, Args&&... args) { static_assert( !internal::IsOnceCallback>(), "BindRepeating cannot bind OnceCallback. Use BindOnce with std::move()."); return internal::BindImpl(std::forward(functor), std::forward(args)...); } // Overloads to allow nicer compile errors when attempting to pass the address // an overloaded function to `BindOnce()` or `BindRepeating()`. Otherwise, clang // provides only the error message "no matching function [...] candidate // template ignored: couldn't infer template argument 'Functor'", with no // reference to the fact that `&` is being used on an overloaded function. // // These overloads to provide better error messages will never be selected // unless template type deduction fails because of how overload resolution // works; per [over.ics.rank/2.2]: // // When comparing the basic forms of implicit conversion sequences (as defined // in [over.best.ics]) // - a standard conversion sequence is a better conversion sequence than a // user-defined conversion sequence or an ellipsis conversion sequence, and // - a user-defined conversion sequence is a better conversion sequence than // an ellipsis conversion sequence. // // So these overloads will only be selected as a last resort iff template type // deduction fails. // // These overloads also intentionally do not return `void`, as this prevents // clang from emitting spurious errors such as "variable has incomplete type // 'void'" when assigning the result of `BindOnce()`/`BindRepeating()` to a // variable with type `auto` or `decltype(auto)`. struct BindFailedCheckPreviousErrors {}; BindFailedCheckPreviousErrors BindOnce(...); BindFailedCheckPreviousErrors BindRepeating(...); // Unretained() allows binding a non-refcounted class, and to disable // refcounting on arguments that are refcounted objects. // // EXAMPLE OF Unretained(): // // class Foo { // public: // void func() { cout << "Foo:f" << endl; } // }; // // // In some function somewhere. // Foo foo; // OnceClosure foo_callback = // BindOnce(&Foo::func, Unretained(&foo)); // std::move(foo_callback).Run(); // Prints "Foo:f". // // Without the Unretained() wrapper on |&foo|, the above call would fail // to compile because Foo does not support the AddRef() and Release() methods. template inline internal::UnretainedWrapper Unretained(T* o) { return internal::UnretainedWrapper(o); } template inline internal::UnretainedWrapper Unretained(const raw_ptr& o) { return internal::UnretainedWrapper(o); } template inline internal::UnretainedWrapper Unretained(raw_ptr&& o) { return internal::UnretainedWrapper(std::move(o)); } template inline auto Unretained(const raw_ref& o) { return internal::UnretainedRefWrapper(o); } template inline auto Unretained(raw_ref&& o) { return internal::UnretainedRefWrapper(std::move(o)); } // RetainedRef() accepts a ref counted object and retains a reference to it. // When the callback is called, the object is passed as a raw pointer. // // EXAMPLE OF RetainedRef(): // // void foo(RefCountedBytes* bytes) {} // // scoped_refptr bytes = ...; // OnceClosure callback = BindOnce(&foo, base::RetainedRef(bytes)); // std::move(callback).Run(); // // Without RetainedRef, the scoped_refptr would try to implicitly convert to // a raw pointer and fail compilation: // // OnceClosure callback = BindOnce(&foo, bytes); // ERROR! template inline internal::RetainedRefWrapper RetainedRef(T* o) { return internal::RetainedRefWrapper(o); } template inline internal::RetainedRefWrapper RetainedRef(scoped_refptr o) { return internal::RetainedRefWrapper(std::move(o)); } // Owned() transfers ownership of an object to the callback resulting from // bind; the object will be deleted when the callback is deleted. // // EXAMPLE OF Owned(): // // void foo(int* arg) { cout << *arg << endl } // // int* pn = new int(1); // RepeatingClosure foo_callback = BindRepeating(&foo, Owned(pn)); // // foo_callback.Run(); // Prints "1" // foo_callback.Run(); // Prints "1" // *pn = 2; // foo_callback.Run(); // Prints "2" // // foo_callback.Reset(); // |pn| is deleted. Also will happen when // // |foo_callback| goes out of scope. // // Without Owned(), someone would have to know to delete |pn| when the last // reference to the callback is deleted. template inline internal::OwnedWrapper Owned(T* o) { return internal::OwnedWrapper(o); } template inline internal::OwnedWrapper Owned( std::unique_ptr&& ptr) { return internal::OwnedWrapper(std::move(ptr)); } // OwnedRef() stores an object in the callback resulting from // bind and