summaryrefslogtreecommitdiff
path: root/src/location/maps/qgeoprojection.cpp
blob: ff6a0b7765b91a30da09406fa6780b2f1fadd979 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: http://www.qt.io/licensing/
**
** This file is part of the QtLocation module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qgeoprojection_p.h"
#include <QtPositioning/private/qwebmercator_p.h>
#include <QtPositioning/private/qlocationutils_p.h>
#include <QtPositioning/private/qclipperutils_p.h>
#include <QtPositioning/QGeoPolygon>
#include <QtPositioning/QGeoRectangle>
#include <QSize>
#include <QtGui/QMatrix4x4>
#include <cmath>

namespace {
    static const double defaultTileSize = 256.0;
    static const QDoubleVector3D xyNormal(0.0, 0.0, 1.0);
    static const QGeoProjectionWebMercator::Plane xyPlane(QDoubleVector3D(0,0,0), QDoubleVector3D(0,0,1));
    static const QList<QDoubleVector2D> mercatorGeometry = {
                                                QDoubleVector2D(-1.0,0.0),
                                                QDoubleVector2D( 2.0,0.0),
                                                QDoubleVector2D( 2.0,1.0),
                                                QDoubleVector2D(-1.0,1.0) };
}

static QMatrix4x4 toMatrix4x4(const QDoubleMatrix4x4 &m)
{
    return QMatrix4x4(m(0,0), m(0,1), m(0,2), m(0,3),
                      m(1,0), m(1,1), m(1,2), m(1,3),
                      m(2,0), m(2,1), m(2,2), m(2,3),
                      m(3,0), m(3,1), m(3,2), m(3,3));
}

static QPointF centerOffset(const QSizeF &screenSize, const QRectF &visibleArea)
{
    QRectF va = visibleArea;
    if (va.isNull())
        va = QRectF(0, 0, screenSize.width(), screenSize.height());

    QRectF screen = QRectF(QPointF(0,0),screenSize);
    QPointF vaCenter = va.center();

    QPointF screenCenter = screen.center();
    QPointF diff = screenCenter - vaCenter;

    return diff;
}

static QPointF marginsOffset(const QSizeF &screenSize, const QRectF &visibleArea)
{
    QPointF diff = centerOffset(screenSize, visibleArea);
    qreal xdiffpct = diff.x() / qMax<double>(screenSize.width() - 1, 1);
    qreal ydiffpct = diff.y() / qMax<double>(screenSize.height() - 1, 1);

    return QPointF(-xdiffpct, -ydiffpct);
}

QT_BEGIN_NAMESPACE

QGeoProjection::QGeoProjection()
{

}

QGeoProjection::~QGeoProjection()
{

}

QGeoCoordinate QGeoProjection::anchorCoordinateToPoint(const QGeoCoordinate &coordinate, const QPointF &anchorPoint) const
{
    Q_UNUSED(coordinate);
    Q_UNUSED(anchorPoint);
    return QGeoCoordinate();
}

QGeoShape QGeoProjection::visibleRegion() const
{
    return QGeoShape();
}

bool QGeoProjection::setBearing(qreal bearing, const QGeoCoordinate &coordinate)
{
    Q_UNUSED(bearing);
    Q_UNUSED(coordinate);
    return false;
}

void QGeoProjection::setItemToWindowTransform(const QTransform &itemToWindowTransform)
{
    if (m_itemToWindowTransform == itemToWindowTransform)
        return;
    m_qsgTransformDirty = true;
    m_itemToWindowTransform = itemToWindowTransform;
}

QTransform QGeoProjection::itemToWindowTransform() const
{
    return m_itemToWindowTransform;
}


/*
 * QGeoProjectionWebMercator implementation
*/

QGeoCoordinate QGeoProjectionWebMercator::anchorCoordinateToPoint(const QGeoCoordinate &coordinate, const QPointF &anchorPoint) const
{
    // Approach: find the displacement in (wrapped) mercator space, and apply that to the center
    QDoubleVector2D centerProj = geoToWrappedMapProjection(cameraData().center());
    QDoubleVector2D coordProj  = geoToWrappedMapProjection(coordinate);

    QDoubleVector2D anchorProj = itemPositionToWrappedMapProjection(QDoubleVector2D(anchorPoint));
    // Y-clamping done in mercatorToCoord
    return wrappedMapProjectionToGeo(centerProj + coordProj - anchorProj);
}

bool QGeoProjectionWebMercator::setBearing(qreal bearing, const QGeoCoordinate &coordinate)
{
    const QDoubleVector2D coordWrapped = geoToWrappedMapProjection(coordinate);
    if (!isProjectable(coordWrapped))
        return false;
    const QPointF rotationPoint = wrappedMapProjectionToItemPosition(coordWrapped).toPointF();

    QGeoCameraData camera = cameraData();
    // first set bearing
    camera.setBearing(bearing);
    setCameraData(camera);
    camera = cameraData();

    // then reanchor
    const QGeoCoordinate center = anchorCoordinateToPoint(coordinate, rotationPoint);
    camera.setCenter(center);
    setCameraData(camera);
    return true;
}

