/* * Copyright (C) 2009 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "RegexCompiler.h" #include "RegexInterpreter.h" #include "RegexPattern.h" #include #if ENABLE(YARR) using namespace WTF; namespace JSC { namespace Yarr { class CharacterClassConstructor { public: CharacterClassConstructor(bool isCaseInsensitive = false) : m_isCaseInsensitive(isCaseInsensitive) { } void reset() { m_matches.clear(); m_ranges.clear(); m_matchesUnicode.clear(); m_rangesUnicode.clear(); } void append(const CharacterClass* other) { for (size_t i = 0; i < other->m_matches.size(); ++i) addSorted(m_matches, other->m_matches[i]); for (size_t i = 0; i < other->m_ranges.size(); ++i) addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end); for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i) addSorted(m_matchesUnicode, other->m_matchesUnicode[i]); for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i) addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end); } void putChar(UChar ch) { if (ch <= 0x7f) { if (m_isCaseInsensitive && isASCIIAlpha(ch)) { addSorted(m_matches, toASCIIUpper(ch)); addSorted(m_matches, toASCIILower(ch)); } else addSorted(m_matches, ch); } else { UChar upper, lower; if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) { addSorted(m_matchesUnicode, upper); addSorted(m_matchesUnicode, lower); } else addSorted(m_matchesUnicode, ch); } } // returns true if this character has another case, and 'ch' is the upper case form. static inline bool isUnicodeUpper(UChar ch) { return ch != Unicode::toLower(ch); } // returns true if this character has another case, and 'ch' is the lower case form. static inline bool isUnicodeLower(UChar ch) { return ch != Unicode::toUpper(ch); } void putRange(UChar lo, UChar hi) { if (lo <= 0x7f) { char asciiLo = lo; char asciiHi = std::min(hi, (UChar)0x7f); addSortedRange(m_ranges, lo, asciiHi); if (m_isCaseInsensitive) { if ((asciiLo <= 'Z') && (asciiHi >= 'A')) addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A')); if ((asciiLo <= 'z') && (asciiHi >= 'a')) addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a')); } } if (hi >= 0x80) { uint32_t unicodeCurr = std::max(lo, (UChar)0x80); addSortedRange(m_rangesUnicode, unicodeCurr, hi); if (m_isCaseInsensitive) { while (unicodeCurr <= hi) { // If the upper bound of the range (hi) is 0xffff, the increments to // unicodeCurr in this loop may take it to 0x10000. This is fine // (if so we won't re-enter the loop, since the loop condition above // will definitely fail) - but this does mean we cannot use a UChar // to represent unicodeCurr, we must use a 32-bit value instead. ASSERT(unicodeCurr <= 0xffff); if (isUnicodeUpper(unicodeCurr)) { UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr); UChar lowerCaseRangeEnd = lowerCaseRangeBegin; while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1))) lowerCaseRangeEnd++; addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd); } else if (isUnicodeLower(unicodeCurr)) { UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr); UChar upperCaseRangeEnd = upperCaseRangeBegin; while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1))) upperCaseRangeEnd++; addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd); } else ++unicodeCurr; } } } } CharacterClass* charClass() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_matches.append(m_matches); characterClass->m_ranges.append(m_ranges); characterClass->m_matchesUnicode.append(m_matchesUnicode); characterClass->m_rangesUnicode.append(m_rangesUnicode); reset(); return characterClass; } private: void addSorted(Vector& matches, UChar ch) { unsigned pos = 0; unsigned range = matches.size(); // binary chop, find position to insert char. while (range) { unsigned index = range >> 1; int val = matches[pos+index] - ch; if (!val) return; else if (val > 0) range = index; else { pos += (index+1); range -= (index+1); } } if (pos == matches.size()) matches.append(ch); else matches.insert(pos, ch); } void addSortedRange(Vector& ranges, UChar lo, UChar hi) { unsigned end = ranges.size(); // Simple linear scan - I doubt there are that many ranges anyway... // feel free to fix this with something faster (eg binary chop). for (unsigned i = 0; i < end; ++i) { // does the new range fall before the current position in the array if (hi < ranges[i].begin) { // optional optimization: concatenate appending ranges? - may not be worthwhile. if (hi == (ranges[i].begin - 1)) { ranges[i].begin = lo; return; } ranges.insert(i, CharacterRange(lo, hi)); return; } // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining // If the new range start at or before the end of the last range, then the overlap (if it starts one after the // end of the last range they concatenate, which is just as good. if (lo <= (ranges[i].end + 1)) { // found an intersect! we'll replace this entry in the array. ranges[i].begin = std::min(ranges[i].begin, lo); ranges[i].end = std::max(ranges[i].end, hi); // now