passes a reference to the object to the bound function. // // EXAMPLE OF OwnedRef(): // // void foo(int& arg) { cout << ++arg << endl } // // int counter = 0; // RepeatingClosure foo_callback = BindRepeating(&foo, OwnedRef(counter)); // // foo_callback.Run(); // Prints "1" // foo_callback.Run(); // Prints "2" // foo_callback.Run(); // Prints "3" // // cout << counter; // Prints "0", OwnedRef creates a copy of counter. // // Supports OnceCallbacks as well, useful to pass placeholder arguments: // // void bar(int& ignore, const std::string& s) { cout << s << endl } // // OnceClosure bar_callback = BindOnce(&bar, OwnedRef(0), "Hello"); // // std::move(bar_callback).Run(); // Prints "Hello" // // Without OwnedRef() it would not be possible to pass a mutable reference to an // object owned by the callback. template internal::OwnedRefWrapper> OwnedRef(T&& t) { return internal::OwnedRefWrapper>(std::forward(t)); } // Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr) // through a RepeatingCallback. Logically, this signifies a destructive transfer // of the state of the argument into the target function. Invoking // RepeatingCallback::Run() twice on a callback that was created with a Passed() // argument will CHECK() because the first invocation would have already // transferred ownership to the target function. // // Note that Passed() is not necessary with BindOnce(), as std::move() does the // same thing. Avoid Passed() in favor of std::move() with BindOnce(). // // EXAMPLE OF Passed(): // // void TakesOwnership(std::unique_ptr arg) { } // std::unique_ptr CreateFoo() { return std::make_unique(); // } // // auto f = std::make_unique(); // // // |cb| is given ownership of Foo(). |f| is now NULL. // // You can use std::move(f) in place of &f, but it's more verbose. // RepeatingClosure cb = BindRepeating(&TakesOwnership, Passed(&f)); // // // Run was never called so |cb| still owns Foo() and deletes // // it on Reset(). // cb.Reset(); // // // |cb| is given a new Foo created by CreateFoo(). // cb = BindRepeating(&TakesOwnership, Passed(CreateFoo())); // // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| // // no longer owns Foo() and, if reset, would not delete Foo(). // cb.Run(); // Foo() is now transferred to |arg| and deleted. // cb.Run(); // This CHECK()s since Foo() already been used once. // // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and is // best suited for use with the return value of a function or other temporary // rvalues. The second takes a pointer to the scoper and is just syntactic sugar // to avoid having to write Passed(std::move(scoper)). // // Both versions of Passed() prevent T from being an lvalue reference. The first // via use of enable_if, and the second takes a T* which will not bind to T&. template >* = nullptr> inline internal::PassedWrapper Passed(T&& scoper) { return internal::PassedWrapper(std::move(scoper)); } template inline internal::PassedWrapper Passed(T* scoper) { return internal::PassedWrapper(std::move(*scoper)); } // IgnoreResult() is used to adapt a function or callback with a return type to // one with a void return. This is most useful if you have a function with, // say, a pesky ignorable bool return that you want to use with PostTask or // something else that expect a callback with a void return. // // EXAMPLE OF IgnoreResult(): // // int DoSomething(int arg) { cout << arg << endl; } // // // Assign to a callback with a void return type. // OnceCallback cb = BindOnce(IgnoreResult(&DoSomething)); // std::move(cb).Run(1); // Prints "1". // // // Prints "2" on |ml|. // ml->PostTask(FROM_HERE, BindOnce(IgnoreResult(&DoSomething), 2); template inline internal::IgnoreResultHelper IgnoreResult(T data) { return internal::IgnoreResultHelper(std::move(data)); } #if BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc) // RetainBlock() is used to adapt an Objective-C block when Automated Reference // Counting (ARC) is disabled. This is unnecessary when ARC is enabled, as the // BindOnce and BindRepeating already support blocks then. // // EXAMPLE OF RetainBlock(): // // // Wrap the block and bind it to a callback. // OnceCallback cb = // BindOnce(RetainBlock(^(int n) { NSLog(@"%d", n); })); // std::move(cb).Run(1); // Logs "1". template base::mac::ScopedBlock RetainBlock(R (^block)(Args...)) { return base::mac::ScopedBlock(block, base::scoped_policy::RETAIN); } #endif // BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc) } // namespace base #endif // BASE_BIND_H_