QGeoProjectionWebMercator::QGeoProjectionWebMercator()
    : QGeoProjection(),
      m_mapEdgeSize(256), // at zl 0
      m_minimumZoom(0),
      m_cameraCenterXMercator(0),
      m_cameraCenterYMercator(0),
      m_viewportWidth(1),
      m_viewportHeight(1),
      m_1_viewportWidth(0),
      m_1_viewportHeight(0),
      m_sideLengthPixels(256),
      m_aperture(0.0),
      m_nearPlane(0.0),
      m_farPlane(0.0),
      m_halfWidth(0.0),
      m_halfHeight(0.0),
      m_minimumUnprojectableY(0.0),
      m_verticalEstateToSkip(0.0),
      m_visibleRegionDirty(false)
{
}

QGeoProjectionWebMercator::~QGeoProjectionWebMercator()
{

}

// This method returns the minimum zoom level that this specific qgeomap type allows
// at the current viewport size and for the default tile size of 256^2.
double QGeoProjectionWebMercator::minimumZoom() const
{
    return m_minimumZoom;
}

QMatrix4x4 QGeoProjectionWebMercator::projectionTransformation() const
{
    return toMatrix4x4(m_transformation);
}

QMatrix4x4 QGeoProjectionWebMercator::projectionTransformation_centered() const
{
    return toMatrix4x4(m_transformation0);
}

const QMatrix4x4 &QGeoProjectionWebMercator::qsgTransform() const
{
    if (m_qsgTransformDirty) {
        m_qsgTransformDirty = false;
        m_qsgTransform = QMatrix4x4(m_itemToWindowTransform) * toMatrix4x4(m_transformation0);
//        qDebug() << "QGeoProjectionWebMercator::qsgTransform" << m_itemToWindowTransform << toMatrix4x4(m_transformation0);
    }
    return m_qsgTransform;
}

QDoubleVector3D QGeoProjectionWebMercator::centerMercator() const
{
    return geoToMapProjection(m_cameraData.center()).toVector3D();
}

// This method recalculates the "no-trespassing" limits for the map center.
// This has to be used when:
// 1) the map is resized, because the meters per pixel remain the same, but
//    the amount of pixels between the center and the borders changes
// 2) when the zoom level changes, because the amount of pixels between the center
//    and the borders stays the same, but the meters per pixel change
double QGeoProjectionWebMercator::maximumCenterLatitudeAtZoom(const QGeoCameraData &cameraData) const
{
    double mapEdgeSize = std::pow(2.0, cameraData.zoomLevel()) * defaultTileSize;

    // At init time weird things happen
    int clampedWindowHeight = (m_viewportHeight > mapEdgeSize) ? mapEdgeSize : m_viewportHeight;
    QPointF offsetPct = centerOffset(QSizeF(m_viewportWidth, m_viewportHeight), m_visibleArea);
    double hpct = offsetPct.y() / qMax<double>(m_viewportHeight - 1, 1);

    // Use the window height divided by 2 as the topmost allowed center, with respect to the map size in pixels
    double mercatorTopmost = (clampedWindowHeight * (0.5 - hpct)) /  mapEdgeSize ;
    QGeoCoordinate topMost = QWebMercator::mercatorToCoord(QDoubleVector2D(0.0, mercatorTopmost));
    return topMost.latitude();
}

double QGeoProjectionWebMercator::minimumCenterLatitudeAtZoom(const QGeoCameraData &cameraData) const
{
    double mapEdgeSize = std::pow(2.0, cameraData.zoomLevel()) * defaultTileSize;

    // At init time weird things happen
    int clampedWindowHeight = (m_viewportHeight > mapEdgeSize) ? mapEdgeSize : m_viewportHeight;
    QPointF offsetPct = centerOffset(QSizeF(m_viewportWidth, m_viewportHeight), m_visibleArea);
    double hpct = offsetPct.y() / qMax<double>(m_viewportHeight - 1, 1);

    // Use the window height divided by 2 as the topmost allowed center, with respect to the map size in pixels
    double mercatorTopmost = (clampedWindowHeight * (0.5 + hpct)) /  mapEdgeSize ;
    QGeoCoordinate topMost = QWebMercator::mercatorToCoord(QDoubleVector2D(0.0, mercatorTopmost));
    return -topMost.latitude();
}

void QGeoProjectionWebMercator::setVisibleArea(const QRectF &visibleArea)
{
    m_visibleArea = visibleArea;
    setupCamera();
}

double QGeoProjectionWebMercator::mapWidth() const
{
    return m_mapEdgeSize;
}

double QGeoProjectionWebMercator::mapHeight() const
{
    return m_mapEdgeSize;
}

void QGeoProjectionWebMercator::setViewportSize(const QSize &size)
{
    if (int(m_viewportWidth) ==  size.width() && int(m_viewportHeight) == size.height())
        return;

    m_viewportWidth = size.width();
    m_viewportHeight = size.height();
    m_1_viewportWidth = 1.0 / m_viewportWidth;
    m_1_viewportHeight = 1.0 / m_viewportHeight;
    m_minimumZoom =  std::log(qMax(m_viewportWidth, m_viewportHeight) / defaultTileSize) / std::log(2.0);
    setupCamera();
}

void QGeoProjectionWebMercator::setCameraData(const QGeoCameraData &cameraData, bool force)
{
    if (m_cameraData == cameraData && !force)
        return;

    m_cameraData = cameraData;
    m_mapEdgeSize = std::pow(2.0, cameraData.zoomLevel()) * defaultTileSize;
    setupCamera();
}