check if the new range can subsume any subsequent ranges. unsigned next = i+1; // each iteration of the loop we will either remove something from the list, or break the loop. while (next < ranges.size()) { if (ranges[next].begin <= (ranges[i].end + 1)) { // the next entry now overlaps / concatenates this one. ranges[i].end = std::max(ranges[i].end, ranges[next].end); ranges.remove(next); } else break; } return; } } // CharacterRange comes after all existing ranges. ranges.append(CharacterRange(lo, hi)); } bool m_isCaseInsensitive; Vector m_matches; Vector m_ranges; Vector m_matchesUnicode; Vector m_rangesUnicode; }; CharacterClass* newlineCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_matches.append('\n'); characterClass->m_matches.append('\r'); characterClass->m_matchesUnicode.append(0x2028); characterClass->m_matchesUnicode.append(0x2029); return characterClass; } CharacterClass* digitsCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_ranges.append(CharacterRange('0', '9')); return characterClass; } CharacterClass* spacesCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_matches.append(' '); characterClass->m_ranges.append(CharacterRange('\t', '\r')); characterClass->m_matchesUnicode.append(0x00a0); characterClass->m_matchesUnicode.append(0x1680); characterClass->m_matchesUnicode.append(0x180e); characterClass->m_matchesUnicode.append(0x2028); characterClass->m_matchesUnicode.append(0x2029); characterClass->m_matchesUnicode.append(0x202f); characterClass->m_matchesUnicode.append(0x205f); characterClass->m_matchesUnicode.append(0x3000); characterClass->m_rangesUnicode.append(CharacterRange(0x2000, 0x200a)); return characterClass; } CharacterClass* wordcharCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_matches.append('_'); characterClass->m_ranges.append(CharacterRange('0', '9')); characterClass->m_ranges.append(CharacterRange('A', 'Z')); characterClass->m_ranges.append(CharacterRange('a', 'z')); return characterClass; } CharacterClass* nondigitsCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); characterClass->m_ranges.append(CharacterRange('9' + 1, 0x7f)); characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); return characterClass; } CharacterClass* nonspacesCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_ranges.append(CharacterRange(0, '\t' - 1)); characterClass->m_ranges.append(CharacterRange('\r' + 1, ' ' - 1)); characterClass->m_ranges.append(CharacterRange(' ' + 1, 0x7f)); characterClass->m_rangesUnicode.append(CharacterRange(0x0080, 0x009f)); characterClass->m_rangesUnicode.append(CharacterRange(0x00a1, 0x167f)); characterClass->m_rangesUnicode.append(CharacterRange(0x1681, 0x180d)); characterClass->m_rangesUnicode.append(CharacterRange(0x180f, 0x1fff)); characterClass->m_rangesUnicode.append(CharacterRange(0x200b, 0x2027)); characterClass->m_rangesUnicode.append(CharacterRange(0x202a, 0x202e)); characterClass->m_rangesUnicode.append(CharacterRange(0x2030, 0x205e)); characterClass->m_rangesUnicode.append(CharacterRange(0x2060, 0x2fff)); characterClass->m_rangesUnicode.append(CharacterRange(0x3001, 0xffff)); return characterClass; } CharacterClass* nonwordcharCreate() { CharacterClass* characterClass = new CharacterClass(); characterClass->m_matches.append('`'); characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); characterClass->m_ranges.append(CharacterRange('9' + 1, 'A' - 1)); characterClass->m_ranges.append(CharacterRange('Z' + 1, '_' - 1)); characterClass->m_ranges.append(CharacterRange('z' + 1, 0x7f)); characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); return characterClass; } class RegexPatternConstructor { public: RegexPatternConstructor(RegexPattern& pattern) : m_pattern(pattern) , m_characterClassConstructor(pattern.m_ignoreCase) { } ~RegexPatternConstructor() { } void reset() { m_pattern.reset(); m_characterClassConstructor.reset(); } void assertionBOL() { m_alternative->m_terms.append(PatternTerm::BOL()); } void assertionEOL() { m_alternative->m_terms.append(PatternTerm::EOL()); } void assertionWordBoundary(bool invert) { m_alternative->m_terms.append(PatternTerm::WordBoundary(invert)); } void atomPatternCharacter(UChar ch) { // We handle case-insensitive checking of unicode characters which do have both // cases by handling them as if they were defined using a CharacterClass. if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) { atomCharacterClassBegin(); atomCharacterClassAtom(ch); atomCharacterClassEnd(); } else m_alternative->m_terms.append(PatternTerm(ch)); } void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert) { switch (classID) { case DigitClassID: m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert)); break; case SpaceClassID: m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert)); break; case WordClassID: m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert)); break; case NewlineClassID: m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert)); break; } } void atomCharacterClassBegin(bool invert = false) { m_invertCharacterClass = invert; } void atomCharacterClassAtom(UChar ch) { m_characterClassConstructor.putChar(ch); } void atomCharacterClassRange(UChar begin, UChar end) { m_characterClassConstructor.putRange(begin, end); } void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert) { ASSERT(classID != NewlineClassID); switch (classID) { case DigitClassID: m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass()); break; case SpaceClassID: m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass()); break; case WordClassID: m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass()); break; default: ASSERT_NOT_REACHED(); } } void atomCharacterClassEnd() { CharacterClass* newCharacterClass = m_characterClassConstructor.charClass(); m_pattern.m_userCharacterClasses.append(newCharacterClass); m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass)); } void atomParenthesesSubpatternBegin(bool capture = true) { unsigned subpatternId = m_pattern.m_numSubpatterns + 1; if (capture) m_pattern.m_numSubpatterns++; PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); m_pattern.m_disjunctions.append(parenthesesDisjunction); m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture)); m_alternative = parenthesesDisjunction->addNewAlternative(); } void atomParentheticalAssertionBegin(bool invert = false) { PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); m_pattern.m_disjunctions.append(parenthesesDisjunction); m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, invert)); m_alternative = parenthesesDisjunction->addNewAlternative(); } void atomParenthesesEnd() { ASSERT(m_alternative->m_parent); ASSERT(m_alternative->m_parent->m_parent); m_alternative = m_alternative->m_parent->m_parent; m_alternative->lastTerm().parentheses.lastSubpatternId = m_pattern.m_numSubpatterns; } void atomBackReference(unsigned subpatternId) { ASSERT(subpatternId); m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId); if (subpatternId > m_pattern.m_numSubpatterns) { m_alternative->m_terms.append(PatternTerm::ForwardReference()); return; } PatternAlternative* currentAlternative = m_alternative; ASSERT(currentAlternative); // Note to self: if we waited until the AST was baked, we could also remove forwards refs while ((currentAlternative = currentAlternative->m_parent->m_parent)) { PatternTerm& term = currentAlternative->lastTerm(); ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion)); if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.invertOrCapture && (subpatternId == term.subpatternId)) { m_alternative->m_terms.append(PatternTerm::ForwardReference()); return; } } m_alternative->m_terms.append(PatternTerm(subpatternId)); } PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction) { PatternDisjunction* newDisjunction = new PatternDisjunction(); newDisjunction->m_parent = disjunction->m_parent; for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { PatternAlternative* alternative = disjunction->m_alternatives[alt]; PatternAlternative* newAlternative = newDisjunction->addNewAlternative(); for (unsigned i = 0; i < alternative->m_terms.size(); ++i) newAlternative->m_terms.append(copyTerm(alternative->m_terms[i])); } m_pattern.m_disjunctions.append(newDisjunction); return newDisjunction; } PatternTerm copyTerm(PatternTerm& term) { if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion)) return PatternTerm(term); PatternTerm termCopy = term; termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction); return termCopy; } void quantifyAtom(unsigned min, unsigned max, bool greedy) { ASSERT(min <= max); ASSERT(m_alternative->m_terms.size()); if (!max) { m_alternative->removeLastTerm(); return; } PatternTerm& term = m_alternative->lastTerm(); ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary); ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount)); // For any assertion with a zero minimum, not matching is valid and has no effect, // remove it. Otherwise, we need to match as least once, but there is no point // matching more than once, so remove the quantifier. It is not entirely clear // from the spec whether or not this behavior is correct, but I believe this // matches Firefox. :-/ if (term.type == PatternTerm::TypeParentheticalAssertion) { if (!min) m_alternative->removeLastTerm(); return; } if (min == 0) term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy); else if (min == max) term.quantify(min, QuantifierFixedCount); else { term.quantify(min, QuantifierFixedCount); m_alternative->m_terms.append(copyTerm(term)); // NOTE: this term is interesting from an analysis perspective, in that it can be ignored..... m_alternative->lastTerm().quantify((max == UINT_MAX) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy); if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern) m_alternative->lastTerm().parentheses.isCopy = true; } } void disjunction() { m_alternative = m_alternative->m_parent->addNewAlternative(); } void regexBegin() { m_pattern.m_body = new PatternDisjunction(); m_alternative = m_pattern.m_body->addNewAlternative(); m_pattern.m_disjunctions.append(m_pattern.m_body); } void regexEnd() { } void regexError() { } unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition) { alternative->m_hasFixedSize = true; unsigned currentInputPosition = initialInputPosition; for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { PatternTerm& term = alternative->m_terms[i]; switch (term.type) { case PatternTerm::TypeAssertionBOL: case PatternTerm::TypeAssertionEOL: case PatternTerm::TypeAssertionWordBoundary: term.inputPosition = currentInputPosition; break; case PatternTerm::TypeBackReference: term.inputPosition = currentInputPosition; term.frameLocation = currentCallFrameSize; currentCallFrameSize += RegexStackSpaceForBackTrackInfoBackReference; alternative->m_hasFixedSize = false; break; case PatternTerm::TypeForwardReference: break; case PatternTerm::TypePatternCharacter: term.inputPosition = currentInputPosition; if (term.quantityType != QuantifierFixedCount) { term.frameLocation = currentCallFrameSize; currentCallFrameSize += RegexStackSpaceForBackTrackInfoPatternCharacter; alternative->m_hasFixedSize = false; } else currentInputPosition += term.quantityCount; break; case PatternTerm::TypeCharacterClass: term.inputPosition = currentInputPosition; if (term.quantityType != QuantifierFixedCount) { term.frameLocation = currentCallFrameSize; currentCallFrameSize += RegexStackSpaceForBackTrackInfoCharacterClass; alternative->m_hasFixedSize = false; } else currentInputPosition += term.quantityCount; break; case PatternTerm::TypeParenthesesSubpattern: // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own. term.frameLocation = currentCallFrameSize; if ((term.quantityCount == 1) && !term.parentheses.isCopy) { if (term.quantityType == QuantifierFixedCount) { currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); currentInputPosition += term.parentheses.disjunction->m_minimumSize; } else { currentCallFrameSize += RegexStackSpaceForBackTrackInfoParenthesesOnce; currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); } term.inputPosition = currentInputPosition; } else { term.inputPosition = currentInputPosition; setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition); currentCallFrameSize += RegexStackSpaceForBackTrackInfoParentheses; } // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length. alternative->m_hasFixedSize = false; break; case PatternTerm::TypeParentheticalAssertion: term.inputPosition = currentInputPosition; term.frameLocation = currentCallFrameSize; currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + RegexStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition); break; } } alternative->m_minimumSize = currentInputPosition - initialInputPosition; return currentCallFrameSize; } unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition) { if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1)) initialCallFrameSize += RegexStackSpaceForBackTrackInfoAlternative; unsigned minimumInputSize = UINT_MAX; unsigned maximumCallFrameSize = 0; bool hasFixedSize = true; for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { PatternAlternative* alternative = disjunction->m_alternatives[alt]; unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition); minimumInputSize = min(minimumInputSize, alternative->m_minimumSize); maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize); hasFixedSize &= alternative->m_hasFixedSize; } ASSERT(minimumInputSize != UINT_MAX); ASSERT(maximumCallFrameSize >= initialCallFrameSize); disjunction->m_hasFixedSize = hasFixedSize; disjunction->m_minimumSize = minimumInputSize; disjunction->m_callFrameSize = maximumCallFrameSize; return maximumCallFrameSize; } void setupOffsets() { setupDisjunctionOffsets(m_pattern.m_body, 0, 0); } private: RegexPattern& m_pattern; PatternAlternative* m_alternative; CharacterClassConstructor m_characterClassConstructor; bool m_invertCharacterClass; }; const char* compileRegex(const UString& patternString, RegexPattern& pattern) { RegexPatternConstructor constructor(pattern); if (const char* error = parse(constructor, patternString)) return error; // If the pattern contains illegal backreferences reset & reparse. // Quoting Netscape's "What's new in JavaScript 1.2", // "Note: if the number of left parentheses is less than the number specified // in \#, the \# is taken as an octal escape as described in the next row." if (pattern.containsIllegalBackReference()) { unsigned numSubpatterns = pattern.m_numSubpatterns; constructor.reset(); #if !ASSERT_DISABLED const char* error = #endif parse(constructor, patternString, numSubpatterns); ASSERT(!error); ASSERT(numSubpatterns == pattern.m_numSubpatterns); } constructor.setupOffsets(); return false; }; } } #endif