/* * Copyright (C) 2006 Apple Computer, Inc. All rights reserved. * Copyright (C) 2008 Google Inc. All rights reserved. * Copyright (C) 2007-2009 Torch Mobile, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CurrentTime.h" #if OS(WINDOWS) // Windows is first since we want to use hires timers, despite PLATFORM(CF) // being defined. // If defined, WIN32_LEAN_AND_MEAN disables timeBeginPeriod/timeEndPeriod. #undef WIN32_LEAN_AND_MEAN #include #include #include #include #if USE(QUERY_PERFORMANCE_COUNTER) #if OS(WINCE) extern "C" time_t mktime(struct tm *t); #else #include #include #endif #endif #elif PLATFORM(CF) #include #elif PLATFORM(GTK) #include #elif PLATFORM(WX) #include #else // Posix systems relying on the gettimeofday() #include #endif #if PLATFORM(CHROMIUM) #error Chromium uses a different timer implementation #endif namespace WTF { const double msPerSecond = 1000.0; #if OS(WINDOWS) #if USE(QUERY_PERFORMANCE_COUNTER) static LARGE_INTEGER qpcFrequency; static bool syncedTime; static double highResUpTime() { // We use QPC, but only after sanity checking its result, due to bugs: // http://support.microsoft.com/kb/274323 // http://support.microsoft.com/kb/895980 // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)." static LARGE_INTEGER qpcLast; static DWORD tickCountLast; static bool inited; LARGE_INTEGER qpc; QueryPerformanceCounter(&qpc); DWORD tickCount = GetTickCount(); if (inited) { __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart; __int64 tickCountElapsed; if (tickCount >= tickCountLast) tickCountElapsed = (tickCount - tickCountLast); else { #if COMPILER(MINGW) __int64 tickCountLarge = tickCount + 0x100000000ULL; #else __int64 tickCountLarge = tickCount + 0x100000000I64; #endif tickCountElapsed = tickCountLarge - tickCountLast; } // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms. // (500ms value is from http://support.microsoft.com/kb/274323) __int64 diff = tickCountElapsed - qpcElapsed; if (diff > 500 || diff < -500) syncedTime = false; } else inited = true; qpcLast = qpc; tickCountLast = tickCount; return (1000.0 * qpc.QuadPart) / static_cast(qpcFrequency.QuadPart); } static double lowResUTCTime() { #if OS(WINCE) SYSTEMTIME systemTime; GetSystemTime(&systemTime); struct tm tmtime; tmtime.tm_year = systemTime.wYear - 1900; tmtime.tm_mon = systemTime.wMonth - 1; tmtime.tm_mday = systemTime.wDay; tmtime.tm_wday = systemTime.wDayOfWeek; tmtime.tm_hour = systemTime.wHour; tmtime.tm_min = systemTime.wMinute; tmtime.tm_sec = systemTime.wSecond; time_t timet = mktime(&tmtime); return timet * msPerSecond + systemTime.wMilliseconds; #else struct _timeb timebuffer; _ftime(&timebuffer); return timebuffer.time * msPerSecond + timebuffer.millitm; #endif } static bool qpcAvailable() { static bool available; static bool checked; if (checked) return available; available = QueryPerformanceFrequency(&qpcFrequency); checked = true; return available; } double currentTime() { // Use a combination of ftime and QueryPerformanceCounter. // ftime returns the information we want, but doesn't have sufficient resolution. // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals. // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter // by itself, adding the delta to the saved ftime. We periodically re-sync to correct for drift. static bool started; static double syncLowResUTCTime; static double syncHighResUpTime; static double lastUTCTime; double lowResTime = lowResUTCTime(); if (!qpcAvailable()) return lowResTime / 1000.0; double highResTime = highResUpTime(); if (!syncedTime) { timeBeginPeriod(1); // increase time resolution around low-res time getter syncLowResUTCTime = lowResTime = lowResUTCTime(); timeEndPeriod(1); // restore time resolution syncHighResUpTime = highResTime; syncedTime = true; } double highResElapsed = highResTime - syncHighResUpTime; double utc = syncLowResUTCTime + highResElapsed; // force a clock re-sync if we've drifted double lowResElapsed = lowResTime - syncLowResUTCTime; const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy if (fabs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec) syncedTime = false; // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur) const double backwardTimeLimit = 2000.0; if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit) return lastUTCTime / 1000.0; lastUTCTime = utc; return utc / 1000.0; } #else static double currentSystemTime() { FILETIME ft; GetCurrentFT(&ft); // As per Windows documentation for FILETIME, copy the resulting FILETIME structure to a // ULARGE_INTEGER structure using memcpy (using memcpy instead of direct assignment can // prevent alignment faults on 64-bit Windows). ULARGE_INTEGER t; memcpy(&t, &ft, sizeof(t)); // Windows file times are in 100s of nanoseconds. // To convert to seconds, we have to divide by 10,000,000, which is more quickly // done by multiplying by 0.0000001. // Between January 1, 1601 and January 1, 1970, there were 369 complete years, // of which 89 were leap years (1700, 1800, and 1900 were not leap years). // That is a total of 134774 days, which is 11644473600 seconds. return t.QuadPart * 0.0000001 - 11644473600.0; } double currentTime() { static bool init = false; static double lastTime; static DWORD lastTickCount; if (!init) { lastTime = currentSystemTime(); lastTickCount = GetTickCount(); init = true; return lastTime; } DWORD tickCountNow = GetTickCount(); DWORD elapsed = tickCountNow - lastTickCount; double timeNow = lastTime + (double)elapsed / 1000.; if (elapsed >= 0x7FFFFFFF) { lastTime = timeNow; lastTickCount = tickCountNow; } return timeNow; } #endif // USE(QUERY_PERFORMANCE_COUNTER) #elif PLATFORM(CF) double currentTime() { return CFAbsoluteTimeGetCurrent() + kCFAbsoluteTimeIntervalSince1970; } #elif PLATFORM(GTK) // Note: GTK on Windows will pick up the PLATFORM(WIN) implementation above which provides // better accuracy compared with Windows implementation of g_get_current_time: // (http://www.google.com/codesearch/p?hl=en#HHnNRjks1t0/glib-2.5.2/glib/gmain.c&q=g_get_current_time). // Non-Windows GTK builds could use gettimeofday() directly but for the sake of consistency lets use GTK function. double currentTime() { GTimeVal now; g_get_current_time(&now); return static_cast(now.tv_sec) + static_cast(now.tv_usec / 1000000.0); } #elif PLATFORM(WX) double currentTime() { wxDateTime now = wxDateTime::UNow(); return (double)now.GetTicks() + (double)(now.GetMillisecond() / 1000.0); } #else // Other Posix systems rely on the gettimeofday(). double currentTime() { struct timeval now; struct timezone zone; gettimeofday(&now, &zone); return static_cast(now.tv_sec) + (double)(now.tv_usec / 1000000.0); } #endif } // namespace WTF