QDoubleVector2D QGeoProjectionWebMercator::geoToMapProjection(const QGeoCoordinate &coordinate) const
{
    return QWebMercator::coordToMercator(coordinate);
}

QGeoCoordinate QGeoProjectionWebMercator::mapProjectionToGeo(const QDoubleVector2D &projection) const
{
    return QWebMercator::mercatorToCoord(projection);
}

int QGeoProjectionWebMercator::projectionWrapFactor(const QDoubleVector2D &projection) const
{
    const double &x = projection.x();
    if (m_cameraCenterXMercator < 0.5) {
        if (x - m_cameraCenterXMercator > 0.5 )
            return -1;
    } else if (m_cameraCenterXMercator > 0.5) {
        if (x - m_cameraCenterXMercator < -0.5 )
            return 1;
    }
    return 0;
}

//wraps around center
QDoubleVector2D QGeoProjectionWebMercator::wrapMapProjection(const QDoubleVector2D &projection) const
{
    return QDoubleVector2D(projection.x() + double(projectionWrapFactor(projection)), projection.y());
}

QDoubleVector2D QGeoProjectionWebMercator::unwrapMapProjection(const QDoubleVector2D &wrappedProjection) const
{
    double x = wrappedProjection.x();
    if (x > 1.0)
        return QDoubleVector2D(x - 1.0, wrappedProjection.y());
    if (x <= 0.0)
        return QDoubleVector2D(x + 1.0, wrappedProjection.y());
    return wrappedProjection;
}

QDoubleVector2D QGeoProjectionWebMercator::wrappedMapProjectionToItemPosition(const QDoubleVector2D &wrappedProjection) const
{
    return (m_transformation * wrappedProjection).toVector2D();
}

QDoubleVector2D QGeoProjectionWebMercator::itemPositionToWrappedMapProjection(const QDoubleVector2D &itemPosition) const
{
    const QPointF centerOff = centerOffset(QSizeF(m_viewportWidth, m_viewportHeight), m_visibleArea);
    QDoubleVector2D pos = itemPosition + QDoubleVector2D(centerOff);
    pos *= QDoubleVector2D(m_1_viewportWidth, m_1_viewportHeight);
    pos *= 2.0;
    pos -= QDoubleVector2D(1.0,1.0);

    double s;
    QDoubleVector2D res = viewportToWrappedMapProjection(pos, s);

    // a positive s means a point behind the camera. So do it again, after clamping Y. See QTBUG-61813
    if (s > 0.0) {
        pos = itemPosition;
        // when the camera is tilted, picking a point above the horizon returns a coordinate behind the camera
        pos.setY(m_minimumUnprojectableY);
        pos *= QDoubleVector2D(m_1_viewportWidth, m_1_viewportHeight);
        pos *= 2.0;
        pos -= QDoubleVector2D(1.0,1.0);
        res = viewportToWrappedMapProjection(pos, s);
    }

    return res;
}

/* Default implementations */
QGeoCoordinate QGeoProjectionWebMercator::itemPositionToCoordinate(const QDoubleVector2D &pos, bool clipToViewport) const
{
    if (qIsNaN(pos.x()) || qIsNaN(pos.y()))
        return QGeoCoordinate();

    if (clipToViewport) {
        int w = m_viewportWidth;
        int h = m_viewportHeight;

        if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y()))
            return QGeoCoordinate();
    }

    QDoubleVector2D wrappedMapProjection = itemPositionToWrappedMapProjection(pos);
    // With rotation/tilting, a screen position might end up outside the projection space.
    if (!isProjectable(wrappedMapProjection))
        return QGeoCoordinate();
    return mapProjectionToGeo(unwrapMapProjection(wrappedMapProjection));
}

QDoubleVector2D QGeoProjectionWebMercator::coordinateToItemPosition(const QGeoCoordinate &coordinate, bool clipToViewport) const
{
    if (!coordinate.isValid())
        return QDoubleVector2D(qQNaN(), qQNaN());

    QDoubleVector2D wrappedProjection = wrapMapProjection(geoToMapProjection(coordinate));
    if (!isProjectable(wrappedProjection))
        return QDoubleVector2D(qQNaN(), qQNaN());

    QDoubleVector2D pos = wrappedMapProjectionToItemPosition(wrappedProjection);

    if (clipToViewport) {
        int w = m_viewportWidth;
        int h = m_viewportHeight;
        double x = pos.x();
        double y = pos.y();
        if ((x < -0.5) || (x > w + 0.5) || (y < -0.5) || (y > h + 0.5) || qIsNaN(x) || qIsNaN(y))
            return QDoubleVector2D(qQNaN(), qQNaN());
    }
    return pos;
}

QDoubleVector2D QGeoProjectionWebMercator::geoToWrappedMapProjection(const QGeoCoordinate &coordinate) const
{
    return wrapMapProjection(geoToMapProjection(coordinate));
}

QGeoCoordinate QGeoProjectionWebMercator::wrappedMapProjectionToGeo(const QDoubleVector2D &wrappedProjection) const
{
    return mapProjectionToGeo(unwrapMapProjection(wrappedProjection));
}

QMatrix4x4 QGeoProjectionWebMercator::quickItemTransformation(const QGeoCoordinate &coordinate, const QPointF &anchorPoint, qreal zoomLevel) const
{
    const QDoubleVector2D coordWrapped = geoToWrappedMapProjection(coordinate);
    double scale = std::pow(0.5, zoomLevel - m_cameraData.zoomLevel());
    const QDoubleVector2D anchorScaled = QDoubleVector2D(anchorPoint.x(), anchorPoint.y()) * scale;
    const QDoubleVector2D anchorMercator = anchorScaled / mapWidth();

    const QDoubleVector2D coordAnchored = coordWrapped - anchorMercator;
    const QDoubleVector2D coordAnchoredScaled = coordAnchored * m_sideLengthPixels;
    QDoubleMatrix4x4 matTranslateScale;
    matTranslateScale.translate(coordAnchoredScaled.x(), coordAnchoredScaled.y(), 0.0);

    scale = std::pow(0.5, (zoomLevel - std::floor(zoomLevel)) +
                     (std::floor(zoomLevel) - std::floor(m_cameraData.zoomLevel())));
    matTranslateScale.scale(scale);

    /*
     *  The full transformation chain for quickItemTransformation() would be:
     *  matScreenShift * m_quickItemTransformation * matTranslate * matScale
     *  where:
     *  matScreenShift = translate(-coordOnScreen.x(), -coordOnScreen.y(), 0)
     *  matTranslate = translate(coordAnchoredScaled.x(), coordAnchoredScaled.y(), 0.0)
     *  matScale = scale(scale)
     *
     *  However, matScreenShift is removed, as setPosition(0,0) is used in place of setPositionOnScreen.
     */

    return toMatrix4x4(m_quickItemTransformation * matTranslateScale);
}

bool QGeoProjectionWebMercator::isProjectable(const QDoubleVector2D &wrappedProjection) const
{
    if (m_cameraData.tilt() == 0.0)
        return true;

    QDoubleVector3D pos = wrappedProjection * m_sideLengthPixels;
    // use m_centerNearPlane in order to add an offset to m_eye.
    QDoubleVector3D p = m_centerNearPlane - pos;
    double dot = QDoubleVector3D::dotProduct(p , m_viewNormalized);

    if (dot < 0.0) // behind the near plane
        return false;
    return true;
}

QList<QDoubleVector2D> QGeoProjectionWebMercator::visibleGeometry() const
{
    if (m_visibleRegionDirty)
        const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion();
    return m_visibleRegion;
}

QList<QDoubleVector2D> QGeoProjectionWebMercator::visibleGeometryExpanded() const
{
    if (m_visibleRegionDirty)
        const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion();
    return m_visibleRegionExpanded;
}

QList<QDoubleVector2D> QGeoProjectionWebMercator::projectableGeometry() const
{
    if (m_visibleRegionDirty)
        const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion();
    return m_projectableRegion;
}

QGeoShape QGeoProjectionWebMercator::visibleRegion() const
{
    const QList<QDoubleVector2D> &visibleRegion = visibleGeometry();
    QGeoPolygon poly;
    for (int i = 0; i < visibleRegion.size(); ++i) {
         const QDoubleVector2D &c = visibleRegion.at(i);
        // If a segment spans more than half of the map longitudinally, split in 2.
        if (i && qAbs(visibleRegion.at(i-1).x() - c.x()) >= 0.5) { // This assumes a segment is never >= 1.0 (whole map span)
            QDoubleVector2D extraPoint = (visibleRegion.at(i-1) + c) * 0.5;
            poly.addCoordinate(wrappedMapProjectionToGeo(extraPoint));
        }
        poly.addCoordinate(wrappedMapProjectionToGeo(c));
    }
    if (visibleRegion.size() >= 2 && qAbs(visibleRegion.last().x() - visibleRegion.first().x()) >= 0.5) {
        QDoubleVector2D extraPoint = (visibleRegion.last() + visibleRegion.first()) * 0.5;
        poly.addCoordinate(wrappedMapProjectionToGeo(extraPoint));
    }

    return poly;
}

QDoubleVector2D QGeoProjectionWebMercator::viewportToWrappedMapProjection(const QDoubleVector2D &itemPosition) const
{
    double s;
    return viewportToWrappedMapProjection(itemPosition, s);
}

/*
    actual implementation of itemPositionToWrappedMapProjection
*/
QDoubleVector2D QGeoProjectionWebMercator::viewportToWrappedMapProjection(const QDoubleVector2D &itemPosition, double &s) const
{
    QDoubleVector2D pos = itemPosition;
    pos *= QDoubleVector2D(m_halfWidth, m_halfHeight);

    // determine itemPosition on the near plane
    QDoubleVector3D p = m_centerNearPlane;
    p += m_up * pos.y();
    p += m_side * pos.x();

    // compute the ray using the eye position
    QDoubleVector3D ray = m_eye - p;
    ray.normalize();

    return (xyPlane.lineIntersection(m_eye, ray, s) / m_sideLengthPixels).toVector2D();
}

/*
    Returns a pair of <newCenter, newZoom>
*/
QPair<QGeoCoordinate, qreal> QGeoProjectionWebMercator::fitViewportToGeoRectangle(const QGeoRectangle &rectangle,
                                                                                  const QMargins &m) const
{
    QPair<QGeoCoordinate, qreal> res;
    res.second = qQNaN();
    if (m_viewportWidth <= m.left() + m.right() || m_viewportHeight <= m.top() + m.bottom())
        return res;

    QDoubleVector2D topLeftPoint = geoToMapProjection(rectangle.topLeft());
    QDoubleVector2D bottomRightPoint = geoToMapProjection(rectangle.bottomRight());
    if (bottomRightPoint.x() < topLeftPoint.x()) // crossing the dateline
        bottomRightPoint.setX(bottomRightPoint.x() + 1.0);

    // find center of the bounding box
    QDoubleVector2D center = (topLeftPoint + bottomRightPoint) * 0.5;
    center.setX(center.x() > 1.0 ? center.x() - 1.0 : center.x());
    res.first = mapProjectionToGeo(center);

    // if the shape is empty we just change center position, not zoom
    double bboxWidth  = (bottomRightPoint.x() - topLeftPoint.x()) * mapWidth();
    double bboxHeight = (bottomRightPoint.y() - topLeftPoint.y()) * mapHeight();

    if (bboxHeight == 0.0 && bboxWidth == 0.0)
        return res;

    double zoomRatio = qMax(bboxWidth / (m_viewportWidth - m.left() - m.right()),
                            bboxHeight / (m_viewportHeight - m.top() - m.bottom()));
    zoomRatio = std::log(zoomRatio) / std::log(2.0);
    res.second = m_cameraData.zoomLevel() - zoomRatio;

    return  res;
}

QGeoProjection::ProjectionGroup QGeoProjectionWebMercator::projectionGroup() const
{
    return QGeoProjection::ProjectionCylindrical;
}

QGeoProjection::Datum QGeoProjectionWebMercator::datum() const
{
    return QGeoProjection::DatumWGS84;
}

QGeoProjection::ProjectionType QGeoProjectionWebMercator::projectionType() const
{
    return QGeoProjection::ProjectionWebMercator;
}

void QGeoProjectionWebMercator::setupCamera()
{
    m_qsgTransformDirty = true;
    m_centerMercator = geoToMapProjection(m_cameraData.center());
    m_cameraCenterXMercator = m_centerMercator.x();
    m_cameraCenterYMercator = m_centerMercator.y();

    int intZoomLevel = static_cast<int>(std::floor(m_cameraData.zoomLevel()));
    m_sideLengthPixels = (1 << intZoomLevel) * defaultTileSize;
    m_center = m_centerMercator * m_sideLengthPixels;
    //aperture(90 / 2) = 1
    m_aperture = tan(QLocationUtils::radians(m_cameraData.fieldOfView()) * 0.5);

    double f = m_viewportHeight;
    double z = std::pow(2.0, m_cameraData.zoomLevel() - intZoomLevel) * defaultTileSize;
    double altitude = f / (2.0 * z);
    // Also in mercator space
    double z_mercator = std::pow(2.0, m_cameraData.zoomLevel()) * defaultTileSize;
    double altitude_mercator = f / (2.0 * z_mercator);

    // calculate eye
    m_eye = m_center;
    m_eye.setZ(altitude * defaultTileSize / m_aperture);

    // And in mercator space
    m_eyeMercator = m_centerMercator;
    m_eyeMercator.setZ(altitude_mercator  / m_aperture);
    m_eyeMercator0 = QDoubleVector3D(0,0,0);
    m_eyeMercator0.setZ(altitude_mercator  / m_aperture);
    QDoubleVector3D eye0(0,0,0);
    eye0.setZ(altitude * defaultTileSize / m_aperture);

    m_view = m_eye - m_center;
    QDoubleVector3D side = QDoubleVector3D::normal(m_view, QDoubleVector3D(0.0, 1.0, 0.0));
    m_up = QDoubleVector3D::normal(side, m_view);

    // In mercator space too
    m_viewMercator = m_eyeMercator - m_centerMercator;
    QDoubleVector3D sideMercator = QDoubleVector3D::normal(m_viewMercator, QDoubleVector3D(0.0, 1.0, 0.0));
    m_upMercator = QDoubleVector3D::normal(sideMercator, m_viewMercator);

    if (m_cameraData.bearing() > 0.0) {
        QDoubleMatrix4x4 mBearing;
        mBearing.rotate(m_cameraData.bearing(), m_view);
        m_up = mBearing * m_up;

        // In mercator space too
        QDoubleMatrix4x4 mBearingMercator;
        mBearingMercator.rotate(m_cameraData.bearing(), m_viewMercator);
        m_upMercator = mBearingMercator * m_upMercator;
    }

    m_side = QDoubleVector3D::normal(m_up, m_view);
    m_sideMercator = QDoubleVector3D::normal(m_upMercator, m_viewMercator);

    if (m_cameraData.tilt() > 0.0) { // tilt has been already thresholded by QGeoCameraData::setTilt
        QDoubleMatrix4x4 mTilt;
        mTilt.rotate(-m_cameraData.tilt(), m_side);
        m_eye = mTilt * m_view + m_center;
        eye0 = mTilt * m_view;

        // In mercator space too
        QDoubleMatrix4x4 mTiltMercator;
        mTiltMercator.rotate(-m_cameraData.tilt(), m_sideMercator);
        m_eyeMercator = mTiltMercator * m_viewMercator + m_centerMercator;
        m_eyeMercator0 = mTiltMercator * m_viewMercator;
    }

    m_view = m_eye - m_center; // ToDo: this should be inverted (center - eye), and the rest should follow
    m_viewNormalized = m_view.normalized();
    m_up = QDoubleVector3D::normal(m_view, m_side);

    m_nearPlane = 1.0;
    // At ZL 20 the map has 2^20 tiles per side. That is 1048576.
    // Placing the camera on one corner of the map, rotated toward the opposite corner, and tilted
    // at almost 90 degrees would  require a frustum that can span the whole size of this map.
    // For this reason, the far plane is set to 2 * 2^20 * defaultTileSize.
    // That is, in order to make sure that the whole map would fit in the frustum at this ZL.
    // Since we are using a double matrix, and since the largest value in the matrix is going to be
    // 2 * m_farPlane (as near plane is 1.0), there should be sufficient precision left.
    //
    // TODO: extend this to support clip distance.
    m_farPlane =  (altitude + 2097152.0) * defaultTileSize;

    m_viewMercator = m_eyeMercator - m_centerMercator;
    m_upMercator = QDoubleVector3D::normal(m_viewMercator, m_sideMercator);
    m_nearPlaneMercator = 0.000002; // this value works until ZL 18. Above that, a better progressive formula is needed, or
                                    // else, this clips too much.

    double aspectRatio = 1.0 * m_viewportWidth / m_viewportHeight;

    m_halfWidth = m_aperture * aspectRatio;
    m_halfHeight = m_aperture;

    double verticalHalfFOV = QLocationUtils::degrees(atan(m_aperture));

    m_cameraMatrix.setToIdentity();
    m_cameraMatrix.lookAt(m_eye, m_center, m_up);
    m_cameraMatrix0.setToIdentity();
    m_cameraMatrix0.lookAt(eye0, QDoubleVector3D(0,0,0), m_up);

    QDoubleMatrix4x4 projectionMatrix;
    projectionMatrix.frustum(-m_halfWidth, m_halfWidth, -m_halfHeight, m_halfHeight, m_nearPlane, m_farPlane);

    /*
     * The full transformation chain for m_transformation is:
     * matScreen * matScreenFit * matShift *  projectionMatrix * cameraMatrix * matZoomLevelScale
     * where:
     * matZoomLevelScale = scale(m_sideLength, m_sideLength, 1.0)
     * matShift = translate(1.0, 1.0, 0.0)
     * matScreenFit = scale(0.5, 0.5, 1.0)
     * matScreen = scale(m_viewportWidth, m_viewportHeight, 1.0)
     */

    QPointF offsetPct = marginsOffset(QSizeF(m_viewportWidth, m_viewportHeight), m_visibleArea);
    QDoubleMatrix4x4 matScreenTransformation;
    matScreenTransformation.scale(0.5 * m_viewportWidth, 0.5 * m_viewportHeight, 1.0);
    matScreenTransformation(0,3) = (0.5 + offsetPct.x()) * m_viewportWidth;
    matScreenTransformation(1,3) = (0.5 + offsetPct.y()) * m_viewportHeight;

    m_transformation = matScreenTransformation *  projectionMatrix * m_cameraMatrix;
    m_quickItemTransformation = m_transformation;
    m_transformation.scale(m_sideLengthPixels, m_sideLengthPixels, 1.0);

    m_transformation0 = matScreenTransformation *  projectionMatrix * m_cameraMatrix0;
    m_transformation0.scale(m_sideLengthPixels, m_sideLengthPixels, 1.0);

    m_centerNearPlane = m_eye - m_viewNormalized;
    m_centerNearPlaneMercator = m_eyeMercator - m_viewNormalized * m_nearPlaneMercator;

    // The method does not support tilting angles >= 90.0 or < 0.

    // The following formula is used to have a growing epsilon with the zoom level,
    // in order not to have too large values at low zl, which would overflow when converted to Clipper::cInt.
    const double upperBoundEpsilon = 1.0 / std::pow(10, 1.0 + m_cameraData.zoomLevel() / 5.0);
    const double elevationUpperBound = 90.0 - upperBoundEpsilon;
    const double maxRayElevation = qMin(elevationUpperBound - m_cameraData.tilt(), verticalHalfFOV);
    double maxHalfAperture = 0;
    m_verticalEstateToSkip = 0;
    if (maxRayElevation < verticalHalfFOV) {
        maxHalfAperture = tan(QLocationUtils::radians(maxRayElevation));
        m_verticalEstateToSkip = 1.0 - maxHalfAperture / m_aperture;
    }

    m_minimumUnprojectableY = m_verticalEstateToSkip * 0.5 * m_viewportHeight; // m_verticalEstateToSkip is relative to half aperture
    m_visibleRegionDirty = true;
}

void QGeoProjectionWebMercator::updateVisibleRegion()
{
    m_visibleRegionDirty = false;

    double viewportHalfWidth  = (!m_visibleArea.isEmpty()) ? m_visibleArea.width() / m_viewportWidth : 1.0;
    double viewportHalfHeight = (!m_visibleArea.isEmpty()) ? m_visibleArea.height() / m_viewportHeight : 1.0;

    double top = qMax<double>(-viewportHalfHeight, -1 + m_verticalEstateToSkip);
    double bottom = viewportHalfHeight;
    double left = -viewportHalfWidth;
    double right = viewportHalfWidth;

    QDoubleVector2D tl = viewportToWrappedMapProjection(QDoubleVector2D(left, top ));
    QDoubleVector2D tr = viewportToWrappedMapProjection(QDoubleVector2D(right, top ));
    QDoubleVector2D bl = viewportToWrappedMapProjection(QDoubleVector2D(left,  bottom ));
    QDoubleVector2D br = viewportToWrappedMapProjection(QDoubleVector2D(right, bottom ));

    // To make sure that what is returned can be safely converted back to lat/lon without risking overlaps
    double mapLeftLongitude = QLocationUtils::mapLeftLongitude(m_cameraData.center().longitude());
    double mapRightLongitude = QLocationUtils::mapRightLongitude(m_cameraData.center().longitude());
    double leftX = geoToWrappedMapProjection(QGeoCoordinate(0, mapLeftLongitude)).x();
    double rightX = geoToWrappedMapProjection(QGeoCoordinate(0, mapRightLongitude)).x();

    QList<QDoubleVector2D> mapRect;
    mapRect.push_back(QDoubleVector2D(leftX, 1.0));
    mapRect.push_back(QDoubleVector2D(rightX, 1.0));
    mapRect.push_back(QDoubleVector2D(rightX, 0.0));
    mapRect.push_back(QDoubleVector2D(leftX, 0.0));

    QList<QDoubleVector2D> viewportRect;
    viewportRect.push_back(bl);
    viewportRect.push_back(br);
    viewportRect.push_back(tr);
    viewportRect.push_back(tl);

    c2t::clip2tri clipper;
    clipper.clearClipper();
    clipper.addSubjectPath(QClipperUtils::qListToPath(mapRect), true);
    clipper.addClipPolygon(QClipperUtils::qListToPath(viewportRect));

    Paths res = clipper.execute(c2t::clip2tri::Intersection);
    m_visibleRegion.clear();
    if (res.size())
        m_visibleRegion = QClipperUtils::pathToQList(res[0]); // Intersection between two convex quadrilaterals should always be a single polygon

    m_projectableRegion.clear();
    mapRect.clear();
    // The full map rectangle in extended mercator space
    mapRect.push_back(QDoubleVector2D(-1.0, 1.0));
    mapRect.push_back(QDoubleVector2D( 2.0, 1.0));
    mapRect.push_back(QDoubleVector2D( 2.0, 0.0));
    mapRect.push_back(QDoubleVector2D(-1.0, 0.0));
    if (m_cameraData.tilt() == 0) {
        m_projectableRegion = mapRect;
    } else {
        QGeoProjectionWebMercator::Plane nearPlane(m_centerNearPlaneMercator, m_viewNormalized);
        Line2D nearPlaneXYIntersection = nearPlane.planeXYIntersection();
        double squareHalfSide = qMax(5.0, nearPlaneXYIntersection.m_point.length());
        QDoubleVector2D viewDirectionProjected = -m_viewNormalized.toVector2D().normalized();


        QDoubleVector2D tl = nearPlaneXYIntersection.m_point
                            - squareHalfSide * nearPlaneXYIntersection.m_direction
                            + 2 * squareHalfSide * viewDirectionProjected;
        QDoubleVector2D tr = nearPlaneXYIntersection.m_point
                            + squareHalfSide * nearPlaneXYIntersection.m_direction
                            + 2 * squareHalfSide * viewDirectionProjected;
        QDoubleVector2D bl = nearPlaneXYIntersection.m_point
                            - squareHalfSide * nearPlaneXYIntersection.m_direction;
        QDoubleVector2D br = nearPlaneXYIntersection.m_point
                            + squareHalfSide * nearPlaneXYIntersection.m_direction;

        QList<QDoubleVector2D> projectableRect;
        projectableRect.push_back(bl);
        projectableRect.push_back(br);
        projectableRect.push_back(tr);
        projectableRect.push_back(tl);


        c2t::clip2tri clipperProjectable;
        clipperProjectable.clearClipper();
        clipperProjectable.addSubjectPath(QClipperUtils::qListToPath(mapRect), true);
        clipperProjectable.addClipPolygon(QClipperUtils::qListToPath(projectableRect));

        Paths resProjectable = clipperProjectable.execute(c2t::clip2tri::Intersection);
        if (resProjectable.size())
            m_projectableRegion = QClipperUtils::pathToQList(resProjectable[0]); // Intersection between two convex quadrilaterals should always be a single polygon
        else
            m_projectableRegion = viewportRect;
    }

    // Compute m_visibleRegionExpanded as a clipped expanded version of m_visibleRegion
    QDoubleVector2D centroid;
    for (const QDoubleVector2D &v: qAsConst(m_visibleRegion))
        centroid += v;
    centroid /= m_visibleRegion.size();

    m_visibleRegionExpanded.clear();
    for (const QDoubleVector2D &v: qAsConst(m_visibleRegion)) {
        const QDoubleVector2D vc = v - centroid;
        m_visibleRegionExpanded.push_back(centroid + vc * 1.2); // fixing expansion factor to 1.2
    }

    c2t::clip2tri clipperExpanded;
    clipperExpanded.clearClipper();
    clipperExpanded.addSubjectPath(QClipperUtils::qListToPath(m_visibleRegionExpanded), true);
    clipperExpanded.addClipPolygon(QClipperUtils::qListToPath(m_projectableRegion));
    Paths resVisibleExpanded = clipperExpanded.execute(c2t::clip2tri::Intersection);
    if (resVisibleExpanded.size())
        m_visibleRegionExpanded = QClipperUtils::pathToQList(resVisibleExpanded[0]); // Intersection between two convex quadrilaterals should always be a single polygon
    else
        m_visibleRegionExpanded = m_visibleRegion;
}

QGeoCameraData QGeoProjectionWebMercator::cameraData() const
{
    return m_cameraData;
}

/*
 *
 *  Line implementation
 *
 */

QGeoProjectionWebMercator::Line2D::Line2D()
{

}

QGeoProjectionWebMercator::Line2D::Line2D(const QDoubleVector2D &linePoint, const QDoubleVector2D &lineDirection)
    :   m_point(linePoint), m_direction(lineDirection.normalized())
{

}

bool QGeoProjectionWebMercator::Line2D::isValid() const
{
    return (m_direction.length() > 0.5);
}

/*
 *
 *  Plane implementation
 *
 */

QGeoProjectionWebMercator::Plane::Plane()
{

}

QGeoProjectionWebMercator::Plane::Plane(const QDoubleVector3D &planePoint, const QDoubleVector3D &planeNormal)
    :   m_point(planePoint), m_normal(planeNormal.normalized()) { }

QDoubleVector3D QGeoProjectionWebMercator::Plane::lineIntersection(const QDoubleVector3D &linePoint, const QDoubleVector3D &lineDirection) const
{
    double s;
    return lineIntersection(linePoint, lineDirection, s);
}

QDoubleVector3D QGeoProjectionWebMercator::Plane::lineIntersection(const QDoubleVector3D &linePoint, const QDoubleVector3D &lineDirection, double &s) const
{
    QDoubleVector3D w = linePoint - m_point;
    // s = -n.dot(w) / n.dot(u).  p = p0 + su; u is lineDirection
    s = QDoubleVector3D::dotProduct(-m_normal, w) / QDoubleVector3D::dotProduct(m_normal, lineDirection);
    return linePoint + lineDirection * s;
}

QGeoProjectionWebMercator::Line2D QGeoProjectionWebMercator::Plane::planeXYIntersection() const
{
    // cross product of the two normals for the line direction
    QDoubleVector3D lineDirection = QDoubleVector3D::crossProduct(m_normal, xyNormal);
    lineDirection.setZ(0.0);
    lineDirection.normalize();

    // cross product of the line direction and the plane normal to find the direction on the plane
    // intersecting the xy plane
    QDoubleVector3D directionToXY = QDoubleVector3D::crossProduct(m_normal, lineDirection);
    QDoubleVector3D p = xyPlane.lineIntersection(m_point, directionToXY);
    return Line2D(p.toVector2D(), lineDirection.toVector2D());
}

bool QGeoProjectionWebMercator::Plane::isValid() const
{
    return (m_normal.length() > 0.5);
}

QT_END_NAMESPACE